setwd("F:/PTDLĐT")
data <- read.csv("EDAdataset.csv")
str(data)
## 'data.frame':    153432 obs. of  15 variables:
##  $ X            : int  0 1 2 3 4 5 6 7 8 9 ...
##  $ property_type: chr  "Flat" "Flat" "House" "House" ...
##  $ price        : int  10000000 6900000 16500000 43500000 7000000 34500000 27000000 7800000 50000000 40000000 ...
##  $ location     : chr  "G-10" "E-11" "G-15" "Bani Gala" ...
##  $ city         : chr  "Islamabad" "Islamabad" "Islamabad" "Islamabad" ...
##  $ province_name: chr  "Islamabad Capital" "Islamabad Capital" "Islamabad Capital" "Islamabad Capital" ...
##  $ latitude     : chr  "3,367,989" "33,700,993" "33,631,485,999,999,900" "33,707,572,937,012" ...
##  $ longitude    : chr  "7,301,264" "72,971,492" "72,926,559" "7,315,119,934,082" ...
##  $ baths        : int  2 3 6 4 3 8 8 2 7 5 ...
##  $ purpose      : chr  "For Sale" "For Sale" "For Sale" "For Sale" ...
##  $ bedrooms     : int  2 3 5 4 3 8 8 2 7 5 ...
##  $ date_added   : chr  "04-02-2019" "04-05-2019" "17-07-2019" "05-04-2019" ...
##  $ agency       : chr  "Self" "Self" "Self" "Self" ...
##  $ agent        : chr  "Self" "Self" "Self" "Self" ...
##  $ Area_in_Marla: chr  "4.00" "5.60" "8.00" "40.00" ...

#1. Thống kê mô tả các biến