load packages
library(MASS)
library(ggplot2)
library(ggeffects)
library(dplyr)
library(scales)
Read database into R. If current database changes, just change the path
Database <- read.csv("/Users/hailaschultz/Dropbox/Other studies/Aurelia project/Data Analysis/data/current_data/Final_Aurelia_Database_Jan11_2023.csv")
First, read in the file that designates different samples to tanks
with jellies other, tanks with zero jellies sampled at the
beginning of the experiment remove, and tanks with zero
jellies sampled at the end of the experiment zero
Control_tanks <- read.csv("/Users/hailaschultz/Dropbox/Other studies/Aurelia project/Data Analysis/data/current_data/Control_Tanks.csv")
Add control tank data to the database file
Database$Control_info <- Control_tanks$c1[match(Database$Sample.Code, Control_tanks$Sample.Code)]
Subset to trials with large jellies where the number of jellies in the tanks was manipulated
Exp_numb_trials<- subset(Database, Trial.Type=='Number')
Exp_numb_large<-subset(Exp_numb_trials,Jelly.Size=="Large")
remove aug 22 2019 - the jellies we used for this experiment were younger/smaller than the other experiments, so I decided to omit it from analysis
Exp_sub<-subset(Exp_numb_large,Sample.Date!="08/22/2019")
remove tanks sampled at the beginning of experiment - we decided not to use these tanks because they were different than the tanks with zero jellies sampled at the end of the experiment and didn’t add anything beneficial
Exp_sub<-subset(Exp_sub,Control_info!="remove")
#convert sample year to a factor
Exp_sub$Sample.Year<- as.factor(Exp_sub$Sample.Year)
#Rename Vars (get the dots out)
Exp_sub$Jelly.Mass<-Exp_sub$Jelly.Mass..g.
Exp_sub$Density<-Exp_sub$Density....m3.
#calculate jelly density
Exp_sub$Jelly.Density<-Exp_sub$Jelly.Mass/Exp_sub$Vol.Filtered..m3.
#add 1 to jelly density for analyses that prohibit zeroes
Exp_sub$Jelly.Density <-Exp_sub$Jelly.Density
colnames(Exp_sub)
## [1] "BugSampleID" "Project" "Sample.Code"
## [4] "Sampling.Group" "Station" "Site"
## [7] "Site.Name" "Basin" "Sub.Basin"
## [10] "Latitude" "Longitude" "Sample.Date"
## [13] "Sample.Year" "Sample.Month" "Sample.Time"
## [16] "Tow.Type" "Mesh.Size" "Station.Depth..m."
## [19] "Flow.meter..revs." "Broad.Group" "Mid.Level.Group"
## [22] "X1st.Word.Taxa" "Genus.species" "Life.History.Stage"
## [25] "Total.Ct" "Density....m3." "Vol.Filtered..m3."
## [28] "Jelly.Mass..g." "Number.of.Jellies" "Trial.Time"
## [31] "Trial.Type" "Jelly.Size" "Jelly.Density....m3."
## [34] "Jelly.Density..g.m3." "Location" "Control_info"
## [37] "Jelly.Mass" "Density" "Jelly.Density"
Subset data to Ditrichocorycaeus and add multiple entries per tank:The mean of jelly density is taken because this should be the same number for all taxa in each tank.
Ditrichocorycaeus<-subset(Exp_sub, Genus.species == "DITRICHOCORYCAEUS ANGLICUS")
Ditrichocorycaeus <- Ditrichocorycaeus %>%
group_by(Sample.Code, Station,Sample.Date,Sample.Year,Control_info) %>%
summarise(
CopDensity = sum(Density),
Jelly.Density = mean(Jelly.Density))
Calculate the geometric mean of the zero-jelly tanks to use as a control.
