https://drive.google.com/file/d/1oHM9X9j0zg_bgaM4qS7oGVhWaPYJf6_O/view?usp=drive_link
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.3.1
library(epitools)
library(DescTools)
## Warning: package 'DescTools' was built under R version 4.3.1
library(DT)
## Warning: package 'DT' was built under R version 4.3.1
library(energy)
## Warning: package 'energy' was built under R version 4.3.1
options(digits = 4)
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.3.1
## Warning: package 'tidyr' was built under R version 4.3.1
## Warning: package 'readr' was built under R version 4.3.1
## Warning: package 'purrr' was built under R version 4.3.1
## Warning: package 'dplyr' was built under R version 4.3.1
## Warning: package 'forcats' was built under R version 4.3.1
## Warning: package 'lubridate' was built under R version 4.3.1
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.2 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ lubridate 1.9.2 ✔ tibble 3.2.1
## ✔ purrr 1.0.1 ✔ tidyr 1.3.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(caret)
## Warning: package 'caret' was built under R version 4.3.1
## Loading required package: lattice
##
## Attaching package: 'caret'
##
## The following object is masked from 'package:purrr':
##
## lift
##
## The following objects are masked from 'package:DescTools':
##
## MAE, RMSE
library(readxl)
EDA <- read_excel("C:/For_EDA_dataset 1.xlsx")
## Warning: Expecting numeric in G3081 / R3081C7: got a date
## New names:
## • `` -> `...1`
str(EDA)
