file.choose()
[1] "C:\\Users\\HP\\Downloads\\Diseño exoerimental\\Propulsora.xlsx"
ruta_propulsora <- "C:\\Users\\HP\\Downloads\\Diseño exoerimental\\Propulsora.xlsx"
excel_sheets(ruta_propulsora)
[1] "Hoja1"
Propul<-read_excel(ruta_propulsora)
print(head(Propul))
NA
view(Propul)
attach(Propul)
The following objects are masked from Propul (pos = 7):

    Formulacion, Lote, Operador, Rapidez

The following objects are masked from MoGL (pos = 8):

    Formulacion, Lote, Operador, Rapidez

The following objects are masked from MoGL (pos = 9):

    Formulacion, Lote, Operador, Rapidez

The following objects are masked from MoGL (pos = 10):

    Formulacion, Lote, Operador, Rapidez

The following objects are masked from Propul (pos = 12):

    Formulacion, Lote, Operador, Rapidez
names(Propul)
[1] "Rapidez"     "Formulacion" "Lote"        "Operador"   
summary(Propul)
    Rapidez     Formulacion             Lote      Operador
 Min.   :-8.0   Length:25          Min.   :1   Min.   :1  
 1st Qu.:-3.0   Class :character   1st Qu.:2   1st Qu.:2  
 Median :-1.0   Mode  :character   Median :3   Median :3  
 Mean   : 0.4                      Mean   :3   Mean   :3  
 3rd Qu.: 4.0                      3rd Qu.:4   3rd Qu.:4  
 Max.   :13.0                      Max.   :5   Max.   :5  
str(Propul)
tibble [25 × 4] (S3: tbl_df/tbl/data.frame)
 $ Rapidez    : num [1:25] -1 -8 -7 1 -3 -5 -1 13 6 5 ...
 $ Formulacion: chr [1:25] "A" "B" "C" "D" ...
 $ Lote       : num [1:25] 1 2 3 4 5 1 2 3 4 5 ...
 $ Operador   : num [1:25] 1 1 1 1 1 2 2 2 2 2 ...
OPERA <- factor(Propul$Operador) 
LOT <- factor(Propul$Lote)
FORM<- factor(Propul$Formulacion)
RAPI <-as.vector(Propul$Rapidez)
RAPI1<-as.numeric(RAPI)
par(mfrow=c(1,1))
boxplot(split(RAPI1,OPERA),xlab="Operacion", ylab="Rapidez") 

prop.aov<-aov(RAPI1 ~ OPERA+LOT+FORM)
anova(prop.aov)
Analysis of Variance Table

Response: RAPI1
          Df Sum Sq Mean Sq F value   Pr(>F)   
OPERA      4    150  37.500  3.5156 0.040373 * 
LOT        4     68  17.000  1.5938 0.239059   
FORM       4    330  82.500  7.7344 0.002537 **
Residuals 12    128  10.667                    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
file.choose()
[1] "C:\\Users\\HP\\Downloads\\OPERADORES 1.3.xlsx"
ruta_montajeGL <- "C:\\Users\\HP\\Downloads\\OPERADORES 1.3.xlsx"
excel_sheets(ruta_montajeGL)
[1] "Hoja1"
MoGL<-read_excel(ruta_montajeGL)
print(head(MoGL))
NA
view(MoGL)
attach(MoGL)
names(MoGL)
[1] "RAPIDEZ"     "FORMULACION" "LOTE"        "OPERADOR"    "Montaje"    
summary(MoGL)
    RAPIDEZ        FORMULACION             LOTE          OPERADOR       Montaje         
 Min.   :-8.0000   Length:24          Min.   :1.000   Min.   :1.000   Length:24         
 1st Qu.:-3.2500   Class :character   1st Qu.:2.000   1st Qu.:2.000   Class :character  
 Median : 0.0000   Mode  :character   Median :3.000   Median :3.000   Mode  :character  
 Mean   : 0.5417                      Mean   :2.917   Mean   :2.917                     
 3rd Qu.: 4.2500                      3rd Qu.:4.000   3rd Qu.:4.000                     
 Max.   :13.0000                      Max.   :5.000   Max.   :5.000                     
str(MoGL)
tibble [24 × 5] (S3: tbl_df/tbl/data.frame)
 $ RAPIDEZ    : num [1:24] -1 -8 -7 1 -3 -5 -1 13 6 5 ...
 $ FORMULACION: chr [1:24] "A" "B" "C" "D" ...
 $ LOTE       : num [1:24] 1 2 3 4 5 1 2 3 4 5 ...
 $ OPERADOR   : num [1:24] 1 1 1 1 1 2 2 2 2 2 ...
 $ Montaje    : chr [1:24] "b" "c" "d" "e" ...
OP <- factor(MoGL$OPERADOR) 
MO <- factor(MoGL$Montaje)
LO<-factor(MoGL$LOTE)
FO<-factor(MoGL$FORMULACION)
RA <-as.vector(MoGL$RAPIDEZ)
RA1<-as.numeric(RA)
par(mfrow=c(1,1))
boxplot(split(RA1,OP),xlab="OPERADOR", ylab="RAPIDEZ")

