Smoke Exposure and COVID-19 in California

Author

Thomas McHale

Interactive Exploration of Association between Smoke Exposure and COVID-19 in 2020

Please navigate to the link in order to explore the incidence of COVID-19 cases and deaths for each month of 2020 as well as the smoke exposure for particulate matter (PM) of 2.5 µm in California in 2020.

You can select each month of 2020 for COVID-19 cases and deaths and it will display the incidence per 10,000 persons for each county for that month. Below the COVID-19 map is an interactive map of smoke exposure. This displays the PM 2.5 µm smoke exposure in each county of California in 2020. You can pick each month to display to correspond to the COVID-19 maps.

Since the influence and timing of smoke exposure leading to a respiratory infection is not clear, this lets you interact with different time points between smoke exposure and COVID-19. For example, if there is an incubation period between smoke exposure that lasts several weeks or months you can look at COVID-19 months after the smoke exposure. This might be expected if smoke exposure causes lung injury that pre-disposes individuals to an increased risk of COVID-19

Please Click on the links below to explore the assoications between Smoke Exposure and COVID-19

Smoke Exposure and COVID-19 in 2020

View the Shiny app

Smoke Exposure and COVID-19 in 2021

View the Shiny app

Smoke Exposure and COVID-19 in 2021

View the Shiny app

Explore the Associations of Population and Demographic Data

Population Map

According to the American Community Survey (ACS) data, California had an estimated population of over 39 million in 2020, making it the most populous state in the United States. The population is diverse, with individuals from various ethnic and racial backgrounds. About 60% of the population resides in urban areas, with the largest cities being Los Angeles, San Diego, and San Jose. The median household income is $80,440. The education level is diverse, with approximately 31% of the population holding a bachelor’s degree or higher. The following map shows the population of each county on a log base 10 scale. You can hover over each county to view additional demographic data.

Note

Click on a specific county to display population and demographic information. You can zoom in and out with the buttons in the top left corner or scrolling with your mouse.

Demographic Maps

Median Income

Rate of Workers Predominantly Outdoors

Since smoke is likely to affect workers who spend most of their time outdoors, I wanted to look at the rate of outdoor laborers in California. The variables used to determine outdoor laborers compared to all laborers were “B24011_031” and “B24011_034” from the ACS data. These two variables represent the number of workers 16 years and over who worked in farming, fishing, and forestry occupations, specifically those who worked on a farm, ranch, or in an orchard (B24011_031) or those who worked in other farming, fishing, and forestry occupations (B24011_034). These two variables were selected and summed to calculate the total number of outdoor laborers per county. The total number of laborers per county was also calculated by summing all the variables starting with “B24011”. The outdoor laborer rate was then determined by dividing the total number of outdoor laborers by the total number of laborers in each county, and multiplying by 100 to express it as a percentage.

Mask Use Survey

This data was taken from the New York Times github COVID-19 page. I am displaying the percent of persons who rated “ALWAYS” wearing a mask, since this was the most common survey response. The other responses can be seen in the label when you hover over the county.

Specifically from the READme.md description at https://github.com/nytimes/covid-19-data/tree/master/mask-use:
“This data comes from a large number of interviews conducted online by the global data and survey firm Dynata at the request of The New York Times. The firm asked a question about mask use to obtain 250,000 survey responses between July 2 and July 14, enough data to provide estimates more detailed than the state level. (Several states have imposed new mask requirements since the completion of these interviews.)

Specifically, each participant was asked: How often do you wear a mask in public when you expect to be within six feet of another person?

This survey was conducted a single time, and at this point we have no plans to update the data or conduct the survey again.”

Environmental Maps

Temperature

Elevation

Statistical Analysis of Smoke Association with COVID-19 Cases Lagged 1, 2, and 3 Months

2020

Univariate Linear Mixed Effects Modelling

Cases

Treating Smoke as Continuous


<table class="kable_wrapper">
<caption>Linear Mixed Effect Regression Results</caption>
<tbody>
  <tr>
   <td> 

|effect   |group    |term            |  estimate| std.error| statistic|        df| p.value|
|:--------|:--------|:---------------|---------:|---------:|---------:|---------:|-------:|
|fixed    |NA       |(Intercept)     | 511.77808| 76.373689|  6.700974|  82.68627|       0|
|fixed    |NA       |smoke           |  20.87656|  2.335372|  8.939286| 419.97811|       0|
|ran_pars |NAME     |sd__(Intercept) | 435.20633|        NA|        NA|        NA|      NA|
|ran_pars |Residual |sd__Observation | 798.01809|        NA|        NA|        NA|      NA|