## tibble [153,430 × 15] (S3: tbl_df/tbl/data.frame)
## $ ...1 : num [1:153430] 0 1 2 3 4 5 6 7 8 9 ...
## $ property_type: chr [1:153430] "Flat" "Flat" "House" "House" ...
## $ price : num [1:153430] 10000000 6900000 16500000 43500000 7000000 34500000 27000000 7800000 50000000 40000000 ...
## $ location : chr [1:153430] "G-10" "E-11" "G-15" "Bani Gala" ...
## $ city : chr [1:153430] "Islamabad" "Islamabad" "Islamabad" "Islamabad" ...
## $ province_name: chr [1:153430] "Islamabad Capital" "Islamabad Capital" "Islamabad Capital" "Islamabad Capital" ...
## $ latitude : num [1:153430] 3.37e+06 3.37e+07 3.36e+16 3.37e+13 3.35e+07 ...
## $ longitude : num [1:153430] 7.30e+06 7.30e+07 7.29e+07 7.32e+12 7.33e+07 ...
## $ baths : num [1:153430] 2 3 6 4 3 8 8 2 7 5 ...
## $ purpose : chr [1:153430] "For Sale" "For Sale" "For Sale" "For Sale" ...
## $ bedrooms : num [1:153430] 2 3 5 4 3 8 8 2 7 5 ...
## $ date_added : POSIXct[1:153430], format: "2019-02-04" "2019-05-04" ...
## $ agency : chr [1:153430] "Self" "Self" "Self" "Self" ...
## $ agent : chr [1:153430] "Self" "Self" "Self" "Self" ...
## $ Area_in_Marla: num [1:153430] 4 5.6 8 40 8 32 20 6.2 20 20 ...
Bảng tần số
z<-table(EDA$purpose)
table(EDA$purpose)
##
## For Rent For Sale
## 43183 110247
table(EDA$purpose)/sum(table(EDA$purpose))
##
## For Rent For Sale
## 0.2815 0.7185
Đồ thị
F <- data.frame(EDA$purpose)
F |> ggplot(aes(EDA$purpose)) + geom_bar() + ylab ("Số nhà") + xlab ("Mục đích")
ggplot(EDA,aes(purpose))+ geom_bar(color = "black", fill = "white")+ geom_text(aes(label = scales :: percent(after_stat(count/sum(count)))), stat= 'count', color = 'black', vjust = -.5)+ ylab("Number")+ xlab("purpose")
Ước lượng tỷ lệ số nhà có mục đích để bán với p=0.72
a<-EDA[EDA$purpose == "For Sale",]
prop.test(length(a$purpose),length(EDA$purpose),p= 0.72)
##
## 1-sample proportions test with continuity correction
##
## data: length(a$purpose) out of length(EDA$purpose), null probability 0.72
## X-squared = 1.6, df = 1, p-value = 0.2
## alternative hypothesis: true p is not equal to 0.72
## 95 percent confidence interval:
## 0.7163 0.7208
## sample estimates:
## p
## 0.7185
Ước lượng tỷ lệ số nhà có mục đích để cho thuê với p=0.28
a<-EDA[EDA$purpose == "For Rent",]
prop.test(length(a$purpose),length(EDA$purpose),p= 0.28)
##
## 1-sample proportions test with continuity correction
##
## data: length(a$purpose) out of length(EDA$purpose), null probability 0.28
## X-squared = 1.6, df = 1, p-value = 0.2
## alternative hypothesis: true p is not equal to 0.28
## 95 percent confidence interval:
## 0.2792 0.2837
## sample estimates:
## p
## 0.2815
mh1 <-glm(data = EDA, formula = factor(purpose) ~ price + baths + bedrooms + Area_in_Marla + property_type,family = binomial(link = 'logit'))
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(mh1)
##
## Call:
## glm(formula = factor(purpose) ~ price + baths + bedrooms + Area_in_Marla +
## property_type, family = binomial(link = "logit"), data = EDA)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.80e+13 2.73e+06 1.76e+07 <2e-16 ***
## price 6.58e+07 5.08e-03 1.29e+10 <2e-16 ***
## baths -4.01e+13 9.16e+04 -4.38e+08 <2e-16 ***
## bedrooms 6.75e+13 1.22e+05 5.54e+08 <2e-16 ***
## Area_in_Marla -2.98e+12 1.84e+03 -1.62e+09 <2e-16 ***
## property_typeFlat 1.56e+15 2.75e+06 5.65e+08 <2e-16 ***
## property_typeHouse -5.18e+14 2.74e+06 -1.89e+08 <2e-16 ***
## property_typeLower Portion -3.93e+14 2.83e+06 -1.39e+08 <2e-16 ***
## property_typePenthouse -4.68e+14 4.39e+06 -1.07e+08 <2e-16 ***
## property_typeRoom -1.28e+15 3.77e+06 -3.38e+08 <2e-16 ***
## property_typeUpper Portion -2.95e+14 2.80e+06 -1.06e+08 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 182373 on 153429 degrees of freedom
## Residual deviance: 1385951 on 153419 degrees of freedom
## AIC: 1385973
##
## Number of Fisher Scoring iterations: 25
BrierScore (mh1)
## [1] 0.1253
mh2 <- glm(factor(purpose) ~ price + baths + bedrooms + Area_in_Marla + property_type, family = binomial(link = "probit"), data = EDA)
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
summary(mh2)