Ra.aov<-aov(RA1 ~ OP+MO+LO+FO)
anova(Ra.aov)
Analysis of Variance Table

Response: RA1
          Df Sum Sq Mean Sq F value Pr(>F)
OP         4 166.76  41.690  1.2976 0.3297
MO         4  61.05  15.263  0.4751 0.7535
LO         4  82.75  20.687  0.6439 0.6425
Residuals 11 353.40  32.127               
ggplot(Ra.aov, aes(OP, MO, LO, FO, fill=OP, MO, LO, FO, color=MO, LO)) + geom_boxplot() + geom_jitter() + theme(legend.position = "none") + geom_point(color = 'red', fill = 'red', size
= 5, shape = 18, alpha = 0.5) + geom_jitter(size = 2, color = 'gray', alpha = 0.8) + geom_boxplot() + theme_bw()
Warning: Duplicated aesthetics after name standardisation:

Form <- ggplot(MoGL, aes(x = FO, y = RA, fill=FO)) +
 geom_boxplot() + theme(legend.position = "none")
Lot <- ggplot(MoGL, aes(x = LO, y = RA, fill=LO)) +
 geom_boxplot() + theme(legend.position = "none")
Oper <- ggplot(MoGL, aes(x = OP, y = RA, fill=OP)) +
 geom_boxplot() + theme(legend.position = "none")
grid.arrange(Form,Lot,Oper, nrow=2,ncol=2)

cv.model(Ra.aov)
[1] 1046.417
Rapide.lm <- lm(RA1 ~ FO+LO+OP+MO)
anova(Rapide.lm , test="F")
Analysis of Variance Table

Response: RA1
          Df Sum Sq Mean Sq F value Pr(>F)
FO         4  82.41  20.602  0.6413 0.6441
OP         4 166.55  41.638  1.2960 0.3303
MO         4  61.60  15.400  0.4793 0.7506
Residuals 11 353.40  32.127               
Grafica <- interactionMeans(Rapide.lm)
Error in interactionMeans(Rapide.lm) : 
  could not find function "interactionMeans"
shapiro.test(Rapide.lm$res)

    Shapiro-Wilk normality test

data:  Rapide.lm$res
W = 0.95779, p-value = 0.3956
qqPlot(Ra.aov)
[1] 19 23

TukeyHSD(Ra.aov,conf.level = 0.95)
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = RA1 ~ OP + MO + LO + FO)

$OP
    diff        lwr       upr     p adj
2-1  7.2  -4.393371 18.793371 0.3228992
3-1  2.8  -8.793371 14.393371 0.9309125
4-1  4.6  -6.993371 16.193371 0.7061315
5-1  6.6  -5.696627 18.896627 0.4528828
3-2 -4.4 -15.993371  7.193371 0.7368548
4-2 -2.6 -14.193371  8.993371 0.9461093
5-2 -0.6 -12.896627 11.696627 0.9998366
4-3  1.8  -9.793371 13.393371 0.9854464
5-3  3.8  -8.496627 16.096627 0.8503403
5-4  2.0 -10.296627 14.296627 0.9827318

$MO
     diff        lwr       upr     p adj
c-b -1.40 -12.993371 10.193371 0.9943395
d-b -3.66 -15.956627  8.636627 0.8661526
e-b -2.80 -14.393371  8.793371 0.9309125
f-b  0.60 -10.993371 12.193371 0.9997936
d-c -2.26 -14.556627 10.036627 0.9731071
e-c -1.40 -12.993371 10.193371 0.9943395
f-c  2.00  -9.593371 13.593371 0.9785946
e-d  0.86 -11.436627 13.156627 0.9993216
f-d  4.26  -8.036627 16.556627 0.7930299
f-e  3.40  -8.193371 14.993371 0.8719996