 </td>
   <td> 

|effect   |group    |term            |   estimate| std.error| statistic|        df|   p.value|
|:--------|:--------|:---------------|----------:|---------:|---------:|---------:|---------:|
|fixed    |NA       |(Intercept)     | 596.025613| 80.924074|  7.365245|  94.24321| 0.0000000|
|fixed    |NA       |smoke           |   9.665711|  2.612266|  3.700125| 370.46066| 0.0002482|
|ran_pars |NAME     |sd__(Intercept) | 412.932835|        NA|        NA|        NA|        NA|
|ran_pars |Residual |sd__Observation | 861.926921|        NA|        NA|        NA|        NA|

 </td>
   <td> 

|effect   |group    |term            |   estimate| std.error| statistic|       df|   p.value|
|:--------|:--------|:---------------|----------:|---------:|---------:|--------:|---------:|
|fixed    |NA       |(Intercept)     | 863.554507|  86.41320|  9.993317| 113.2336| 0.0000000|
|fixed    |NA       |smoke           |  -8.799764|   3.08198| -2.855231| 319.4480| 0.0045819|
|ran_pars |NAME     |sd__(Intercept) | 358.541053|        NA|        NA|       NA|        NA|
|ran_pars |Residual |sd__Observation | 938.578005|        NA|        NA|       NA|        NA|

 </td>
  </tr>
</tbody>
</table>
Treating Smoke as a Factor


<table class="kable_wrapper">
<caption>Linear Mixed Effect Regression Results</caption>
<tbody>
  <tr>
   <td> 

|effect   |group    |term               | estimate| std.error| statistic|       df|   p.value|
|:--------|:--------|:------------------|--------:|---------:|---------:|--------:|---------:|
|fixed    |NA       |(Intercept)        | 294.8912|  79.51803|  3.708483| 101.1368| 0.0003408|
|fixed    |NA       |smoke_factormedium | 795.4004|  91.31157|  8.710839| 407.8537| 0.0000000|
|fixed    |NA       |smoke_factorhigh   | 995.2168|  85.80768| 11.598225| 406.9107| 0.0000000|
|ran_pars |NAME     |sd__(Intercept)    | 440.3845|        NA|        NA|       NA|        NA|
|ran_pars |Residual |sd__Observation    | 741.3178|        NA|        NA|       NA|        NA|

 </td>
   <td> 

|effect   |group    |term               |  estimate| std.error| statistic|       df|   p.value|
|:--------|:--------|:------------------|---------:|---------:|---------:|--------:|---------:|
|fixed    |NA       |(Intercept)        |  200.7387|  86.66217|  2.316336| 116.1621| 0.0222933|
|fixed    |NA       |smoke_factormedium | 1030.6770|  98.78296| 10.433753| 351.6583| 0.0000000|
|fixed    |NA       |smoke_factorhigh   |  757.0009|  92.91201|  8.147503| 348.9732| 0.0000000|
|ran_pars |NAME     |sd__(Intercept)    |  452.9763|        NA|        NA|       NA|        NA|
|ran_pars |Residual |sd__Observation    |  748.4800|        NA|        NA|       NA|        NA|

 </td>
   <td> 

|effect   |group    |term               | estimate| std.error| statistic|       df|   p.value|
|:--------|:--------|:------------------|--------:|---------:|---------:|--------:|---------:|
|fixed    |NA       |(Intercept)        | 397.1945|  100.9917| 3.9329416| 163.5408| 0.0001237|
|fixed    |NA       |smoke_factormedium | 894.0903|  123.1187| 7.2620162| 307.2222| 0.0000000|
|fixed    |NA       |smoke_factorhigh   | 103.3302|  118.3077| 0.8734022| 302.5614| 0.3831366|
|ran_pars |NAME     |sd__(Intercept)    | 406.4523|        NA|        NA|       NA|        NA|
|ran_pars |Residual |sd__Observation    | 857.4175|        NA|        NA|       NA|        NA|

 </td>
  </tr>
</tbody>
</table>

Deaths



<table class="kable_wrapper">
<caption>Linear Regression Results</caption>
<tbody>
  <tr>
   <td> 

|effect   |group    |term               |  estimate| std.error| statistic|        df|   p.value|
|:--------|:--------|:------------------|---------:|---------:|---------:|---------:|---------:|
|fixed    |NA       |(Intercept)        |  3.836041|  1.773054|  2.163521|  94.24158| 0.0330301|
|fixed    |NA       |smoke_factormedium | 12.425741|  1.947515|  6.380305| 404.60686| 0.0000000|
|fixed    |NA       |smoke_factorhigh   | 13.175109|  1.829978|  7.199601| 403.77266| 0.0000000|
|ran_pars |NAME     |sd__(Intercept)    | 10.180926|        NA|        NA|        NA|        NA|
|ran_pars |Residual |sd__Observation    | 15.782912|        NA|        NA|        NA|        NA|