Ditrichocorycaeus$Control_info_combined <- paste(Ditrichocorycaeus$Sample.Date, Ditrichocorycaeus$Control_info)
Ditrichocorycaeus2<- Ditrichocorycaeus %>%
group_by(Control_info,Control_info_combined,Sample.Date) %>%
summarise(
ave = exp(mean(log(CopDensity))))
Ditrichocorycaeus3<-subset(Ditrichocorycaeus2,Control_info=="zero")
# match the geometric mean of zero jelly tanks to each experiment
Ditrichocorycaeus$Control<- Ditrichocorycaeus3$ave[match(Ditrichocorycaeus$Sample.Date, Ditrichocorycaeus3$Sample.Date)]
Histograms of Jellyfish Density and Copepod Density
hist(Ditrichocorycaeus$CopDensity)
hist(Ditrichocorycaeus$Jelly.Density)
lograrithmic distribution for both
See if years are different
boxplot(CopDensity~Sample.Year, data=Ditrichocorycaeus)
variability for 2019 was higher than 2020
Plot Jellyfish Density against zooplankton density
ggplot(Ditrichocorycaeus, aes(x=Jelly.Density, y=CopDensity)) + geom_point(aes(colour=Sample.Date))
#round to integers
Ditrichocorycaeus$CopDensity_round<-round(as.numeric(Ditrichocorycaeus$CopDensity), 0)
Ditrichocorycaeus$Control_round<-round(as.numeric(Ditrichocorycaeus$Control), 0)
#run model
Ditrichocorycaeus_model1 <- glm.nb(CopDensity_round~Jelly.Density, data = Ditrichocorycaeus)
summary(Ditrichocorycaeus_model1)
##
## Call:
## glm.nb(formula = CopDensity_round ~ Jelly.Density, data = Ditrichocorycaeus,
## init.theta = 1.052170618, link = log)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 10.8046151 0.1645473 65.663 < 2e-16 ***
## Jelly.Density -0.0001963 0.0000655 -2.997 0.00273 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(1.0522) family taken to be 1)
##
## Null deviance: 85.609 on 64 degrees of freedom
## Residual deviance: 74.596 on 63 degrees of freedom
## AIC: 1497
##
## Number of Fisher Scoring iterations: 1
##
##
## Theta: 1.052
## Std. Err.: 0.163
##
## 2 x log-likelihood: -1491.021
plot(Ditrichocorycaeus_model1)
## Gaussian distribution
Ditrichocorycaeus_model2<-glm(CopDensity~Jelly.Density, data= Ditrichocorycaeus, family="gaussian")
summary(Ditrichocorycaeus_model2)
##
## Call:
## glm(formula = CopDensity ~ Jelly.Density, family = "gaussian",
## data = Ditrichocorycaeus)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 52422.845 7053.542 7.432 3.52e-10 ***
## Jelly.Density -8.345 2.808 -2.972 0.00418 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 1746460262)
##
## Null deviance: 1.2546e+11 on 64 degrees of freedom
## Residual deviance: 1.1003e+11 on 63 degrees of freedom
## AIC: 1571.7
##
## Number of Fisher Scoring iterations: 2
plot(Ditrichocorycaeus_model2)
Ditrichocorycaeus_model3<-glm(CopDensity~Jelly.Density, data= Ditrichocorycaeus, family="Gamma")
summary(Ditrichocorycaeus_model3)
##
## Call:
## glm(formula = CopDensity ~ Jelly.Density, family = "Gamma", data = Ditrichocorycaeus)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.683e-05 3.246e-06 5.185 2.43e-06 ***
## Jelly.Density 9.741e-09 2.884e-09 3.378 0.00126 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Gamma family taken to be 0.9565288)
##
## Null deviance: 81.370 on 64 degrees of freedom
## Residual deviance: 66.381 on 63 degrees of freedom
## AIC: 1492.8
##
## Number of Fisher Scoring iterations: 6
plot(Ditrichocorycaeus_model3)
Gamma is the best so far - move forward with it
Ditrichocorycaeus_model4<-glm(CopDensity~Jelly.Density, data= Ditrichocorycaeus, family="Gamma"(link="log"))
summary(Ditrichocorycaeus_model4)
##
## Call:
## glm(formula = CopDensity ~ Jelly.Density, family = Gamma(link = "log"),
## data = Ditrichocorycaeus)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.8045656 0.1708436 63.242 < 2e-16 ***
## Jelly.Density -0.0001962 0.0000680 -2.886 0.00534 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Gamma family taken to be 1.02457)
##
## Null deviance: 81.370 on 64 degrees of freedom
## Residual deviance: 70.904 on 63 degrees of freedom
## AIC: 1497.8
##
## Number of Fisher Scoring iterations: 10
plot(Ditrichocorycaeus_model4)
about the same as the identity link. However, I have not been able to
add a control factor with the identity link, so I will proceed with log
link.
Ditrichocorycaeus_model3<-glm(CopDensity~Jelly.Density+offset(log(Control)), data= Ditrichocorycaeus, family="Gamma"(link="log"))
summary(Ditrichocorycaeus_model3)
##
## Call:
## glm(formula = CopDensity ~ Jelly.Density + offset(log(Control)),
## family = Gamma(link = "log"), data = Ditrichocorycaeus)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.515e-02 5.084e-02 -0.888 0.378
## Jelly.Density -2.499e-04 2.024e-05 -12.352 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Gamma family taken to be 0.09073167)
##
## Null deviance: 18.9831 on 64 degrees of freedom
## Residual deviance: 5.9979 on 63 degrees of freedom
## AIC: 1326.8
##
## Number of Fisher Scoring iterations: 6
plot(Ditrichocorycaeus_model3)
Best fit so far! Proceed with this model.