$LO
     diff        lwr      upr     p adj
2-1  4.60  -6.993371 16.19337 0.7061315
3-1  3.80  -7.793371 15.39337 0.8225786
4-1  5.20  -6.393371 16.79337 0.6110294
5-1  2.95  -9.346627 15.24663 0.9324301
3-2 -0.80 -12.393371 10.79337 0.9993565
4-2  0.60 -10.993371 12.19337 0.9997936
5-2 -1.65 -13.946627 10.64663 0.9915588
4-3  1.40 -10.193371 12.99337 0.9943395
5-3 -0.85 -13.146627 11.44663 0.9993521
5-4 -2.25 -14.546627 10.04663 0.9735308
plot(TukeyHSD(Ra.aov))

plot(TukeyHSD (Ra.aov, conf.level = 0.95 ), las = 2.9 )

NA

LSD.test(y = Ra.aov, trt = "MO" ,group = T, console = T)

Study: Ra.aov ~ "MO"

LSD t Test for RA1 

Mean Square Error:  32.12727 

MO,  means and individual ( 95 %) CI

Alpha: 0.05 ; DF Error: 11
Critical Value of t: 2.200985 

Groups according to probability of means differences and alpha level( 0.05 )

Treatments with the same letter are not significantly different.
LSD.test(Ra.aov,"FO",console=TRUE)

Study: Ra.aov ~ "FO"

LSD t Test for RA1 

Mean Square Error:  32.12727 

FO,  means and individual ( 95 %) CI

Alpha: 0.05 ; DF Error: 11
Critical Value of t: 2.200985 

Groups according to probability of means differences and alpha level( 0.05 )

Treatments with the same letter are not significantly different.
HSD.test(Ra.aov, "FO",console=TRUE)

Study: Ra.aov ~ "FO"

HSD Test for RA1 

Mean Square Error:  32.12727 

FO,  means

Alpha: 0.05 ; DF Error: 11 
Critical Value of Studentized Range: 4.573596 

Groups according to probability of means differences and alpha level( 0.05 )

Treatments with the same letter are not significantly different.
SNK.test(Ra.aov, "FO",console=TRUE)

Study: Ra.aov ~ "FO"

Student Newman Keuls Test
for RA1 

Mean Square Error:  32.12727 

FO,  means

Groups according to probability of means differences and alpha level( 0.05 )

Means with the same letter are not significantly different.
scheffe.test(Ra.aov, "FO",console=TRUE)

Study: Ra.aov ~ "FO"

Scheffe Test for RA1 

Mean Square Error  : 32.12727 

FO,  means

Alpha: 0.05 ; DF Error: 11 
Critical Value of F: 3.35669 

Groups according to probability of means differences and alpha level( 0.05 )

Means with the same letter are not significantly different.
duncan.test(Ra.aov, "FO",console=TRUE)

Study: Ra.aov ~ "FO"

Duncan's new multiple range test
for RA1 

Mean Square Error:  32.12727 

FO,  means

Groups according to probability of means differences and alpha level( 0.05 )

Means with the same letter are not significantly different.
shapiro.test(Ra.aov$res) 

