file.choose()
[1] "C:\\Users\\HP\\Downloads\\Diseño exoerimental\\Propulsora.xlsx"
ruta_propulsora <- "C:\\Users\\HP\\Downloads\\Diseño exoerimental\\Propulsora.xlsx"
excel_sheets(ruta_propulsora)
[1] "Hoja1"
Propul<-read_excel(ruta_propulsora)
print(head(Propul))
NA
view(Propul)
attach(Propul)
The following objects are masked from Propul (pos = 7):
Formulacion, Lote, Operador, Rapidez
The following objects are masked from MoGL (pos = 8):
Formulacion, Lote, Operador, Rapidez
The following objects are masked from MoGL (pos = 9):
Formulacion, Lote, Operador, Rapidez
The following objects are masked from MoGL (pos = 10):
Formulacion, Lote, Operador, Rapidez
The following objects are masked from Propul (pos = 12):
Formulacion, Lote, Operador, Rapidez
names(Propul)
[1] "Rapidez" "Formulacion" "Lote" "Operador"
summary(Propul)
Rapidez Formulacion Lote Operador
Min. :-8.0 Length:25 Min. :1 Min. :1
1st Qu.:-3.0 Class :character 1st Qu.:2 1st Qu.:2
Median :-1.0 Mode :character Median :3 Median :3
Mean : 0.4 Mean :3 Mean :3
3rd Qu.: 4.0 3rd Qu.:4 3rd Qu.:4
Max. :13.0 Max. :5 Max. :5
str(Propul)
tibble [25 × 4] (S3: tbl_df/tbl/data.frame)
$ Rapidez : num [1:25] -1 -8 -7 1 -3 -5 -1 13 6 5 ...
$ Formulacion: chr [1:25] "A" "B" "C" "D" ...
$ Lote : num [1:25] 1 2 3 4 5 1 2 3 4 5 ...
$ Operador : num [1:25] 1 1 1 1 1 2 2 2 2 2 ...
OPERA <- factor(Propul$Operador)
LOT <- factor(Propul$Lote)
FORM<- factor(Propul$Formulacion)
RAPI <-as.vector(Propul$Rapidez)
RAPI1<-as.numeric(RAPI)
par(mfrow=c(1,1))
boxplot(split(RAPI1,OPERA),xlab="Operacion", ylab="Rapidez")

prop.aov<-aov(RAPI1 ~ OPERA+LOT+FORM)
anova(prop.aov)
Analysis of Variance Table
Response: RAPI1
Df Sum Sq Mean Sq F value Pr(>F)
OPERA 4 150 37.500 3.5156 0.040373 *
LOT 4 68 17.000 1.5938 0.239059
FORM 4 330 82.500 7.7344 0.002537 **
Residuals 12 128 10.667
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
file.choose()
[1] "C:\\Users\\HP\\Downloads\\OPERADORES 1.3.xlsx"
ruta_montajeGL <- "C:\\Users\\HP\\Downloads\\OPERADORES 1.3.xlsx"
excel_sheets(ruta_montajeGL)
[1] "Hoja1"
MoGL<-read_excel(ruta_montajeGL)
print(head(MoGL))
NA
view(MoGL)
attach(MoGL)
names(MoGL)
[1] "RAPIDEZ" "FORMULACION" "LOTE" "OPERADOR" "Montaje"
summary(MoGL)
RAPIDEZ FORMULACION LOTE OPERADOR Montaje
Min. :-8.0000 Length:24 Min. :1.000 Min. :1.000 Length:24
1st Qu.:-3.2500 Class :character 1st Qu.:2.000 1st Qu.:2.000 Class :character
Median : 0.0000 Mode :character Median :3.000 Median :3.000 Mode :character
Mean : 0.5417 Mean :2.917 Mean :2.917
3rd Qu.: 4.2500 3rd Qu.:4.000 3rd Qu.:4.000
Max. :13.0000 Max. :5.000 Max. :5.000
str(MoGL)
tibble [24 × 5] (S3: tbl_df/tbl/data.frame)
$ RAPIDEZ : num [1:24] -1 -8 -7 1 -3 -5 -1 13 6 5 ...
$ FORMULACION: chr [1:24] "A" "B" "C" "D" ...
$ LOTE : num [1:24] 1 2 3 4 5 1 2 3 4 5 ...
$ OPERADOR : num [1:24] 1 1 1 1 1 2 2 2 2 2 ...
$ Montaje : chr [1:24] "b" "c" "d" "e" ...
