Question 5
Consider the following vectors representing the number of field goals
made and attempted by a basketball player in five games:
Field Goals Made: c(8, 7, 6, 9, 10) Field Goals Attempted: c(15, 12,
18, 14, 13)
Calculate the field goal percentage for each game and select the
correct average field goal percentage for the five games.
# Define the vectors representing the field goals made and attempted
field_goals_made <- c(8, 7, 6, 9, 10)
field_goals_attempted <- c(15, 12, 18, 14, 13)
# Calculate the field goal percentage for each game
field_goals_percentage <- field_goals_made / field_goals_attempted * 100
#Print the average field goal percentage per game
field_goals_percentage
[1] 53.33333 58.33333 33.33333 64.28571 76.92308
Answer a)
We can see that the field goal percentage for each game respectively
is
Game 1: 53.33%, Game 2: 58.33%, Game 3: 33.33%, Game 4: 64.29%, Game
5: 76.92%
# Calculate the average field goal percentage of all games combined
average_field_goals_percentage <- mean(field_goals_percentage)
#Print the average field goal percentage of all games
average_field_goals_percentage
[1] 57.24176
Answer b)
We can see that the average field goal percentage of all 5 games
combined is 57.24%
57.24%
Question 6
Consider the following vectors representing the number of
three-pointers made and attempted by a basketball player in five
games:
Three-Pointers Made: c(4, 5, 3, 6, 7) Three-Pointers Attempted: c(9,
10, 8, 11, 12)
Calculate the three-point shooting percentage for each game and
select the correct average three-point shooting percentage for the five
games.
# Define the vectors representing three-pointers made and attempted
three_pointers_made <- c(4, 5, 3, 6, 7)
three_pointers_attempted <- c(9, 10, 8, 11, 12)
# Calculate the three-point shooting percentage for each game
three_point_percentage <- (three_pointers_made / three_pointers_attempted) * 100
three_point_percentage
[1] 44.44444 50.00000 37.50000 54.54545 58.33333
Answer a)
We can see that the three-point shooting percentage for each game
respectively is
Game 1: 44.44%, Game 2: 50%, Game 3: 37.5%, Game 4: 54.55%, Game 5:
58.33%
# Calculate the average three-point shooting percentage for the five games
average_three_point_percentage <- mean(three_point_percentage)
average_three_point_percentage