 </td>
   <td> 

|effect   |group    |term               |  estimate| std.error| statistic|       df|   p.value|
|:--------|:--------|:------------------|---------:|---------:|---------:|--------:|---------:|
|fixed    |NA       |(Intercept)        |  4.095229|  1.944844|  2.105685| 108.6988| 0.0375346|
|fixed    |NA       |smoke_factormedium | 17.426904|  2.144011|  8.128179| 348.7862| 0.0000000|
|fixed    |NA       |smoke_factorhigh   |  6.606018|  2.016107|  3.276621| 346.1374| 0.0011569|
|ran_pars |NAME     |sd__(Intercept)    | 10.522973|        NA|        NA|       NA|        NA|
|ran_pars |Residual |sd__Observation    | 16.215616|        NA|        NA|       NA|        NA|

 </td>
   <td> 

|effect   |group    |term               |  estimate| std.error|  statistic|       df|   p.value|
|:--------|:--------|:------------------|---------:|---------:|----------:|--------:|---------:|
|fixed    |NA       |(Intercept)        |  7.478680|  2.101534|  3.5586772| 158.3024| 0.0004922|
|fixed    |NA       |smoke_factormedium |  9.783055|  2.492436|  3.9250978| 305.1225| 0.0001072|
|fixed    |NA       |smoke_factorhigh   | -1.596426|  2.393469| -0.6669927| 300.5630| 0.5052885|
|ran_pars |NAME     |sd__(Intercept)    |  9.015876|        NA|         NA|       NA|        NA|
|ran_pars |Residual |sd__Observation    | 17.289115|        NA|         NA|       NA|        NA|

 </td>
  </tr>
</tbody>
</table>

Multivariate Linear Mixed Effects Modelling



<table class="kable_wrapper">
<caption>Linear Mixed Effect Regression Results</caption>
<tbody>
  <tr>
   <td> 

|effect   |group    |term                 |     estimate|    std.error|  statistic|        df|   p.value|
|:--------|:--------|:--------------------|------------:|------------:|----------:|---------:|---------:|
|fixed    |NA       |(Intercept)          | -487.5799772| 1015.6283473| -0.4800772|  63.69875| 0.6328170|
|fixed    |NA       |smoke_factormedium   |  816.2873879|   90.5845050|  9.0113357| 416.86927| 0.0000000|
|fixed    |NA       |smoke_factorhigh     | 1017.2658123|   85.9157213| 11.8402755| 404.33211| 0.0000000|
|fixed    |NA       |median_income        |   -0.0068204|    0.0033273| -2.0498088|  60.93169| 0.0446937|
|fixed    |NA       |outdoor_laborer_rate |   -5.8155759|   16.8999813| -0.3441173|  66.00000| 0.7318521|
|fixed    |NA       |avg_temp             |   36.1684859|   11.3189597|  3.1953896|  60.60931| 0.0022180|
|fixed    |NA       |precip               |  -24.9197030|    7.1654259| -3.4777700|  62.28502| 0.0009278|
|fixed    |NA       |ALWAYS               | -555.9181879|  668.6615405| -0.8313895|  57.50139| 0.4091928|
|ran_pars |NAME     |sd__(Intercept)      |  268.1790147|           NA|         NA|        NA|        NA|
|ran_pars |Residual |sd__Observation      |  741.0810806|           NA|         NA|        NA|        NA|

 </td>
   <td> 

|effect   |group    |term                 |    estimate|  std.error|  statistic|        df|   p.value|
|:--------|:--------|:--------------------|-----------:|----------:|----------:|---------:|---------:|
|fixed    |NA       |(Intercept)          | -59.3302010| 21.7388504| -2.7292244|  64.23480| 0.0081812|
|fixed    |NA       |smoke_factormedium   |  12.8750867|  1.9267312|  6.6823472| 416.75524| 0.0000000|
|fixed    |NA       |smoke_factorhigh     |  13.8102500|  1.8271477|  7.5583654| 404.49450| 0.0000000|
|fixed    |NA       |median_income        |  -0.0002021|  0.0000712| -2.8370347|  61.49865| 0.0061585|
|fixed    |NA       |outdoor_laborer_rate |  -0.1855464|  0.3616901| -0.5129983|  66.52457| 0.6096519|
|fixed    |NA       |avg_temp             |   1.1165703|  0.2423158|  4.6079144|  61.14883| 0.0000212|
|fixed    |NA       |precip               |  -0.1953537|  0.1533828| -1.2736351|  62.82252| 0.2074850|
|fixed    |NA       |ALWAYS               |  25.6022825| 14.3172843|  1.7882080|  58.05840| 0.0789608|
|ran_pars |NAME     |sd__(Intercept)      |   5.7852300|         NA|         NA|        NA|        NA|
|ran_pars |Residual |sd__Observation      |  15.7575164|         NA|         NA|        NA|        NA|