##
## Call:
## glm(formula = factor(purpose) ~ price + baths + bedrooms + Area_in_Marla +
## property_type, family = binomial(link = "probit"), data = EDA)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.01e+14 2.73e+06 2.57e+08 <2e-16 ***
## price 5.40e+07 5.08e-03 1.06e+10 <2e-16 ***
## baths -5.22e+13 9.16e+04 -5.70e+08 <2e-16 ***
## bedrooms -1.22e+14 1.22e+05 -1.00e+09 <2e-16 ***
## Area_in_Marla -2.86e+12 1.84e+03 -1.55e+09 <2e-16 ***
## property_typeFlat 1.82e+14 2.75e+06 6.61e+07 <2e-16 ***
## property_typeHouse 3.53e+14 2.74e+06 1.29e+08 <2e-16 ***
## property_typeLower Portion -4.69e+14 2.83e+06 -1.66e+08 <2e-16 ***
## property_typePenthouse -9.52e+14 4.39e+06 -2.17e+08 <2e-16 ***
## property_typeRoom -3.87e+15 3.77e+06 -1.03e+09 <2e-16 ***
## property_typeUpper Portion -3.31e+14 2.80e+06 -1.18e+08 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 182373 on 153429 degrees of freedom
## Residual deviance: 1961424 on 153419 degrees of freedom
## AIC: 1961446
##
## Number of Fisher Scoring iterations: 25
BrierScore (mh2)
## [1] 0.1773
mh3 <- glm(data = EDA, formula = factor(purpose) ~ price + baths + bedrooms + Area_in_Marla + property_type, family = binomial(link = "cloglog"))
## Warning: glm.fit: algorithm did not converge
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
levels(factor(EDA$purpose))
## [1] "For Rent" "For Sale"
summary(mh3)
##
## Call:
## glm(formula = factor(purpose) ~ price + baths + bedrooms + Area_in_Marla +
## property_type, family = binomial(link = "cloglog"), data = EDA)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.01e+14 2.73e+06 3.71e+07 <2e-16 ***
## price 4.23e+07 5.08e-03 8.31e+09 <2e-16 ***
## baths -2.89e+13 9.16e+04 -3.16e+08 <2e-16 ***
## bedrooms -4.27e+13 1.22e+05 -3.50e+08 <2e-16 ***
## Area_in_Marla -1.87e+12 1.84e+03 -1.02e+09 <2e-16 ***
## property_typeFlat 3.19e+14 2.75e+06 1.16e+08 <2e-16 ***
## property_typeHouse -9.16e+13 2.74e+06 -3.34e+07 <2e-16 ***
## property_typeLower Portion -6.76e+14 2.83e+06 -2.39e+08 <2e-16 ***
## property_typePenthouse 4.04e+14 4.39e+06 9.21e+07 <2e-16 ***
## property_typeRoom -2.25e+14 3.77e+06 -5.97e+07 <2e-16 ***
## property_typeUpper Portion -1.77e+15 2.80e+06 -6.35e+08 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 182373 on 153429 degrees of freedom
## Residual deviance: 1345942 on 153419 degrees of freedom
## AIC: 1345964
##
## Number of Fisher Scoring iterations: 25
Tiêu chí AIC
aic1 <- AIC(mh1)
aic2 <- AIC(mh2)
aic3 <- AIC(mh3)
AIC <-cbind(aic1,aic2,aic3)
AIC
## aic1 aic2 aic3
## [1,] 1385973 1961446 1345964
Tiêu chí Deviance
de1 <- deviance(mh1)
de2 <- deviance(mh2)
de3 <- deviance(mh3)
deviance <- cbind(de1,de2,de3)
deviance
## de1 de2 de3
## [1,] 1385951 1961424 1345942
Tiêu chí Brier Score
bs1 <- BrierScore(mh1)
bs2 <- BrierScore(mh2)
bs3 <- BrierScore(mh3)
BrierScore <- cbind(bs1,bs2,bs3)
BrierScore
## bs1 bs2 bs3
## [1,] 0.1253 0.1773 0.1217
-> Giá trị của 3 tiêu chí trên càng nhỏ nghĩa là mô hình càng tốt.Vì vậy ta lựa chọn mô hình hàm hồi quy probit.
summary(mh2)
##
## Call:
## glm(formula = factor(purpose) ~ price + baths + bedrooms + Area_in_Marla +
## property_type, family = binomial(link = "probit"), data = EDA)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 7.01e+14 2.73e+06 2.57e+08 <2e-16 ***
## price 5.40e+07 5.08e-03 1.06e+10 <2e-16 ***
## baths -5.22e+13 9.16e+04 -5.70e+08 <2e-16 ***
## bedrooms -1.22e+14 1.22e+05 -1.00e+09 <2e-16 ***
## Area_in_Marla -2.86e+12 1.84e+03 -1.55e+09 <2e-16 ***
## property_typeFlat 1.82e+14 2.75e+06 6.61e+07 <2e-16 ***
## property_typeHouse 3.53e+14 2.74e+06 1.29e+08 <2e-16 ***
## property_typeLower Portion -4.69e+14 2.83e+06 -1.66e+08 <2e-16 ***
## property_typePenthouse -9.52e+14 4.39e+06 -2.17e+08 <2e-16 ***
## property_typeRoom -3.87e+15 3.77e+06 -1.03e+09 <2e-16 ***
## property_typeUpper Portion -3.31e+14 2.80e+06 -1.18e+08 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 182373 on 153429 degrees of freedom
## Residual deviance: 1961424 on 153419 degrees of freedom
## AIC: 1961446
##
## Number of Fisher Scoring iterations: 25
Kết quả cho thấy tất cả các biến độc lập đều có ý nghĩa thống kê với p-value<0.05. Như vậy các biến độc lập đều ảnh hưởng đến biến phụ thuộc.