DitrichocorycaeusMod<-glm(CopDensity~Jelly.Density+offset(log(Control)), data= Ditrichocorycaeus, family="Gamma"(link="log"))
summary(DitrichocorycaeusMod)
##
## Call:
## glm(formula = CopDensity ~ Jelly.Density + offset(log(Control)),
## family = Gamma(link = "log"), data = Ditrichocorycaeus)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.515e-02 5.084e-02 -0.888 0.378
## Jelly.Density -2.499e-04 2.024e-05 -12.352 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Gamma family taken to be 0.09073167)
##
## Null deviance: 18.9831 on 64 degrees of freedom
## Residual deviance: 5.9979 on 63 degrees of freedom
## AIC: 1326.8
##
## Number of Fisher Scoring iterations: 6
plot(DitrichocorycaeusMod)
extract rate of change estimates with confidence intervals
exp(coef(DitrichocorycaeusMod))
## (Intercept) Jelly.Density
## 0.9558585 0.9997501
exp(confint(DitrichocorycaeusMod, level=.95))
## 2.5 % 97.5 %
## (Intercept) 0.8688314 1.0542655
## Jelly.Density 0.9997135 0.9997877
#get rate of change (1-exp(coefficient))
1-0.9997501
## [1] 0.0002499
Calculate rate of change
a<-exp(-2.499e-04)
a
## [1] 0.9997501
b<-a-1
c<-b*100
c
## [1] -0.02498688
Use predict function to predict model values
predictditrichocorycaeus<-ggpredict(
DitrichocorycaeusMod,
terms=c("Jelly.Density"),
ci.lvl = 0.95,
type = "fe",
typical = "mean",
condition = NULL,
back.transform = TRUE,
ppd = FALSE,
vcov.fun = NULL,
vcov.type = NULL,
vcov.args = NULL,
interval = "confidence")
Plot with original values
DitrichocorycaeusPlot<-plot(predictditrichocorycaeus,add.data = TRUE,dot.size=1.5,dot.alpha=0.65)+
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),panel.background = element_blank(), axis.line = element_line(colour = "black"))+theme_classic() +
scale_x_continuous(breaks=seq(0,7500,1500),expand = c(0, 20), limits = c(-10, 7500)) +
scale_y_continuous(breaks=seq(0,200000,50000),expand = c(0, 20), limits = c(-10, 200000))+
geom_line(size=1.5) +
geom_ribbon( aes(ymin = conf.low, ymax = conf.high), alpha = .15)+ xlab(bquote('Jellyfish Biomass ( g /' ~m^3~ ')'))+
ylab(expression(italic('D. anglicus') ~ plain('Density') ~ plain('( # /' ~ m^3 ~ ')')))+
theme(axis.text=element_text(size=15,colour="black"),
legend.position=c(0.87, 0.8),
legend.text=element_text(size=15,colour="black"),
legend.title=element_text(size=15,colour="black"),
axis.title=element_text(size=15,colour="black"),
axis.line = element_line(colour = "black"))+theme(plot.title = element_blank())+
theme(plot.margin=margin(0.7, 0.7, 0.7, 0.7, unit = "cm"))
DitrichocorycaeusPlot
save plot
setwd("/Users/hailaschultz/Dropbox/Other studies/Aurelia project/Data Analysis/output")
ggsave(filename = "Exp_GLM_Ditrichocorycaeus.png", plot = DitrichocorycaeusPlot, width = 6, height = 5, device='png', dpi=700)
Plot without original values
DitrichocorycaeusPlot_nodata<-plot(predictditrichocorycaeus)+xlab('Jellyfish Biomass ( g /' ~m^3~ ')')+
ylab(bquote('Copepod Density ( individuals /'~m^3~')'))+
theme(axis.line = element_line(colour = "black"))+theme_classic() +
geom_line(size=1) +
geom_ribbon( aes(ymin = conf.low, ymax = conf.high, color = NULL),
alpha = .15,show.legend=FALSE) +
scale_x_continuous(breaks=seq(0,7500,1500),expand = c(0, 20), limits = c(-10, 7500)) +
scale_y_continuous(breaks=seq(0,60000,10000),expand = c(0, 20), limits = c(-10, 60000))+
theme(axis.text=element_text(size=8,colour="black"),
axis.title=element_text(size=10),
plot.title=element_blank())+
theme(legend.position='none')+
theme(plot.margin=margin(0.5, 0.5, 0.5, 0.5, unit = "cm"))
DitrichocorycaeusPlot_nodata
save plot
setwd("/Users/hailaschultz/Dropbox/Other studies/Aurelia project/Data Analysis/output")
ggsave(filename = "Exp_GLM_Ditrichocorycaeus_nodata.png", plot = DitrichocorycaeusPlot_nodata, width = 6, height = 5, device='png', dpi=700)