A Tensor is a container which can house data in N dimensions. Tensors are in fact generalizations of matrices to N-dimensional spaces, which is why they’re often used interchangeably with the matrix, (which is specifically a 2-dimensional or Rank2 tensor).\(^1\)
Let \(X=\begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}, I=\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\), then
\[\begin{align*} X\bigotimes I&=\begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}\bigotimes \begin{bmatrix} 1 & 0\\ 0 & 1\end{bmatrix}\\&=\begin{bmatrix} 0(I) & 1(I)\\ 1(I) & 0(I) \end{bmatrix}\\&=\begin{bmatrix} \begin{bmatrix} 0 & 0\\ 0 & 0 \end{bmatrix}& \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\\ \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} & \begin{bmatrix} 0 & 0\\ 0 & 0 \end{bmatrix} \end{bmatrix} \end{align*}\]
1.https://medium.com/quantum-untangled/tensor-products-linear-algebra-for-qc-8f7bb5020c6c