OP <- factor(MoGL$OPERADOR)
MO <- factor(MoGL$Montaje)
LO<-factor(MoGL$LOTE)
FO<-factor(MoGL$FORMULACION)
RA <-as.vector(MoGL$RAPIDEZ)
RA1<-as.numeric(RA)
par(mfrow=c(1,1))
boxplot(split(RA1,OP),xlab="OPERADOR", ylab="RAPIDEZ")

Ra.aov<-aov(RA1 ~ OP+MO+LO+FO)
anova(Ra.aov)
Analysis of Variance Table
Response: RA1
Df Sum Sq Mean Sq F value Pr(>F)
OP 4 166.76 41.690 1.2976 0.3297
MO 4 61.05 15.263 0.4751 0.7535
LO 4 82.75 20.687 0.6439 0.6425
Residuals 11 353.40 32.127
ggplot(Ra.aov, aes(OP, MO, LO, FO, fill=OP, MO, LO, FO, color=MO, LO)) + geom_boxplot() + geom_jitter() + theme(legend.position = "none") + geom_point(color = 'red', fill = 'red', size
= 5, shape = 18, alpha = 0.5) + geom_jitter(size = 2, color = 'gray', alpha = 0.8) + geom_boxplot() + theme_bw()
Warning: Duplicated aesthetics after name standardisation:

Form <- ggplot(MoGL, aes(x = FO, y = RA, fill=FO)) +
geom_boxplot() + theme(legend.position = "none")
Lot <- ggplot(MoGL, aes(x = LO, y = RA, fill=LO)) +
geom_boxplot() + theme(legend.position = "none")
Oper <- ggplot(MoGL, aes(x = OP, y = RA, fill=OP)) +
geom_boxplot() + theme(legend.position = "none")
grid.arrange(Form,Lot,Oper, nrow=2,ncol=2)

cv.model(Ra.aov)
[1] 1046.417
Rapide.lm <- lm(RA1 ~ FO+LO+OP+MO)
anova(Rapide.lm , test="F")
Analysis of Variance Table
Response: RA1
Df Sum Sq Mean Sq F value Pr(>F)
FO 4 82.41 20.602 0.6413 0.6441
OP 4 166.55 41.638 1.2960 0.3303
MO 4 61.60 15.400 0.4793 0.7506
Residuals 11 353.40 32.127
Grafica <- interactionMeans(Rapide.lm)
Error in interactionMeans(Rapide.lm) :
could not find function "interactionMeans"
shapiro.test(Rapide.lm$res)
Shapiro-Wilk normality test
data: Rapide.lm$res
W = 0.95779, p-value = 0.3956
qqPlot(Ra.aov)
[1] 19 23

TukeyHSD(Ra.aov,conf.level = 0.95)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = RA1 ~ OP + MO + LO + FO)
$OP
diff lwr upr p adj
2-1 7.2 -4.393371 18.793371 0.3228992
3-1 2.8 -8.793371 14.393371 0.9309125
4-1 4.6 -6.993371 16.193371 0.7061315
5-1 6.6 -5.696627 18.896627 0.4528828
3-2 -4.4 -15.993371 7.193371 0.7368548
4-2 -2.6 -14.193371 8.993371 0.9461093
5-2 -0.6 -12.896627 11.696627 0.9998366
4-3 1.8 -9.793371 13.393371 0.9854464
5-3 3.8 -8.496627 16.096627 0.8503403
5-4 2.0 -10.296627 14.296627 0.9827318
$MO
diff lwr upr p adj
c-b -1.40 -12.993371 10.193371 0.9943395
d-b -3.66 -15.956627 8.636627 0.8661526
e-b -2.80 -14.393371 8.793371 0.9309125
f-b 0.60 -10.993371 12.193371 0.9997936
d-c -2.26 -14.556627 10.036627 0.9731071
e-c -1.40 -12.993371 10.193371 0.9943395
f-c 2.00 -9.593371 13.593371 0.9785946
e-d 0.86 -11.436627 13.156627 0.9993216
f-d 4.26 -8.036627 16.556627 0.7930299
f-e 3.40 -8.193371 14.993371 0.8719996
$LO
diff lwr upr p adj
2-1 4.60 -6.993371 16.19337 0.7061315
3-1 3.80 -7.793371 15.39337 0.8225786
4-1 5.20 -6.393371 16.79337 0.6110294
5-1 2.95 -9.346627 15.24663 0.9324301
3-2 -0.80 -12.393371 10.79337 0.9993565
4-2 0.60 -10.993371 12.19337 0.9997936
5-2 -1.65 -13.946627 10.64663 0.9915588
4-3 1.40 -10.193371 12.99337 0.9943395
5-3 -0.85 -13.146627 11.44663 0.9993521
5-4 -2.25 -14.546627 10.04663 0.9735308
plot(TukeyHSD(Ra.aov))



plot(TukeyHSD (Ra.aov, conf.level = 0.95 ), las = 2.9 )


NA

LSD.test(y = Ra.aov, trt = "MO" ,group = T, console = T)
Study: Ra.aov ~ "MO"
LSD t Test for RA1
Mean Square Error: 32.12727
MO, means and individual ( 95 %) CI
Alpha: 0.05 ; DF Error: 11
Critical Value of t: 2.200985
Groups according to probability of means differences and alpha level( 0.05 )
Treatments with the same letter are not significantly different.