 </td>
  </tr>
</tbody>
</table>

2021

Univariate Linear Mixed Effects Modelling

Cases

Treating Smoke Exposre as Continuous


<table class="kable_wrapper">
<caption>Linear Mixed Effect Regression Results</caption>
<tbody>
  <tr>
   <td> 

|effect   |group    |term              |     estimate| std.error|  statistic|  df|   p.value|
|:--------|:--------|:-----------------|------------:|---------:|----------:|---:|---------:|
|fixed    |NA       |(Intercept)       |    3.5781086| 62.055129|  0.0576602| 827| 0.9540333|
|fixed    |NA       |monthly_avg_smoke |   -0.1239279|  3.666895| -0.0337964| 827| 0.9730477|
|ran_pars |NAME     |sd__(Intercept)   |    0.0000000|        NA|         NA|  NA|        NA|
|ran_pars |Residual |sd__Observation   | 1464.7421484|        NA|         NA|  NA|        NA|

 </td>
   <td> 

|effect   |group    |term              |     estimate| std.error|  statistic|  df|   p.value|
|:--------|:--------|:-----------------|------------:|---------:|----------:|---:|---------:|
|fixed    |NA       |(Intercept)       |   -0.3340054|  65.80980| -0.0050753| 776| 0.9959518|
|fixed    |NA       |monthly_avg_smoke |    0.0102252|   3.79326|  0.0026956| 776| 0.9978499|
|ran_pars |NAME     |sd__(Intercept)   |    0.0000000|        NA|         NA|  NA|        NA|
|ran_pars |Residual |sd__Observation   | 1511.6004249|        NA|         NA|  NA|        NA|

 </td>
   <td> 

|effect   |group    |term              |     estimate| std.error|  statistic|  df|  p.value|
|:--------|:--------|:-----------------|------------:|---------:|----------:|---:|--------:|
|fixed    |NA       |(Intercept)       |    4.4722624| 70.301526|  0.0636154| 725| 0.949294|
|fixed    |NA       |monthly_avg_smoke |   -0.0142235|  3.933658| -0.0036158| 725| 0.997116|
|ran_pars |NAME     |sd__(Intercept)   |    0.0000000|        NA|         NA|  NA|       NA|
|ran_pars |Residual |sd__Observation   | 1562.6552416|        NA|         NA|  NA|       NA|

 </td>
  </tr>
</tbody>
</table>
Treating Smoke Exposure as a Factor


<table class="kable_wrapper">
<caption>Linear Mixed Effect Regression Results</caption>
<tbody>
  <tr>
   <td> 

|effect   |group    |term               |     estimate| std.error|  statistic|  df|   p.value|
|:--------|:--------|:------------------|------------:|---------:|----------:|---:|---------:|
|fixed    |NA       |(Intercept)        |    0.5286544|  104.1577|  0.0050755| 826| 0.9959516|
|fixed    |NA       |smoke_factormedium |    2.9862215|  121.7954|  0.0245184| 826| 0.9804451|
|fixed    |NA       |smoke_factorhigh   |   -0.8391302|  184.9254| -0.0045377| 826| 0.9963806|
|ran_pars |NAME     |sd__(Intercept)    |    0.0000000|        NA|         NA|  NA|        NA|
|ran_pars |Residual |sd__Observation    | 1465.6286981|        NA|         NA|  NA|        NA|

 </td>
   <td> 

|effect   |group    |term               |     estimate| std.error|  statistic|  df|   p.value|
|:--------|:--------|:------------------|------------:|---------:|----------:|---:|---------:|
|fixed    |NA       |(Intercept)        |    2.1238842|  111.5084|  0.0190468| 775| 0.9848086|
|fixed    |NA       |smoke_factormedium |   -3.8107486|  130.2827| -0.0292498| 775| 0.9766729|
|fixed    |NA       |smoke_factorhigh   |    0.9631167|  194.5637|  0.0049501| 775| 0.9960517|
|ran_pars |NAME     |sd__(Intercept)    |    0.0000000|        NA|         NA|  NA|        NA|
|ran_pars |Residual |sd__Observation    | 1512.5740302|        NA|         NA|  NA|        NA|

 </td>
   <td> 

|effect   |group    |term               |    estimate| std.error|  statistic|  df|   p.value|
|:--------|:--------|:------------------|-----------:|---------:|----------:|---:|---------:|
|fixed    |NA       |(Intercept)        |   -6.076432|  120.2863| -0.0505164| 724| 0.9597248|
|fixed    |NA       |smoke_factormedium |   14.725792|  140.3340|  0.1049339| 724| 0.9164573|
|fixed    |NA       |smoke_factorhigh   |    7.473632|  204.0538|  0.0366258| 724| 0.9707935|
|ran_pars |NAME     |sd__(Intercept)    |    0.000000|        NA|         NA|  NA|        NA|
|ran_pars |Residual |sd__Observation    | 1563.721784|        NA|         NA|  NA|        NA|

