Load in and merge data
clin_dem <- read.csv("/Users/nikki/Desktop/Research/FournierLab/Datafiles/covariates_inc_dep.csv")
rois_se <- read.csv("/Users/nikki/Desktop/Research/FournierLab/Datafiles/ExtractedROI_StroopEffect_52423.csv")
rois_ca <- read.csv("/Users/nikki/Desktop/Research/FournierLab/Datafiles/ExtractedROI_CAEffect_72023.csv")
#merge together and have 2 dfs for the stroop effect (se) and conflict adaptation effect (ca)
jfk_se <- merge(clin_dem,rois_se, by.x="idnum",by.y="Subject",all.x = T)
jfk_ca <- merge(clin_dem,rois_ca, by.x="idnum",by.y="Subject",all.x = T)
#remove unneeded vars and clean up variable names
jfk_se <- jfk_se[,-c(9:43,62)]
oldnames<-colnames(jfk_se)
colnames(jfk_se) <- c(oldnames[1:14],"dACC","sgACC","IFJ","L_dAI","L_pAI","L_vAI","R_dAI","R_pAI","R_vAI","L_amyg","R_amyg","Precuneus","cond")
jfk_ca <- jfk_ca[,-c(9:43,62)]
colnames(jfk_ca) <- c(oldnames[1:14],"dACC","sgACC","IFJ","L_dAI","L_pAI","L_vAI","R_dAI","R_pAI","R_vAI","L_amyg","R_amyg","Precuneus","cond")
Mixed Effect Linear Models: Stroop Effect
1. Unconditional models to sense within-person variance in ROI values
Three are examined here as examples with %s ranging from 13-21% of the variance not explained bw persons
# Left Amygdala Example 1
uncond_model1_lamy <- lmer(L_amyg ~ 1 + (1|idnum), data=jfk_se)
summary(uncond_model1_lamy)
icc_laymg <- .22/(.22+1.19)
icc_laymg # 16% variance
# dACC Example 2
uncond_model1_dacc <- lmer(dACC ~ 1 + (1|idnum), data=jfk_se)
summary(uncond_model1_dacc)
icc_dacc <- .33/(.33+1.23)
icc_dacc # 21% variance
# Precun Example 3
uncond_model1_precu <- lmer(Precuneus ~ 1 + (1|idnum), data=jfk_se)
summary(uncond_model1_precu)
icc_precu <- .24/(.24+1.64)
icc_precu # 13% variance
tab_model(uncond_model1_lamy)
|
L_amyg
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
0.14
|
-0.20 – 0.48
|
0.417
|
Random Effects
|
σ2
|
0.22
|
τ00 idnum
|
1.19
|
ICC
|
0.84
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.000 / 0.844
|
tab_model(uncond_model1_dacc)
|
dACC
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-0.56
|
-0.91 – -0.21
|
0.002
|
Random Effects
|
σ2
|
0.33
|
τ00 idnum
|
1.23
|
ICC
|
0.79
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.000 / 0.790
|
tab_model(uncond_model1_precu)
|
Precuneus
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-1.36
|
-1.76 – -0.97
|
<0.001
|
Random Effects
|
σ2
|
0.24
|
τ00 idnum
|
1.64
|
ICC
|
0.87
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.000 / 0.871
|
2. Assessing the effect of condition on ROI values (including age and sex covariates)
Incongruent is coded 0.5 and Congruent is coded -0.5
cond_model2_lamy <- lmer(L_amyg ~ cond + age_years + Gender + (1|idnum), data=jfk_se)
cond_model2_ramy <- lmer(R_amyg ~ cond + age_years + Gender + (1|idnum), data=jfk_se)
cond_model2_precu<- lmer(Precuneus ~ cond + age_years + Gender + (1|idnum), data=jfk_se)
cond_model2_dacc<- lmer(dACC ~ cond + age_years + Gender + (1|idnum), data=jfk_se)
cond_model2_sgacc <- lmer(sgACC ~ cond + age_years + Gender + (1|idnum), data=jfk_se)
cond_model2_lai <- lmer(L_dAI ~ cond + age_years + Gender + (1|idnum), data=jfk_se)
cond_model2_rai <- lmer(R_dAI ~ cond + age_years + Gender + (1|idnum), data=jfk_se)
tab_model(cond_model2_lamy)
|
L_amyg
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
0.01
|
-1.62 – 1.65
|
0.986
|
cond
|
-0.20
