file.choose()
[1] "C:\\Users\\Lisbeth\\Downloads\\DISEÑO EXPERIMENTAL (TRABAJOS)\\SULFATOS.xlsx"
ruta_propulsora <- "C:\\Users\\Lisbeth\\Downloads\\DISEÑO EXPERIMENTAL (TRABAJOS)\\SULFATOS.xlsx"
excel_sheets(ruta_propulsora)
[1] "Hoja1"
Propul<-read_excel(ruta_propulsora)
print(head(Propul))
view(Propul)
attach(Propul)
names(Propul)
 [1] "Año"             "Tipo de agua"    "COD. Muestra"    "Distrito"       
 [5] "Provincia"       "Aspecto"         "Color"           "Olor"           
 [9] "Sabor"           "sulfatos (mg/L)"
summary(Propul)
      Año       Tipo de agua       COD. Muestra         Distrito        
 Min.   :2012   Length:1718        Length:1718        Length:1718       
 1st Qu.:2014   Class :character   Class :character   Class :character  
 Median :2017   Mode  :character   Mode  :character   Mode  :character  
 Mean   :2017                                                           
 3rd Qu.:2021                                                           
 Max.   :2027                                                           
  Provincia           Aspecto             Color               Olor          
 Length:1718        Length:1718        Length:1718        Length:1718       
 Class :character   Class :character   Class :character   Class :character  
 Mode  :character   Mode  :character   Mode  :character   Mode  :character  
                                                                            
                                                                            
                                                                            
    Sabor           sulfatos (mg/L)   
 Length:1718        Length:1718       
 Class :character   Class :character  
 Mode  :character   Mode  :character  
                                      
                                      
                                      
str(Propul)
tibble [1,718 × 10] (S3: tbl_df/tbl/data.frame)
 $ Año            : num [1:1718] 2012 2012 2012 2012 2012 ...
 $ Tipo de agua   : chr [1:1718] "Agua potable" "Agua potable" "Agua potable" "Agua potable" ...
 $ COD. Muestra   : chr [1:1718] "2903" "2936" "3104" "2977" ...
 $ Distrito       : chr [1:1718] "Chupa" "0" "Ilave" "Orurillo" ...
 $ Provincia      : chr [1:1718] "Azangaro" "Carabaya" "Ilave" "Melgar" ...
 $ Aspecto        : chr [1:1718] "Liquido" "Liquido" "Solido" "Liquido" ...
 $ Color          : chr [1:1718] "Incoloro" "Incoloro" "Café" "Incoloro" ...
 $ Olor           : chr [1:1718] "Inodoro" "Inodoro" "Inodoro" "Inodoro" ...
 $ Sabor          : chr [1:1718] "Insipido" "Insipido" "Insipido" "Insipido" ...
 $ sulfatos (mg/L): chr [1:1718] "4" "4" "4" "760" ...
YEAR <- factor(Propul$`Año`) 
TYPEOFWATER <- factor(Propul$`Tipo de agua`)
COD <- factor(Propul$`COD. Muestra`)
DISTRIC <- factor(Propul$`Distrito`)
PROVINCE <- factor(Propul$`Provincia`)
ASPECT <- factor(Propul$`Aspecto`)
COLOR <- factor(Propul$`Color`)
SMELL <- factor(Propul$`Olor`)
FLAVOR <- factor(Propul$`Sabor`)
SULFATES <- factor(Propul$`sulfatos (mg/L)`)
SULFATES1<-as.numeric(SULFATES)
par(mfrow=c(1,1))
boxplot(split(SULFATES1,YEAR),xlab="Año", ylab="Sulfatos") 

boxplot(split(SULFATES1,TYPEOFWATER),xlab="Tipodeagua", ylab="Sulfatos") 

boxplot(split(SULFATES1,COD),xlab="COD.Muestra", ylab="Sulfatos") 

boxplot(split(SULFATES1,DISTRIC),xlab="Distrito", ylab="Sulfatos") 

boxplot(split(SULFATES1,PROVINCE),xlab="Provincia", ylab="Sulfatos")

boxplot(split(SULFATES1,ASPECT),xlab="Aspecto", ylab="Sulfatos")

boxplot(split(SULFATES1,COLOR),xlab="Color", ylab="Sulfatos")

boxplot(split(SULFATES1,SMELL),xlab="Olor", ylab="Sulfatos")

boxplot(split(SULFATES1,FLAVOR),xlab="Sabor", ylab="Sulfatos")