 </td>
  </tr>
</tbody>
</table>

Deaths



<table class="kable_wrapper">
<caption>Linear Regression Results</caption>
<tbody>
  <tr>
   <td> 

|effect   |group    |term               |   estimate| std.error|  statistic|  df|   p.value|
|:--------|:--------|:------------------|----------:|---------:|----------:|---:|---------:|
|fixed    |NA       |(Intercept)        | -0.0339885|  1.843408| -0.0184379| 826| 0.9852940|
|fixed    |NA       |smoke_factormedium |  0.1045274|  2.155564|  0.0484919| 826| 0.9613359|
|fixed    |NA       |smoke_factorhigh   | -0.0263469|  3.272854| -0.0080501| 826| 0.9935789|
|ran_pars |NAME     |sd__(Intercept)    |  0.0000000|        NA|         NA|  NA|        NA|
|ran_pars |Residual |sd__Observation    | 25.9390541|        NA|         NA|  NA|        NA|

 </td>
   <td> 

|effect   |group    |term               |   estimate| std.error|  statistic|  df|   p.value|
|:--------|:--------|:------------------|----------:|---------:|----------:|---:|---------:|
|fixed    |NA       |(Intercept)        |  0.0195996|  1.971760|  0.0099401| 775| 0.9920716|
|fixed    |NA       |smoke_factormedium | -0.0723687|  2.303737| -0.0314136| 775| 0.9749478|
|fixed    |NA       |smoke_factorhigh   | -0.0112498|  3.440393| -0.0032699| 775| 0.9973918|
|ran_pars |NAME     |sd__(Intercept)    |  0.0000000|        NA|         NA|  NA|        NA|
|ran_pars |Residual |sd__Observation    | 26.7462492|        NA|         NA|  NA|        NA|

 </td>
   <td> 

|effect   |group    |term               |   estimate| std.error|  statistic|  df|   p.value|
|:--------|:--------|:------------------|----------:|---------:|----------:|---:|---------:|
|fixed    |NA       |(Intercept)        | -0.1153178|  2.125619| -0.0542514| 724| 0.9567498|
|fixed    |NA       |smoke_factormedium |  0.2445318|  2.479889|  0.0986060| 724| 0.9214784|
|fixed    |NA       |smoke_factorhigh   |  0.0850162|  3.605903|  0.0235770| 724| 0.9811966|
|ran_pars |NAME     |sd__(Intercept)    |  0.0000000|        NA|         NA|  NA|        NA|
|ran_pars |Residual |sd__Observation    | 27.6330452|        NA|         NA|  NA|        NA|

 </td>
  </tr>
</tbody>
</table>

Multivarirate Linear Mixed Regression Modelling

  county_code         NAME               year.x         month       
 Min.   :  1.00   Length:880         Min.   :2021   Min.   : 1.000  
 1st Qu.: 33.00   Class :character   1st Qu.:2021   1st Qu.: 3.000  
 Median : 53.00   Mode  :character   Median :2021   Median : 6.000  
 Mean   : 53.45                      Mean   :2021   Mean   : 6.324  
 3rd Qu.: 77.00                      3rd Qu.:2021   3rd Qu.: 9.000  
 Max.   :113.00                      Max.   :2021   Max.   :12.000  
                                                                    
 monthly_avg_smoke daily_aqi_value      date.x               Month       
 Min.   :  1.207   Min.   :  1.00   Min.   :2021-01-01   Min.   : 1.000  
 1st Qu.:  5.223   1st Qu.: 17.00   1st Qu.:2021-03-05   1st Qu.: 3.000  
 Median :  7.456   Median : 29.00   Median :2021-06-03   Median : 6.000  
 Mean   :  9.687   Mean   : 33.91   Mean   :2021-06-12   Mean   : 6.324  
 3rd Qu.: 10.291   3rd Qu.: 45.00   3rd Qu.:2021-09-01   3rd Qu.: 9.000  
 Max.   :248.030   Max.   :179.00   Max.   :2021-12-12   Max.   :12.000  
                                                                         