    Shapiro-Wilk normality test

data:  Ra.aov$res
W = 0.95779, p-value = 0.3956
summary(Ra.aov$residuals)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  -8.30   -2.60    1.25    0.00    2.15    6.80 
LS0tDQp0aXRsZTogIkxFWURJIExJU0JFVEggQkVMSVpBUklPIFlBTlFVSSINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQpgYGB7cn0NCmZpbGUuY2hvb3NlKCkNCmBgYA0KYGBge3J9DQpydXRhX3Byb3B1bHNvcmEgPC0gIkM6XFxVc2Vyc1xcSFBcXERvd25sb2Fkc1xcRGlzZcOxbyBleG9lcmltZW50YWxcXFByb3B1bHNvcmEueGxzeCINCmBgYA0KYGBge3J9DQpleGNlbF9zaGVldHMocnV0YV9wcm9wdWxzb3JhKQ0KYGBgDQpgYGB7cn0NClByb3B1bDwtcmVhZF9leGNlbChydXRhX3Byb3B1bHNvcmEpDQpgYGANCmBgYHtyfQ0KcHJpbnQoaGVhZChQcm9wdWwpKQ0KDQpgYGANCmBgYHtyfQ0KdmlldyhQcm9wdWwpDQoNCmBgYA0KDQpgYGB7cn0NCmF0dGFjaChQcm9wdWwpDQpgYGANCmBgYHtyfQ0KbmFtZXMoUHJvcHVsKQ0KYGBgDQpgYGB7cn0NCnN1bW1hcnkoUHJvcHVsKQ0KDQpgYGANCmBgYHtyfQ0Kc3RyKFByb3B1bCkNCmBgYA0KYGBge3J9DQpPUEVSQSA8LSBmYWN0b3IoUHJvcHVsJE9wZXJhZG9yKSANCg0KYGBgDQoNCmBgYHtyfQ0KTE9UIDwtIGZhY3RvcihQcm9wdWwkTG90ZSkNCmBgYA0KDQpgYGB7cn0NCkZPUk08LSBmYWN0b3IoUHJvcHVsJEZvcm11bGFjaW9uKQ0KDQpgYGANCmBgYHtyfQ0KUkFQSSA8LWFzLnZlY3RvcihQcm9wdWwkUmFwaWRleikNCmBgYA0KYGBge3J9DQpSQVBJMTwtYXMubnVtZXJpYyhSQVBJKQ0KYGBgDQpgYGB7cn0NCnBhcihtZnJvdz1jKDEsMSkpDQoNCmBgYA0KYGBge3J9DQpib3hwbG90KHNwbGl0KFJBUEkxLE9QRVJBKSx4bGFiPSJPcGVyYWNpb24iLCB5bGFiPSJSYXBpZGV6IikgDQpgYGANCmBgYHtyfQ0KcHJvcC5hb3Y8LWFvdihSQVBJMSB+IE9QRVJBK0xPVCtGT1JNKQ0KDQpgYGANCmBgYHtyfQ0KYW5vdmEocHJvcC5hb3YpDQoNCmBgYA0KYGBge3J9DQpmaWxlLmNob29zZSgpDQoNCmBgYA0KYGBge3J9DQpydXRhX21vbnRhamVHTCA8LSAiQzpcXFVzZXJzXFxIUFxcRG93bmxvYWRzXFxPUEVSQURPUkVTIDEuMy54bHN4Ig0KYGBgDQpgYGB7cn0NCmV4Y2VsX3NoZWV0cyhydXRhX21vbnRhamVHTCkNCg0KYGBgDQpgYGB7cn0NCk1vR0w8LXJlYWRfZXhjZWwocnV0YV9tb250YWplR0wpDQoNCmBgYA0KYGBge3J9DQpwcmludChoZWFkKE1vR0wpKQ0KDQpgYGANCg0KYGBge3J9DQp2aWV3KE1vR0wpDQoNCmBgYA0KYGBge3J9DQphdHRhY2goTW9HTCkNCg0KYGBgDQpgYGB7cn0NCm5hbWVzKE1vR0wpDQpgYGANCmBgYHtyfQ0Kc3VtbWFyeShNb0dMKQ0KDQpgYGANCmBgYHtyfQ0Kc3RyKE1vR0wpDQoNCmBgYA0KYGBge3J9DQpPUCA8LSBmYWN0b3IoTW9HTCRPUEVSQURPUikgDQoNCmBgYA0KDQpgYGB7cn0NCk1PIDwtIGZhY3RvcihNb0dMJE1vbnRhamUpDQpgYGANCmBgYHtyfQ0KTE88LWZhY3RvcihNb0dMJExPVEUpDQpgYGANCmBgYHtyfQ0KRk88LWZhY3RvcihNb0dMJEZPUk1VTEFDSU9OKQ0KDQpgYGANCmBgYHtyfQ0KUkEgPC1hcy52ZWN0b3IoTW9HTCRSQVBJREVaKQ0KDQpgYGANCmBgYHtyfQ0KUkExPC1hcy5udW1lcmljKFJBKQ0KDQpgYGANCmBgYHtyfQ0KcGFyKG1mcm93PWMoMSwxKSkNCg0KYGBgDQpgYGB7cn0NCmJveHBsb3Qoc3BsaXQoUkExLE9QKSx4bGFiPSJPUEVSQURPUiIsIHlsYWI9IlJBUElERVoiKQ0KYGBgDQpgYGB7cn0NClJhLmFvdjwtYW92KFJBMSB+IE9QK01PK0xPK0ZPKQ0KDQpgYGANCmBgYHtyfQ0KYW5vdmEoUmEuYW92KQ0KDQpgYGANCmBgYHtyfQ0KZ2dwbG90KFJhLmFvdiwgYWVzKE9QLCBNTywgTE8sIEZPLCBmaWxsPU9QLCBNTywgTE8sIEZPLCBjb2xvcj1NTywgTE8pKSArIGdlb21fYm94cGxvdCgpICsgZ2VvbV9qaXR0ZXIoKSArIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbiA9ICJub25lIikgKyBnZW9tX3BvaW50KGNvbG9yID0gJ3JlZCcsIGZpbGwgPSAncmVkJywgc2l6ZQ0KPSA1LCBzaGFwZSA9IDE4LCBhbHBoYSA9IDAuNSkgKyBnZW9tX2ppdHRlcihzaXplID0gMiwgY29sb3IgPSAnZ3JheScsIGFscGhhID0gMC44KSArIGdlb21fYm94cGxvdCgpICsgdGhlbWVfYncoKQ0KYGBgDQpgYGB7cn0NCkZvcm0gPC0gZ2dwbG90KE1vR0wsIGFlcyh4ID0gRk8sIHkgPSBSQSwgZmlsbD1GTykpICsNCiBnZW9tX2JveHBsb3QoKSArIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbiA9ICJub25lIikNCmBgYA0KYGBge3J9DQpMb3QgPC0gZ2dwbG90KE1vR0wsIGFlcyh4ID0gTE8sIHkgPSBSQSwgZmlsbD1MTykpICsNCiBnZW9tX2JveHBsb3QoKSArIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbiA9ICJub25lIikNCg0KYGBgDQpgYGB7cn0NCk9wZXIgPC0gZ2dwbG90KE1vR0wsIGFlcyh4ID0gT1AsIHkgPSBSQSwgZmlsbD1PUCkpICsNCiBnZW9tX2JveHBsb3QoKSArIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbiA9ICJub25lIikNCg0KYGBgDQpgYGB7cn0NCmdyaWQuYXJyYW5nZShGb3JtLExvdCxPcGVyLCBucm93PTIsbmNvbD0yKQ0KYGBgDQpgYGB7cn0NCmN2Lm1vZGVsKFJhLmFvdikNCg0KYGBgDQoNCmBgYHtyfQ0KUmFwaWRlLmxtIDwtIGxtKFJBMSB+IEZPK0xPK09QK01PKQ0KYGBgDQpgYGB7cn0NCmFub3ZhKFJhcGlkZS5sbSAsIHRlc3Q9IkYiKQ0KYGBgDQoNCmBgYHtyfQ0KR3JhZmljYSA8LSBpbnRlcmFjdGlvbk1lYW5zKFJhcGlkZS5sbSkNCnBsb3QoR3JhZmljYSkNCnBhcihtZnJvdz1jKDEsMSkpDQpgYGANCmBgYHtyfQ0Kc2hhcGlyby50ZXN0KFJhcGlkZS5sbSRyZXMpDQoNCmBgYA0KYGBge3J9DQpxcVBsb3QoUmEuYW92KQ0KYGBgDQpgYGB7cn0NClR1a2V5SFNEKFJhLmFvdixjb25mLmxldmVsID0gMC45NSkNCg0KYGBgDQpgYGB7cn0NCnBsb3QoVHVrZXlIU0QoUmEuYW92KSkNCmBgYA0KYGBge3J9DQpwbG90KFR1a2V5SFNEIChSYS5hb3YsIGNvbmYubGV2ZWwgPSAwLjk1ICksIGxhcyA9IDIuOSApDQoNCmBgYA0KYGBge3J9DQpMU0QudGVzdCh5ID0gUmEuYW92LCB0cnQgPSAiTU8iICxncm91cCA9IFQsIGNvbnNvbGUgPSBUKQ0KDQpgYGANCmBgYHtyfQ0KTFNELnRlc3QoUmEuYW92LCJGTyIsY29uc29sZT1UUlVFKQ0KDQpgYGANCmBgYHtyfQ0KSFNELnRlc3QoUmEuYW92LCAiRk8iLGNvbnNvbGU9VFJVRSkNCg0KYGBgDQpgYGB7cn0NClNOSy50ZXN0KFJhLmFvdiwgIkZPIixjb25zb2xlPVRSVUUpDQoNCmBgYA0KYGBge3J9DQpzY2hlZmZlLnRlc3QoUmEuYW92LCAiRk8iLGNvbnNvbGU9VFJVRSkNCmBgYA0KYGBge3J9DQpkdW5jYW4udGVzdChSYS5hb3YsICJGTyIsY29uc29sZT1UUlVFKQ0KYGBgDQpgYGB7cn0NCnNoYXBpcm8udGVzdChSYS5hb3YkcmVzKSANCmBgYA0KYGBge3J9DQpzdW1tYXJ5KFJhLmFvdiRyZXNpZHVhbHMpDQoNCmBgYA0KYGBge3J9DQoNCmBgYA0KDQo=