#Análisis de varianza usando la función (aov) Analysis of Variance

prop.aov<-aov(SULFATES1 ~ YEAR+TYPEOFWATER+COD+DISTRIC+PROVINCE+ASPECT+COLOR+SMELL+FLAVOR+SULFATES)
anova(prop.aov)
Warning: ANOVA F-tests on an essentially perfect fit are unreliable
Analysis of Variance Table

Response: SULFATES1
             Df   Sum Sq Mean Sq    F value    Pr(>F)    
YEAR          9  5584148  620461 5.8219e+27 < 2.2e-16 ***
TYPEOFWATER  86 17795307  206922 1.9416e+27 < 2.2e-16 ***
COD         935 45584760   48754 4.5746e+26 < 2.2e-16 ***
DISTRIC      74  3988277   53896 5.0571e+26 < 2.2e-16 ***
PROVINCE     12   598659   49888 4.6811e+26 < 2.2e-16 ***
ASPECT        3    65074   21691 2.0353e+26 < 2.2e-16 ***
COLOR         9   432157   48017 4.5055e+26 < 2.2e-16 ***
SMELL         7   419673   59953 5.6255e+26 < 2.2e-16 ***
FLAVOR        3    29946    9982 9.3661e+25 < 2.2e-16 ***
SULFATES    232 12446708   53650 5.0340e+26 < 2.2e-16 ***
Residuals   326        0       0                         
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
LS0tDQp0aXRsZTogIkdSVVBPIFNVTEZBVE9TOiBMSVNCRVRIIEJFTElaQVJJTywgSlVMSVRaQSBDVVRJUEEsIFJVU1NFTEwgUVVJU1BFIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KDQpgYGB7cn0NCmZpbGUuY2hvb3NlKCkNCmBgYA0KDQpgYGB7cn0NCnJ1dGFfcHJvcHVsc29yYSA8LSAiQzpcXFVzZXJzXFxMaXNiZXRoXFxEb3dubG9hZHNcXERJU0XDkU8gRVhQRVJJTUVOVEFMIChUUkFCQUpPUylcXFNVTEZBVE9TLnhsc3giDQpgYGANCg0KYGBge3J9DQpleGNlbF9zaGVldHMocnV0YV9wcm9wdWxzb3JhKQ0KYGBgDQoNCmBgYHtyfQ0KUHJvcHVsPC1yZWFkX2V4Y2VsKHJ1dGFfcHJvcHVsc29yYSkNCmBgYA0KDQpgYGB7cn0NCnByaW50KGhlYWQoUHJvcHVsKSkNCmBgYA0KDQpgYGB7cn0NCnZpZXcoUHJvcHVsKQ0KYGBgDQoNCmBgYHtyfQ0KYXR0YWNoKFByb3B1bCkNCmBgYA0KDQpgYGB7cn0NCm5hbWVzKFByb3B1bCkNCmBgYA0KDQpgYGB7cn0NCnN1bW1hcnkoUHJvcHVsKQ0KYGBgDQoNCmBgYHtyfQ0Kc3RyKFByb3B1bCkNCmBgYA0KDQpgYGB7cn0NCllFQVIgPC0gZmFjdG9yKFByb3B1bCRgQcOxb2ApIA0KYGBgDQoNCmBgYHtyfQ0KVFlQRU9GV0FURVIgPC0gZmFjdG9yKFByb3B1bCRgVGlwbyBkZSBhZ3VhYCkNCmBgYA0KDQpgYGB7cn0NCkNPRCA8LSBmYWN0b3IoUHJvcHVsJGBDT0QuIE11ZXN0cmFgKQ0KYGBgDQoNCmBgYHtyfQ0KRElTVFJJQyA8LSBmYWN0b3IoUHJvcHVsJGBEaXN0cml0b2ApDQpgYGANCg0KYGBge3J9DQpQUk9WSU5DRSA8LSBmYWN0b3IoUHJvcHVsJGBQcm92aW5jaWFgKQ0KYGBgDQoNCg0KYGBge3J9DQpBU1BFQ1QgPC0gZmFjdG9yKFByb3B1bCRgQXNwZWN0b2ApDQpgYGANCg0KYGBge3J9DQpDT0xPUiA8LSBmYWN0b3IoUHJvcHVsJGBDb2xvcmApDQpgYGANCg0KYGBge3J9DQpTTUVMTCA8LSBmYWN0b3IoUHJvcHVsJGBPbG9yYCkNCmBgYA0KDQpgYGB7cn0NCkZMQVZPUiA8LSBmYWN0b3IoUHJvcHVsJGBTYWJvcmApDQpgYGANCg0KDQpgYGB7cn0NClNVTEZBVEVTIDwtIGZhY3RvcihQcm9wdWwkYHN1bGZhdG9zIChtZy9MKWApDQpgYGANCg0KYGBge3J9DQpTVUxGQVRFUzE8LWFzLm51bWVyaWMoU1VMRkFURVMpDQpgYGANCg0KYGBge3J9DQpwYXIobWZyb3c9YygxLDEpKQ0KYGBgDQoNCmBgYHtyfQ0KYm94cGxvdChzcGxpdChTVUxGQVRFUzEsWUVBUikseGxhYj0iQcOxbyIsIHlsYWI9IlN1bGZhdG9zIikgDQpgYGANCg0KYGBge3J9DQpib3hwbG90KHNwbGl0KFNVTEZBVEVTMSxUWVBFT0ZXQVRFUikseGxhYj0iVGlwb2RlYWd1YSIsIHlsYWI9IlN1bGZhdG9zIikgDQpgYGANCg0KYGBge3J9DQpib3hwbG90KHNwbGl0KFNVTEZBVEVTMSxDT0QpLHhsYWI9IkNPRC5NdWVzdHJhIiwgeWxhYj0iU3VsZmF0b3MiKSANCmBgYA0KDQpgYGB7cn0NCmJveHBsb3Qoc3BsaXQoU1VMRkFURVMxLERJU1RSSUMpLHhsYWI9IkRpc3RyaXRvIiwgeWxhYj0iU3VsZmF0b3MiKSANCmBgYA0KDQpgYGB7cn0NCmJveHBsb3Qoc3BsaXQoU1VMRkFURVMxLFBST1ZJTkNFKSx4bGFiPSJQcm92aW5jaWEiLCB5bGFiPSJTdWxmYXRvcyIpDQpgYGANCg0KYGBge3J9DQpib3hwbG90KHNwbGl0KFNVTEZBVEVTMSxBU1BFQ1QpLHhsYWI9IkFzcGVjdG8iLCB5bGFiPSJTdWxmYXRvcyIpDQpgYGANCg0KYGBge3J9DQpib3hwbG90KHNwbGl0KFNVTEZBVEVTMSxDT0xPUikseGxhYj0iQ29sb3IiLCB5bGFiPSJTdWxmYXRvcyIpDQpgYGANCg0KYGBge3J9DQpib3hwbG90KHNwbGl0KFNVTEZBVEVTMSxTTUVMTCkseGxhYj0iT2xvciIsIHlsYWI9IlN1bGZhdG9zIikNCmBgYA0KDQpgYGB7cn0NCmJveHBsb3Qoc3BsaXQoU1VMRkFURVMxLEZMQVZPUikseGxhYj0iU2Fib3IiLCB5bGFiPSJTdWxmYXRvcyIpDQpgYGANCg0KI0Fuw6FsaXNpcyBkZSB2YXJpYW56YSB1c2FuZG8gbGEgZnVuY2nDs24gKGFvdikgQW5hbHlzaXMgb2YgVmFyaWFuY2UNCg0KYGBge3J9DQpwcm9wLmFvdjwtYW92KFNVTEZBVEVTMSB+IFlFQVIrVFlQRU9GV0FURVIrQ09EK0RJU1RSSUMrUFJPVklOQ0UrQVNQRUNUK0NPTE9SK1NNRUxMK0ZMQVZPUitTVUxGQVRFUykNCmBgYA0KDQpgYGB7cn0NCmFub3ZhKHByb3AuYW92KQ0KYGBgDQoNCg0KDQoNCg==