      fips           year.y     mo_avg_casesp10k     mo_avg_deathsp10k   
 Min.   : 4023   Min.   :2021   Min.   :-10482.099   Min.   :-190.10943  
 1st Qu.: 6039   1st Qu.:2021   1st Qu.:     0.383   1st Qu.:   0.00124  
 Median : 6081   Median :2021   Median :     1.706   Median :   0.02392  
 Mean   :13798   Mean   :2021   Mean   :     2.375   Mean   :   0.03101  
 3rd Qu.:17097   3rd Qu.:2021   3rd Qu.:    17.057   3rd Qu.:   0.20008  
 Max.   :51137   Max.   :2021   Max.   :  8352.164   Max.   : 187.89038  
 NA's   :50      NA's   :50     NA's   :50           NA's   :50          
    GEOID               cases             date.y           covid_incidence_1mo 
 Length:880         Min.   :    162   Min.   :2021-01-01   Min.   :-10482.099  
 Class :character   1st Qu.:   1736   1st Qu.:2021-03-01   1st Qu.:     0.387  
 Mode  :character   Median :  11770   Median :2021-06-01   Median :     1.709  
                    Mean   :  56333   Mean   :2021-05-31   Mean   :     2.377  
                    3rd Qu.:  47103   3rd Qu.:2021-09-01   3rd Qu.:    17.092  
                    Max.   :1494823   Max.   :2021-11-01   Max.   :  8352.164  
                    NA's   :50        NA's   :50           NA's   :51          
 covid_incidence_2mo  covid_incidence_3mo  smoke_factor death_incidence_1mo 
 Min.   :-10482.099   Min.   :-10482.099   low   :204   Min.   :-190.10943  
 1st Qu.:     0.320   1st Qu.:     0.283   medium:576   1st Qu.:   0.00124  
 Median :     1.656   Median :     1.648   high  :100   Median :   0.02401  
 Mean   :    -0.233   Mean   :     4.328                Mean   :   0.03105  
 3rd Qu.:    20.107   3rd Qu.:    28.110                3rd Qu.:   0.20258  
 Max.   :  8352.164   Max.   :  8352.164                Max.   : 187.89038  
 NA's   :102          NA's   :153                       NA's   :51          
 death_incidence_2mo  death_incidence_3mo     avg_temp         precip     
 Min.   :-190.10943   Min.   :-190.10943   Min.   :46.40   Min.   : 2.49  
 1st Qu.:   0.00000   1st Qu.:   0.00000   1st Qu.:57.20   1st Qu.:14.22  
 Median :   0.02312   Median :   0.02359   Median :59.30   Median :24.66  
 Mean   :  -0.02858   Mean   :   0.05262   Mean   :59.99   Mean   :26.05  
 3rd Qu.:   0.22408   3rd Qu.:   0.34394   3rd Qu.:63.30   3rd Qu.:36.57  
 Max.   : 187.89038   Max.   : 187.89038   Max.   :75.70   Max.   :75.66  
 NA's   :102          NA's   :153                                         
   population       median_income    outdoor_laborer_rate     ALWAYS      
 Min.   :   12541   Min.   : 41780   Min.   :19.06        Min.   :0.5450  
 1st Qu.:   64276   1st Qu.: 49254   1st Qu.:24.17        1st Qu.:0.6820  
 Median :  218774   Median : 63188   Median :25.98        Median :0.7540  
 Mean   :  832557   Mean   : 69770   Mean   :26.80        Mean   :0.7463  
 3rd Qu.:  874784   3rd Qu.: 86173   3rd Qu.:29.68        3rd Qu.:0.8060  
 Max.   :10040682   Max.   :130890   Max.   :45.93        Max.   :0.8890  
                                                                          
     NEVER        
 Min.   :0.00100  
 1st Qu.:0.01000  
 Median :0.02100  
 Mean   :0.02487  
 3rd Qu.:0.02700  
 Max.   :0.13200  
                  


<table class="kable_wrapper">
<caption>Linear Mixed Effects Regression Results</caption>
<tbody>
  <tr>
   <td> 

|effect   |group    |term                 |     estimate|    std.error|  statistic|  df|   p.value|
|:--------|:--------|:--------------------|------------:|------------:|----------:|---:|---------:|
|fixed    |NA       |(Intercept)          |   11.4928354| 1437.8959339|  0.0079928| 822| 0.9936247|
|fixed    |NA       |smoke_factormedium   |    3.1398432|  132.2464377|  0.0237424| 822| 0.9810639|
|fixed    |NA       |smoke_factorhigh     |   -1.4588163|  190.9306360| -0.0076406| 822| 0.9939056|
|fixed    |NA       |median_income        |   -0.0000281|    0.0034804| -0.0080856| 822| 0.9935506|
|fixed    |NA       |outdoor_laborer_rate |    0.1196812|   16.6512171|  0.0071875| 822| 0.9942670|
|fixed    |NA       |avg_temp             |   -0.1637528|   16.8049182| -0.0097443| 822| 0.9922276|
|fixed    |NA       |precip               |   -0.0924572|    5.3587690| -0.0172534| 822| 0.9862386|
|ran_pars |NAME     |sd__(Intercept)      |    0.0000000|           NA|         NA|  NA|        NA|
|ran_pars |Residual |sd__Observation      | 1469.1899342|           NA|         NA|  NA|        NA|

