title: “Compute the CLR transformation” output: html_notebook
# Assuming you have two vectors of proportions for the two groups: prop1 and prop2
# Step 1: Collect the data
# Step 2: Compute the CLR transformation
clr1 <- log(prop1) - mean(log(prop1))
clr2 <- log(prop2) - mean(log(prop2))
# Step 3: Calculate the t-statistic
mean1 <- mean(clr1)
mean2 <- mean(clr2)
sd1 <- sd(clr1)
sd2 <- sd(clr2)
n1 <- length(clr1)
n2 <- length(clr2)
t_stat <- (mean1 - mean2) / sqrt((sd1^2 / n1) + (sd2^2 / n2))
# Step 4: Determine the degrees of freedom
df <- ((sd1^2 / n1 + sd2^2 / n2)^2) / (((sd1^2 / n1)^2) / (n1 - 1) + ((sd2^2 / n2)^2) / (n2 - 1))
# Step 5: Determine the p-value
p_value <- 2 * pt(abs(t_stat), df = df, lower.tail = FALSE)
# Step 6: Interpret the results
if (p_value < 0.05) {
cat("The difference in the means of CLR-transformed proportions is statistically significant.\n")
} else {
cat("The difference in the means of CLR-transformed proportions is not statistically significant.\n")
}
LS0tCm91dHB1dDoKICBodG1sX25vdGVib29rOiBkZWZhdWx0CiAgaHRtbF9kb2N1bWVudDogZGVmYXVsdAotLS0KCnRpdGxlOiAiQ29tcHV0ZSB0aGUgQ0xSIHRyYW5zZm9ybWF0aW9uIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKCmBgYHtyfQojIEFzc3VtaW5nIHlvdSBoYXZlIHR3byB2ZWN0b3JzIG9mIHByb3BvcnRpb25zIGZvciB0aGUgdHdvIGdyb3VwczogcHJvcDEgYW5kIHByb3AyCgojIFN0ZXAgMTogQ29sbGVjdCB0aGUgZGF0YQoKIyBTdGVwIDI6IENvbXB1dGUgdGhlIENMUiB0cmFuc2Zvcm1hdGlvbgpjbHIxIDwtIGxvZyhwcm9wMSkgLSBtZWFuKGxvZyhwcm9wMSkpCmNscjIgPC0gbG9nKHByb3AyKSAtIG1lYW4obG9nKHByb3AyKSkKCiMgU3RlcCAzOiBDYWxjdWxhdGUgdGhlIHQtc3RhdGlzdGljCm1lYW4xIDwtIG1lYW4oY2xyMSkKbWVhbjIgPC0gbWVhbihjbHIyKQpzZDEgPC0gc2QoY2xyMSkKc2QyIDwtIHNkKGNscjIpCm4xIDwtIGxlbmd0aChjbHIxKQpuMiA8LSBsZW5ndGgoY2xyMikKdF9zdGF0IDwtIChtZWFuMSAtIG1lYW4yKSAvIHNxcnQoKHNkMV4yIC8gbjEpICsgKHNkMl4yIC8gbjIpKQoKIyBTdGVwIDQ6IERldGVybWluZSB0aGUgZGVncmVlcyBvZiBmcmVlZG9tCmRmIDwtICgoc2QxXjIgLyBuMSArIHNkMl4yIC8gbjIpXjIpIC8gKCgoc2QxXjIgLyBuMSleMikgLyAobjEgLSAxKSArICgoc2QyXjIgLyBuMileMikgLyAobjIgLSAxKSkKCiMgU3RlcCA1OiBEZXRlcm1pbmUgdGhlIHAtdmFsdWUKcF92YWx1ZSA8LSAyICogcHQoYWJzKHRfc3RhdCksIGRmID0gZGYsIGxvd2VyLnRhaWwgPSBGQUxTRSkKCiMgU3RlcCA2OiBJbnRlcnByZXQgdGhlIHJlc3VsdHMKaWYgKHBfdmFsdWUgPCAwLjA1KSB7CiAgY2F0KCJUaGUgZGlmZmVyZW5jZSBpbiB0aGUgbWVhbnMgb2YgQ0xSLXRyYW5zZm9ybWVkIHByb3BvcnRpb25zIGlzIHN0YXRpc3RpY2FsbHkgc2lnbmlmaWNhbnQuXG4iKQp9IGVsc2UgewogIGNhdCgiVGhlIGRpZmZlcmVuY2UgaW4gdGhlIG1lYW5zIG9mIENMUi10cmFuc2Zvcm1lZCBwcm9wb3J0aW9ucyBpcyBub3Qgc3RhdGlzdGljYWxseSBzaWduaWZpY2FudC5cbiIpCn0KCmBgYAoK