[1] 48.96465
Answer b)
We can see that the average three-point shooting percentage of all 5
games combined is 48.97%
48.97%
Question 7
Consider the following dataset representing the performance of
baseball players in a season. It includes the following variables:
PlayerID, Hits, At-Bats, Home Runs (HR), Walks (BB), and Strikeouts
(SO).
PlayerID Hits At-Bats HR BB SO
1 120 400 15 40 80
2 140 450 12 50 75
3 110 380 8 30 60
4 160 500 20 60 90
5 130 420 10 45 70
Compute the on-base percentage (OBP) for each player and select the
player with the highest OBP.
- Player 1 b) Player 2 c) Player 3 d) Player 4 e) Player 5
To calculate OBP, you can use the following formula:
OBP = (Hits + Walks) / (At-Bats + Walks)
data <- data.frame(
PlayerID = 1:5,
Hits = c(120, 140, 110, 160, 130),
At_Bats = c(400, 450, 380, 500, 420),
HR = c(15, 12, 8, 20, 10),
BB = c(40, 50, 30, 60, 45),
SO = c(80, 75, 60, 90, 70)
)
data
data$OBP <- (data$Hits + data$BB) / (data$At_Bats + data$BB)
data$OBP
[1] 0.3636364 0.3800000 0.3414634 0.3928571 0.3763441
Answer a)
We can see that the on-base percentage (OBP) for each player
respectively is
a)Player 1: 0.364, b)Player 2: 0.38, c)Player 3: 0.342%, d)Player 4:
0.393, e)Player 5: 0.376
# find the player with the highest
player_with_highest_ <- data$PlayerID[which.max(data$OBP)]
# print player with the highest
player_with_highest_
[1] 4
We can see the player with the highest OBP is number 4
Player ID 4
LS0tCnRpdGxlOiAiRmluYWwgRXhhbSBTcG9ydHMgYW5hbHl0aWNzIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCiMgUXVlc3Rpb24gNQpDb25zaWRlciB0aGUgZm9sbG93aW5nIHZlY3RvcnMgcmVwcmVzZW50aW5nIHRoZSBudW1iZXIgb2YgZmllbGQgZ29hbHMgbWFkZSBhbmQgYXR0ZW1wdGVkIGJ5IGEgYmFza2V0YmFsbCBwbGF5ZXIgaW4gZml2ZSBnYW1lczoKCkZpZWxkIEdvYWxzIE1hZGU6IGMoOCwgNywgNiwgOSwgMTApIEZpZWxkIEdvYWxzIEF0dGVtcHRlZDogYygxNSwgMTIsIDE4LCAxNCwgMTMpCgpDYWxjdWxhdGUgdGhlIGZpZWxkIGdvYWwgcGVyY2VudGFnZSBmb3IgZWFjaCBnYW1lIGFuZCBzZWxlY3QgdGhlIGNvcnJlY3QgYXZlcmFnZSBmaWVsZCBnb2FsIHBlcmNlbnRhZ2UgZm9yIHRoZSBmaXZlIGdhbWVzLgpgYGB7cn0KCiMgRGVmaW5lIHRoZSB2ZWN0b3JzIHJlcHJlc2VudGluZyB0aGUgZmllbGQgZ29hbHMgbWFkZSBhbmQgYXR0ZW1wdGVkIApmaWVsZF9nb2Fsc19tYWRlIDwtIGMoOCwgNywgNiwgOSwgMTApCmZpZWxkX2dvYWxzX2F0dGVtcHRlZCA8LSBjKDE1LCAxMiwgMTgsIDE0LCAxMykKCiMgQ2FsY3VsYXRlIHRoZSBmaWVsZCBnb2FsIHBlcmNlbnRhZ2UgZm9yIGVhY2ggZ2FtZQpmaWVsZF