 </td>
   <td> 

|effect   |group    |term                 |   estimate|  std.error|  statistic|  df|   p.value|
|:--------|:--------|:--------------------|----------:|----------:|----------:|---:|---------:|
|fixed    |NA       |(Intercept)          |  0.0354693| 25.4482277|  0.0013938| 822| 0.9988883|
|fixed    |NA       |smoke_factormedium   |  0.1192380|  2.3405292|  0.0509449| 822| 0.9593818|
|fixed    |NA       |smoke_factorhigh     | -0.0302011|  3.3791363| -0.0089375| 822| 0.9928711|
|fixed    |NA       |median_income        | -0.0000006|  0.0000616| -0.0104607| 822| 0.9916563|
|fixed    |NA       |outdoor_laborer_rate |  0.0037518|  0.2946972|  0.0127310| 822| 0.9898455|
|fixed    |NA       |avg_temp             | -0.0018365|  0.2974175| -0.0061749| 822| 0.9950746|
|fixed    |NA       |precip               | -0.0009223|  0.0948408| -0.0097244| 822| 0.9922435|
|ran_pars |NAME     |sd__(Intercept)      |  0.0000000|         NA|         NA|  NA|        NA|
|ran_pars |Residual |sd__Observation      | 26.0020765|         NA|         NA|  NA|        NA|

 </td>
  </tr>
</tbody>
</table>

2022

Univariate Linear Mixed Effects Modelling

Cases

Treating Smoke Exposure as Continuous


<table class="kable_wrapper">
<caption>Linear Mixed Effect Regression Results</caption>
<tbody>
  <tr>
   <td> 

|effect |term              |   estimate| std.error| statistic|       df|   p.value|
|:------|:-----------------|----------:|---------:|---------:|--------:|---------:|
|fixed  |(Intercept)       | 2155.18413| 300.17265|  7.179815| 336.1730| 0.0000000|
|fixed  |monthly_avg_smoke |   11.58729|  30.82784|  0.375871| 792.2126| 0.7071134|

 </td>
   <td> 

|effect |term              |   estimate| std.error| statistic|       df|   p.value|
|:------|:-----------------|----------:|---------:|---------:|--------:|---------:|
|fixed  |(Intercept)       | 2081.13413| 314.64698| 6.6141876| 337.8140| 0.0000000|
|fixed  |monthly_avg_smoke |   17.47657|  32.75653| 0.5335293| 749.5916| 0.5938254|

 </td>
   <td> 

|effect |term              |  estimate| std.error| statistic|       df|   p.value|
|:------|:-----------------|---------:|---------:|---------:|--------:|---------:|
|fixed  |(Intercept)       | 2063.7475| 332.16362| 6.2130449| 332.7099| 0.0000000|
|fixed  |monthly_avg_smoke |   15.6723|  34.09126| 0.4597162| 702.1698| 0.6458622|

 </td>
  </tr>
</tbody>
</table>
Treating Smoke Exposure as a Factor


Table: Linear Mixed Effect Regression Results

|effect |term                 |     estimate|    std.error|  statistic|       df|   p.value|
|:------|:--------------------|------------:|------------:|----------:|--------:|---------:|
|fixed  |(Intercept)          |   11.4928354| 1437.8959339|  0.0079928| 822.0000| 0.9936247|
|fixed  |smoke_factormedium   |    3.1398432|  132.2464377|  0.0237424| 822.0000| 0.9810639|
|fixed  |smoke_factorhigh     |   -1.4588163|  190.9306360| -0.0076406| 822.0000| 0.9939056|
|fixed  |median_income        |   -0.0000281|    0.0034804| -0.0080856| 822.0000| 0.9935506|
|fixed  |outdoor_laborer_rate |    0.1196812|   16.6512171|  0.0071875| 822.0000| 0.9942670|
|fixed  |avg_temp             |   -0.1637528|   16.8049182| -0.0097443| 822.0000| 0.9922276|
|fixed  |precip               |   -0.0924572|    5.3587690| -0.0172534| 822.0000| 0.9862386|
|fixed  |(Intercept)          | 2170.0680839|  311.9321976|  6.9568583| 274.9220| 0.0000000|
|fixed  |smoke_factormedium   |   44.8871352|  330.6869495|  0.1357391| 670.4550| 0.8920683|
|fixed  |smoke_factorhigh     |  286.9613481|  857.5079028|  0.3346457| 762.1902| 0.7379844|
|fixed  |(Intercept)          | 2141.6370818|  331.0305847|  6.4696049| 273.1221| 0.0000000|
|fixed  |smoke_factormedium   |   45.2658111|  352.2494306|  0.1285050| 632.9440| 0.8977902|
|fixed  |smoke_factorhigh     |  240.9154190|  889.1945240|  0.2709367| 710.0224| 0.7865185|

