setwd("F:/PTDLĐT")
data <- read.csv("EDAdataset.csv")
str(data)
## 'data.frame': 153432 obs. of 15 variables:
## $ X : int 0 1 2 3 4 5 6 7 8 9 ...
## $ property_type: chr "Flat" "Flat" "House" "House" ...
## $ price : int 10000000 6900000 16500000 43500000 7000000 34500000 27000000 7800000 50000000 40000000 ...
## $ location : chr "G-10" "E-11" "G-15" "Bani Gala" ...
## $ city : chr "Islamabad" "Islamabad" "Islamabad" "Islamabad" ...
## $ province_name: chr "Islamabad Capital" "Islamabad Capital" "Islamabad Capital" "Islamabad Capital" ...
## $ latitude : chr "3,367,989" "33,700,993" "33,631,485,999,999,900" "33,707,572,937,012" ...
## $ longitude : chr "7,301,264" "72,971,492" "72,926,559" "7,315,119,934,082" ...
## $ baths : int 2 3 6 4 3 8 8 2 7 5 ...
## $ purpose : chr "For Sale" "For Sale" "For Sale" "For Sale" ...
## $ bedrooms : int 2 3 5 4 3 8 8 2 7 5 ...
## $ date_added : chr "04-02-2019" "04-05-2019" "17-07-2019" "05-04-2019" ...
## $ agency : chr "Self" "Self" "Self" "Self" ...
## $ agent : chr "Self" "Self" "Self" "Self" ...
## $ Area_in_Marla: chr "4.00" "5.60" "8.00" "40.00" ...
#1. Thống kê mô tả các biến