9nb2Fsc19wZXJjZW50YWdlIDwtIGZpZWxkX2dvYWxzX21hZGUgLyBmaWVsZF9nb2Fsc19hdHRlbXB0ZWQgKiAxMDAKI1ByaW50IHRoZSBhdmVyYWdlIGZpZWxkIGdvYWwgcGVyY2VudGFnZSBwZXIgZ2FtZQpmaWVsZF9nb2Fsc19wZXJjZW50YWdlCgoKYGBgCiMjIyBBbnN3ZXIgYSkKV2UgY2FuIHNlZSB0aGF0IHRoZSBmaWVsZCBnb2FsIHBlcmNlbnRhZ2UgZm9yIGVhY2ggZ2FtZSByZXNwZWN0aXZlbHkgaXMKCiMjIyMjIEdhbWUgMTogNTMuMzMlLCBHYW1lIDI6IDU4LjMzJSwgR2FtZSAzOiAzMy4zMyUsIEdhbWUgNDogNjQuMjklLCBHYW1lIDU6IDc2LjkyJQoKCmBgYHtyfQoKIyBDYWxjdWxhdGUgdGhlIGF2ZXJhZ2UgZmllbGQgZ29hbCBwZXJjZW50YWdlIG9mIGFsbCBnYW1lcyBjb21iaW5lZAphdmVyYWdlX2ZpZWxkX2dvYWxzX3BlcmNlbnRhZ2UgPC0gbWVhbihmaWVsZF9nb2Fsc19wZXJjZW50YWdlKQojUHJpbnQgdGhlIGF2ZXJhZ2UgZmllbGQgZ29hbCBwZXJjZW50YWdlIG9mIGFsbCBnYW1lcyAKYXZlcmFnZV9maWVsZF9nb2Fsc19wZXJjZW50YWdlCmBgYAojIyMgQW5zd2VyIGIpCldlIGNhbiBzZWUgdGhhdCB0aGUgYXZlcmFnZSBmaWVsZCBnb2FsIHBlcmNlbnRhZ2Ugb2YgYWxsIDUgZ2FtZXMgY29tYmluZWQgaXMgNTcuMjQlCgojIyMjIyA1Ny4yNCUKCiMgUXVlc3Rpb24gNgpDb25zaWRlciB0aGUgZm9sbG93aW5nIHZlY3RvcnMgcmVwcmVzZW50aW5nIHRoZSBudW1iZXIgb2YgdGhyZWUtcG9pbnRlcnMgbWFkZSBhbmQgYXR0ZW1wdGVkIGJ5IGEgYmFza2V0YmFsbCBwbGF5ZXIgaW4gZml2ZSBnYW1lczoKClRocmVlLVBvaW50ZXJzIE1hZGU6IGMoNCwgNSwgMywgNiwgNykgVGhyZWUtUG9pbnRlcnMgQXR0ZW1wdGVkOiBjKDksIDEwLCA4LCAxMSwgMTIpCgpDYWxjdWxhdGUgdGhlIHRocmVlLXBvaW50IHNob290aW5nIHBlcmNlbnRhZ2UgZm9yIGVhY2ggZ2FtZSBhbmQgc2VsZWN0IHRoZSBjb3JyZWN0IGF2ZXJhZ2UgdGhyZWUtcG9pbnQgc2hvb3RpbmcgcGVyY2VudGFnZSBmb3IgdGhlIGZpdmUgZ2FtZXMuCgpgYGB7cn0KIyBEZWZpbmUgdGhlIHZlY3RvcnMgcmVwcmVzZW50aW5nIHRocmVlLXBvaW50ZXJzIG1hZGUgYW5kIGF0dGVtcHRlZAp0aHJlZV9wb2ludGVyc19tYWRlIDwtIGMoNCwgNSwgMywgNiwgNykKdGhyZWVfcG9pbnRlcnNfYXR0ZW1wdGVkIDwtIGMoOSwgMTAsIDgsIDExLCAxMikKCiMgQ2FsY3VsYXRlIHRoZSB0aHJlZS1wb2ludCBzaG9vdGluZyBwZXJjZW50YWdlIGZvciBlYWNoIGdhbWUKdGhyZWVfcG9pbnRfcGVyY2VudGFnZSA8LSAodGhyZWVfcG9pbnRlcnNfbWFkZSAvIHRocmVlX3BvaW50ZXJzX2F0dGVtcHRlZCkgKiAxMDAKdGhyZWVfcG9pbnRfcGVyY2VudGFnZQpgYGAKIyMjIEFuc3dlciBhKQpXZSBjYW4gc2VlIHRoYXQgdGhlIHRocmVlLXBvaW50IHNob290aW5nIHBlcmNlbnRhZ2UgZm9yIGVhY2ggZ2FtZSByZXNwZWN0aXZlbHkgaXMKCiMjIyMjIEdhbWUgMTogNDQuNDQlLCBHYW1lIDI6IDUwJSwgR2FtZSAzOiAzNy41JSwgR2FtZSA0OiA1NC41NSUsIEdhbWUgNTogNTguMzMlCgpgYGB7cn0KIyBDYWxjdWxhdGUgdGhlIGF2ZXJhZ2UgdGhyZWUtcG9pbnQgc2hvb3RpbmcgcGVyY2VudGFnZSBmb3IgdGhlIGZpdmUgZ2FtZXMKYXZlcmFnZV90aHJlZV9wb2ludF9wZXJjZW50YWdlIDwtIG1lYW4odGhyZWVfcG9pbnRfcGVyY2VudGFnZSkKYXZlcmFnZV90aHJlZV9wb2ludF9wZXJjZW50YWdlCmBgYAoKIyMjIEFuc3dlciBiKQpXZSBjYW4gc2VlIHRoYXQgdGhlIGF2ZXJhZ2UgdGhyZWUtcG9pbnQgc2hvb3RpbmcgcGVyY2VudGFnZSBvZiBhbGwgNSBnYW1lcyBjb21iaW5lZCBpcyA0OC45NyUKCiMjIyMjIDQ4Ljk3JQoKIyBRdWVzdGlvbiA3IApDb25zaWRlciB0aGUgZm9sbG93aW5nIGRhdGFzZXQgcmVwcmVzZW50aW5nIHRoZSBwZXJmb3JtYW5jZSBvZiBiYXNlYmFsbCBwbGF5ZXJzIGluIGEgc2Vhc29uLiBJdCBpbmNsdWRlcyB0aGUgZm9sbG93aW5nIHZhcmlhYmxlczogUGxheWVySUQsIEhpdHMsIEF0LUJhdHMsIEhvbWUgUnVucyAoSFIpLCBXYWxrcyAoQkIpLCBhbmQgU3RyaWtlb3V0cyAoU08pLgoKUGxheWVySUQgICAgICAgICAgSGl0cyAgICAgICBBdC1CYXRzICAgICAgICBIUiAgICAgICAgQkIgICAgIFNPCgogICAgMSAgICAgICAgICAgICAxMjAgICAgICAgNDAwICAgICAgICAgICAxNSAgICAgICAgICA0MCAgICAgODAKCiAgICAyICAgICAgICAgICAgIDE0MCAgICAgICA0NTAgICAgICAgICAgIDEyICAgICAgICAgIDUwICAgICA3NQoKICAgIDMgICAgICAgICAgICAgMTEwICAgICAgIDM4MCAgICAgICAgICAgIDggICAgICAgICAgICAzMCAgICA2MAoKICAgIDQgICAgICAgICAgICAgMTYwICAgICAgIDUwMCAgICAgICAgICAgMjAgICAgICAgICAgNjAgICAgIDkwCgogICAgNSAgICAgICAgICAgICAxMzAgICAgICAgNDIwICAgICAgICAgICAxMCAgICAgICAgICA0NSAgICAgNzAKCkNvbXB1dGUgdGhlIG9uLWJhc2UgcGVyY2VudGFnZSAoT0JQKSBmb3IgZWFjaCBwbGF5ZXIgYW5kIHNlbGVjdCB0aGUgcGxheWVyIHdpdGggdGhlIGhpZ2hlc3QgT0JQLgoKYSkgUGxheWVyIDEgYikgUGxheWVyIDIgYykgUGxheWVyIDMgZCkgUGxheWVyIDQgZSkgUGxheWVyIDUKClRvIGNhbGN1bGF0ZSBPQlAsIHlvdSBjYW4gdXNlIHRoZSBmb2xsb3dpbmcgZm9ybXVsYToKCk9CUCA9IChIaXRzICsgV2Fsa3MpIC8gKEF0LUJhdHMgKyBXYWxrcykKCgoKYGBge3J9CmRhdGEgPC0gZGF0YS5mcmFtZSgKICBQbGF5ZXJJRCA9IDE6NSwKICBIaXRzID0gYygxMjAsIDE0MCwgMTEwLCAxNjAsIDEzMCksCiAgQXRfQmF0cyA9IGMoNDAwLCA0NTAsIDM4MCwgNTAwLCA0MjApLAogIEhSID0gYygxNSwgMTIsIDgsIDIwLCAxMCksCiAgQkIgPSBjKDQwLCA1MCwgMzAsIDYwLCA0NSksCiAgU08gPSBjKDgwLCA3NSwgNjAsIDkwLCA3MCkKKQoKZGF0YQpgYGAKCgpgYGB7cn0KZGF0YSRPQlAgPC0gKGRhdGEkSGl0cyArIGRhdGEkQkIpIC8gKGRhdGEkQXRfQmF0cyArIGRhdGEkQkIpCmRhdGEkT0JQCmBgYAojIyMgQW5zd2VyIGEpCldlIGNhbiBzZWUgdGhhdCB0aGUgb24tYmFzZSBwZXJjZW50YWdlIChPQlApIGZvciBlYWNoIHBsYXllciByZXNwZWN0aXZlbHkgaXMgCgojIyMjIGEpUGxheWVyIDE6IDAuMzY0LCBiKVBsYXllciAyOiAwLjM4LCBjKVBsYXllciAzOiAwLjM0MiUsIGQpUGxheWVyIDQ6IDAuMzkzLCBlKVBsYXllciA1OiAwLjM3NgoKCmBgYHtyfQojIGZpbmQgdGhlIHBsYXllciB3aXRoIHRoZSBoaWdoZXN0IApwbGF5ZXJfd2l0aF9oaWdoZXN0XyA8LSBkYXRhJFBsYXllcklEW3doaWNoLm1heChkYXRhJE9CUCldCgojIHByaW50IHBsYXllciB3aXRoIHRoZSBoaWdoZXN0CnBsYXllcl93aXRoX2hpZ2hlc3RfCmBgYAoKV2UgY2FuIHNlZSB0aGUgcGxheWVyIHdpdGggdGhlIGhpZ2hlc3QgT0JQIGlzIG51bWJlciA0CgojIyMjIFBsYXllciBJRCA0IAoKCgo=