Deaths



<table class="kable_wrapper">
<caption>Linear Regression Results</caption>
<tbody>
  <tr>
   <td> 

|effect   |group    |term               |   estimate| std.error|  statistic|       df|   p.value|
|:--------|:--------|:------------------|----------:|---------:|----------:|--------:|---------:|
|fixed    |NA       |(Intercept)        | 21.6208235|  3.825858|  5.6512346| 253.1570| 0.0000000|
|fixed    |NA       |smoke_factormedium | -0.8107082|  3.927550| -0.2064158| 741.6586| 0.8365228|
|fixed    |NA       |smoke_factorhigh   |  1.2406919|  9.838440|  0.1261066| 808.8056| 0.8996789|
|ran_pars |NAME     |sd__(Intercept)    | 12.8539632|        NA|         NA|       NA|        NA|
|ran_pars |Residual |sd__Observation    | 43.2520108|        NA|         NA|       NA|        NA|

 </td>
   <td> 

|effect   |group    |term               |  estimate| std.error|  statistic|       df|   p.value|
|:--------|:--------|:------------------|---------:|---------:|----------:|--------:|---------:|
|fixed    |NA       |(Intercept)        | 21.617019|  4.006266|  5.3958017| 254.7776| 0.0000002|
|fixed    |NA       |smoke_factormedium | -1.020235|  4.151177| -0.2457700| 694.1373| 0.8059330|
|fixed    |NA       |smoke_factorhigh   |  1.283373| 10.699279|  0.1199495| 764.9403| 0.9045546|
|ran_pars |NAME     |sd__(Intercept)    | 13.029688|        NA|         NA|       NA|        NA|
|ran_pars |Residual |sd__Observation    | 44.560247|        NA|         NA|       NA|        NA|

 </td>
   <td> 

|effect   |group    |term               |   estimate| std.error|  statistic|       df|   p.value|
|:--------|:--------|:------------------|----------:|---------:|----------:|--------:|---------:|
|fixed    |NA       |(Intercept)        | 21.5191812|  4.244659|  5.0697081| 257.7810| 0.0000008|
|fixed    |NA       |smoke_factormedium | -0.8954068|  4.421070| -0.2025317| 654.9263| 0.8395640|
|fixed    |NA       |smoke_factorhigh   |  1.1358130| 11.101560|  0.1023111| 712.8800| 0.9185385|
|ran_pars |NAME     |sd__(Intercept)    | 13.2870757|        NA|         NA|       NA|        NA|
|ran_pars |Residual |sd__Observation    | 46.0003557|        NA|         NA|       NA|        NA|

 </td>
  </tr>
</tbody>
</table>

Multivariate Linear Mixed Regression Modelling



Table: Linear Mixed Effect Regression Results

|effect |term                 |     estimate|    std.error|  statistic|        df|   p.value|
|:------|:--------------------|------------:|------------:|----------:|---------:|---------:|
|fixed  |(Intercept)          | 2240.0506891| 4534.1862744|  0.4940359| 107.69524| 0.6222870|
|fixed  |smoke_factormedium   |   13.2701106|  317.3801255|  0.0418114| 741.71042| 0.9666603|
|fixed  |smoke_factorhigh     |   75.7841673|  788.8897971|  0.0960643| 798.73892| 0.9234936|
|fixed  |median_income        |   -0.0118658|    0.0114816| -1.0334596|  96.20813| 0.3039797|
|fixed  |outdoor_laborer_rate |   37.5303258|   58.4496008|  0.6420972|  78.24223| 0.5226870|
|fixed  |avg_temp             |    6.7159771|   52.4650609|  0.1280086| 118.89493| 0.8983585|
|fixed  |precip               |  -31.5909698|   23.1695933| -1.3634667| 103.70842| 0.1756880|
|fixed  |(Intercept)          |  -33.0843340|   57.8588175| -0.5718114|  99.00851| 0.5687457|
|fixed  |smoke_factormedium   |   -1.1980719|    3.9503893| -0.3032794| 751.47189| 0.7617609|
|fixed  |smoke_factorhigh     |   -0.6984168|    9.8018693| -0.0712534| 800.98547| 0.9432138|
|fixed  |median_income        |   -0.0002307|    0.0001468| -1.5716690|  89.47094| 0.1195572|
|fixed  |outdoor_laborer_rate |    0.8396342|    0.7498430|  1.1197467|  73.35855| 0.2664745|
|fixed  |avg_temp             |    0.8490282|    0.6684597|  1.2701262| 108.89011| 0.2067470|
|fixed  |precip               |   -0.0923947|    0.2958286| -0.3123251|  95.73077| 0.7554728|