LSD.test(Ra.aov,"FO",console=TRUE)
Study: Ra.aov ~ "FO"
LSD t Test for RA1
Mean Square Error: 32.12727
FO, means and individual ( 95 %) CI
Alpha: 0.05 ; DF Error: 11
Critical Value of t: 2.200985
Groups according to probability of means differences and alpha level( 0.05 )
Treatments with the same letter are not significantly different.
HSD.test(Ra.aov, "FO",console=TRUE)
Study: Ra.aov ~ "FO"
HSD Test for RA1
Mean Square Error: 32.12727
FO, means
Alpha: 0.05 ; DF Error: 11
Critical Value of Studentized Range: 4.573596
Groups according to probability of means differences and alpha level( 0.05 )
Treatments with the same letter are not significantly different.
SNK.test(Ra.aov, "FO",console=TRUE)
Study: Ra.aov ~ "FO"
Student Newman Keuls Test
for RA1
Mean Square Error: 32.12727
FO, means
Groups according to probability of means differences and alpha level( 0.05 )
Means with the same letter are not significantly different.
scheffe.test(Ra.aov, "FO",console=TRUE)
Study: Ra.aov ~ "FO"
Scheffe Test for RA1
Mean Square Error : 32.12727
FO, means
Alpha: 0.05 ; DF Error: 11
Critical Value of F: 3.35669
Groups according to probability of means differences and alpha level( 0.05 )
Means with the same letter are not significantly different.
duncan.test(Ra.aov, "FO",console=TRUE)
Study: Ra.aov ~ "FO"
Duncan's new multiple range test
for RA1
Mean Square Error: 32.12727
FO, means
Groups according to probability of means differences and alpha level( 0.05 )
Means with the same letter are not significantly different.
shapiro.test(Ra.aov$res)
Shapiro-Wilk normality test
data: Ra.aov$res
W = 0.95779, p-value = 0.3956
summary(Ra.aov$residuals)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-8.30 -2.60 1.25 0.00 2.15 6.80
LS0tDQp0aXRsZTogIkxFWURJIExJU0JFVEggQkVMSVpBUklPIFlBTlFVSSINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQpgYGB7cn0NCmZpbGUuY2hvb3NlKCkNCmBgYA0KYGBge3J9DQpydXRhX3Byb3B1bHNvcmEgPC0gIkM6XFxVc2Vyc1xcSFBcXERvd25sb2Fkc1xcRGlzZcOxbyBleG9lcmltZW50YWxcXFByb3B1bHNvcmEueGxzeCINCmBgYA0KYGBge3J9DQpleGNlbF9zaGVldHMocnV0YV9wcm9wdWxzb3JhKQ0KYGBgDQpgYGB7cn0NClByb3B1bDwtcmVhZF9leGNlbChydXRhX3Byb3B1bHNvcmEpDQpgYGANCmBgYHtyfQ0KcHJpbnQoaGVhZChQcm9wdWwpKQ0KDQpgYGANCmBgYHtyfQ0KdmlldyhQcm9wdWwpDQoNCmBgYA0KDQpgYGB7cn0NCmF0dGFjaChQcm9wdWwpDQpgYGANCmBgYHtyfQ0KbmFtZXMoUHJvcHVsKQ0KYGBgDQpgYGB7cn0NCnN1bW1hcnkoUHJvcHVsKQ0KDQpgYGANCmBgYHtyfQ0Kc3RyKFByb3B1bCkNCmBgYA0KYGBge3J9DQpPUEVSQSA8LSBmYWN0b3IoUHJvcHVsJE9wZXJhZG9yKSANCg0KYGBgDQoNCmBgYHtyfQ0KTE9UIDwtIGZhY3RvcihQcm9wdWwkTG90ZSkNCmBgYA0KDQpgYGB7cn0NCkZPUk08LSBmYWN0b3IoUHJvcHVsJEZvcm11bGFjaW9uKQ0KDQpgYGANCmBgYHtyfQ0KUkFQSSA8LWFzLnZlY3RvcihQcm9wdWwkUmFwaWRleikNCmBgYA0KYGBge3J9DQpSQVBJMTwtYXMubnVtZXJpYyhSQVBJKQ0KYGBgDQpgYGB7cn0NCnBhcihtZnJvdz1jKDEsMSkpDQoNCmBgYA0KYGBge3J9DQpib3hwbG90KHNwbGl0KFJBUEkxLE9QRVJBKSx4bGFiPSJPcGVyYWNpb24iLCB5bGFiPSJSYXBpZGV6IikgDQpgYGANCmBgYHtyfQ0KcHJvcC5hb3Y8LWFvdihSQVBJMSB+IE9QRVJBK0xPVCtGT1JNKQ0KDQpgYGANCmBgYHtyfQ0KYW5vdmEocHJvcC5hb3YpDQoNCmBgYA0KYGBge3J9DQpmaWxlLmNob29zZSgpDQoNCmBgYA0KYGBge3J9DQpydXRhX21vbnRhamVHTCA8LSAiQzpcXFVzZXJzXFxIUFxcRG93bmxvYWRzXFxPUEVSQURPUkVTIDEuMy54bHN4Ig0KYGBgDQpgYGB7cn0NCmV4Y2VsX3NoZWV0cyhydXRhX21vbnRhamVHTCkNCg0KYGBgDQpgYGB7cn0NCk1vR0w8LXJlYWRfZXhjZWwocnV0YV9tb250YWplR0wpDQoNCmBgYA0KYGBge3J9DQpwcmludChoZWFkKE1vR0wpKQ0KDQpgYGANCg0KYGBge3J9DQp2aWV3KE1vR0wpDQoNCmBgYA0KYGBge3J9DQphdHRhY2goTW9HTCkNCg0KYGBgDQpgYGB7cn0NCm5hbWVzKE1vR0wpDQpgYGANCmBgYHtyfQ0Kc3VtbWFyeShNb0dMKQ0KDQpgYGANCmBgYHtyfQ0Kc3RyKE1vR0wpDQoNCmBgYA0KYGBge3J9DQpPUCA8LSBmYWN0b3IoTW9HTCRPUEVSQURPUikgDQoNCmBgYA0KDQpgYGB7cn0NCk1PIDwtIGZhY3RvcihNb0dMJE1vbnRhamUpDQpgYGANCmBgYHtyfQ0KTE88LWZhY3RvcihNb0dMJExPVEUpDQpgYGANCmBgYHtyfQ0KRk88LWZhY3RvcihNb0dMJEZPUk1VTEFDSU9OKQ0KDQpgYGANCmBgYHtyfQ0KUkEgPC1hcy52ZWN0b3IoTW9HTCRSQVBJREVaKQ0KDQpgYGANCmBgYHtyfQ0KUkExPC1hcy5udW1lcmljKFJBKQ0KDQpgYGANCmBgYHtyfQ0KcGFyKG1mcm93PWMoMSwxKSkNCg0KYGBgDQpgYGB7cn0NCmJveHBsb3Qoc3BsaXQoUkExLE9QKSx4bGFiPSJPUEVSQURPUiIsIHlsYWI9IlJBUElERVoiKQ0KYGBgDQpgYGB7cn0NClJhLmFvdjwtYW92KFJBMSB+IE9QK01PK0xPK0ZPKQ0KDQpgYGANCmBgYHtyfQ0KYW5vdmEoUmEuYW92KQ0KDQpgYGANCmBgYHtyfQ0KZ2dwbG90KFJhLmFvdiwgYWVzKE9QLCBNTywgTE8sIEZPLCBmaWxsPU9QLCBNTywgTE8sIEZPLCBjb2xvcj1NTywgTE8pKSArIGdlb21fYm94cGxvdCgpICsgZ2VvbV9qaXR0ZXIoKSArIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbiA9ICJub25lIikgKyBnZW9tX3BvaW50KGNvbG9yID0gJ3JlZCcsIGZpbGwgPSAncmVkJywgc2l6ZQ0KPSA1LCBzaGFwZSA9IDE4LCBhbHBoYSA9IDAuNSkgKyBnZW9tX2ppdHRlcihzaXplID0gMiwgY29sb3IgPSAnZ3JheScsIGFscGhhID0gMC44KSArIGdlb21fYm94cGxvdCgpICsgdGhlbWVfYncoKQ0KYGBgDQpgYGB7cn0NCkZvcm0gPC0gZ2dwbG90KE1vR0wsIGFlcyh4ID0gRk8sIHkgPSBSQSwgZmlsbD1GTykpICsNCiBnZW9tX2JveHBsb3QoKSArIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbiA9ICJub25lIikNCmBgYA0KYGBge3J9DQpMb3QgPC0gZ2dwbG90KE1vR0wsIGFlcyh4ID0gTE8sIHkgPSBSQSwgZmlsbD1MTykpICsNCiBnZW9tX2JveHBsb3QoKSArIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbiA9ICJub25lIikNCg0KYGBgDQpgYGB7cn0NCk9wZXIgPC0gZ2dwbG90KE1vR0wsIGFlcyh4ID0gT1AsIHkgPSBSQSwgZmlsbD1PUCkpICsNCiBnZW9tX2JveHBsb3QoKSArIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbiA9ICJub25lIikNCg0KYGBgDQpgYGB7cn0NCmdyaWQuYXJyYW5nZShGb3JtLExvdCxPcGVyLCBucm93PTIsbmNvbD0yKQ0KYGBgDQpgYGB7cn0NCmN2Lm1vZGVsKFJhLmFvdikNCg0KYGBgDQoNCmBgYHtyfQ0KUmFwaWRlLmxtIDwtIGxtKFJBMSB+IEZPK0xPK09QK01PKQ0KYGBgDQpgYGB7cn0NCmFub3ZhKFJhcGlkZS5sbSAsIHRlc3Q9IkYiKQ0KYGBgDQoNCmBgYHtyfQ0KR3JhZmljYSA8LSBpbnRlcmFjdGlvbk1lYW5zKFJhcGlkZS5sbSkNCnBsb3QoR3JhZmljYSkNCnBhcihtZnJvdz1jKDEsMSkpDQpgYGANCmBgYHtyfQ0Kc2hhcGlyby50ZXN0KFJhcGlkZS5sbSRyZXMpDQoNCmBgYA0KYGBge3J9DQpxcVBsb3QoUmEuYW92KQ0KYGBgDQpgYGB7cn0NClR1a2V5SFNEKFJhLmFvdixjb25mLmxldmVsID0gMC45NSkNCg0KYGBgDQpgYGB7cn0NCnBsb3QoVHVrZXlIU0QoUmEuYW92KSkNCmBgYA0KYGBge3J9DQpwbG90KFR1a2V5SFNEIChSYS5hb3YsIGNvbmYubGV2ZWwgPSAwLjk1ICksIGxhcyA9IDIuOSApDQoNCmBgYA0KYGBge3J9DQpMU0QudGVzdCh5ID0gUmEuYW92LCB0cnQgPSAiTU8iICxncm91cCA9IFQsIGNvbnNvbGUgPSBUKQ0KDQpgYGANCmBgYHtyfQ0KTFNELnRlc3QoUmEuYW92LCJGTyIsY29uc29sZT1UUlVFKQ0KDQpgYGANCmBgYHtyfQ0KSFNELnRlc3QoUmEuYW92LCAiRk8iLGNvbnNvbGU9VFJVRSkNCg0KYGBgDQpgYGB7cn0NClNOSy50ZXN0KFJhLmFvdiwgIkZPIixjb25zb2xlPVRSVUUpDQoNCmBgYA0KYGBge3J9DQpzY2hlZmZlLnRlc3QoUmEuYW92LCAiRk8iLGNvbnNvbGU9VFJVRSkNCmBgYA0KYGBge3J9DQpkdW5jYW4udGVzdChSYS5hb3YsICJGTyIsY29uc29sZT1UUlVFKQ0KYGBgDQpgYGB7cn0NCnNoYXBpcm8udGVzdChSYS5hb3YkcmVzKSANCmBgYA0KYGBge3J9DQpzdW1tYXJ5KFJhLmFvdiRyZXNpZHVhbHMpDQoNCmBgYA0KYGBge3J9DQoNCmBgYA0KDQo=