|
-0.39 – -0.01
|
0.040
|
age_years
|
0.01
|
-0.05 – 0.06
|
0.863
|
Gender
|
-0.02
|
-0.72 – 0.69
|
0.963
|
Random Effects
|
σ2
|
0.21
|
τ00 idnum
|
1.26
|
ICC
|
0.86
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.007 / 0.861
|
tab_model(cond_model2_ramy)
|
R_amyg
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
0.23
|
-1.45 – 1.91
|
0.793
|
cond
|
-0.09
|
-0.21 – 0.04
|
0.169
|
age_years
|
-0.00
|
-0.06 – 0.06
|
0.909
|
Gender
|
0.11
|
-0.61 – 0.83
|
0.758
|
Random Effects
|
σ2
|
0.09
|
τ00 idnum
|
1.39
|
ICC
|
0.94
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.004 / 0.942
|
tab_model(cond_model2_precu)
|
Precuneus
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-1.94
|
-3.77 – -0.12
|
0.037
|
cond
|
-0.31
|
-0.50 – -0.13
|
0.001
|
age_years
|
0.04
|
-0.03 – 0.10
|
0.269
|
Gender
|
-0.64
|
-1.42 – 0.14
|
0.110
|
Random Effects
|
σ2
|
0.20
|
τ00 idnum
|
1.59
|
ICC
|
0.89
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.091 / 0.899
|
tab_model(cond_model2_dacc)
|
dACC
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-0.73
|
-2.38 – 0.92
|
0.387
|
cond
|
0.02
|
-0.22 – 0.26
|
0.892
|
age_years
|
0.02
|
-0.04 – 0.08
|
0.558
|
Gender
|
-0.49
|
-1.20 – 0.22
|
0.175
|
Random Effects
|
σ2
|
0.33
|
τ00 idnum
|
1.21
|
ICC
|
0.79
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.044 / 0.795
|
tab_model(cond_model2_sgacc)
|
sgACC
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-1.85
|
-3.35 – -0.35
|
0.016
|
cond
|
-0.33
|
-0.55 – -0.12
|
0.002
|
age_years
|
0.03
|
-0.02 – 0.08
|
0.291
|
Gender
|
-0.32
|
-0.96 – 0.33
|
0.335
|
Random Effects
|
σ2
|
0.26
|
τ00 idnum
|
1.02
|
ICC
|
0.80
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.062 / 0.812
|
tab_model(cond_model2_lai)
|
L_dAI
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
0.88
|
-0.82 – 2.58
|
0.311
|
cond
|
0.06
|
-0.14 – 0.26
|
0.562
|
age_years
|
-0.01
|
-0.08 – 0.05
|
0.636
|
Gender
|
0.13
|
-0.60 – 0.86
|
0.731
|
Random Effects
|
σ2
|
0.23
|
τ00 idnum
|
1.36
|
ICC
|
0.85
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.008 / 0.855
|
tab_model(cond_model2_rai)
|
R_dAI
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
0.03
|
-1.47 – 1.54
|
0.966
|
cond
|
0.25
|
0.04 – 0.45
|
0.019
|
age_years
|
0.01
|
-0.04 – 0.07
|
0.624
|
Gender
|
0.08
|
-0.57 – 0.72
|
0.816
|
Random Effects
|
σ2
|
0.24
|
τ00 idnum
|
1.03
|
ICC
|
0.81
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.018 / 0.811
|
3. Testing the primary model with interaction between Self consciousness and Condition
cond_model3_lamy <- lmer(L_amyg ~ cond*N_Bifact_4SC_z + age_years + Gender + (1|idnum), data=jfk_se)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00425047 (tol = 0.002, component 1)
cond_model3_ramy <- lmer(R_amyg ~ cond*N_Bifact_4SC_z + age_years + Gender + (1|idnum), data=jfk_se)
cond_model3_precu<- lmer(Precuneus ~ cond*N_Bifact_4SC_z + age_years + Gender + (1|idnum), data=jfk_se)
cond_model3_dacc<- lmer(dACC ~ cond*N_Bifact_4SC_z + age_years + Gender + (1|idnum), data=jfk_se)
cond_model3_sgacc <- lmer(sgACC ~ cond*N_Bifact_4SC_z + age_years + Gender + (1|idnum), data=jfk_se)
cond_model3_lai <- lmer(L_dAI ~ cond*N_Bifact_4SC_z + age_years + Gender + (1|idnum), data=jfk_se)
cond_model3_rai <- lmer(R_dAI ~ cond*N_Bifact_4SC_z + age_years + Gender + (1|idnum), data=jfk_se)
tab_model(cond_model3_lamy)
|
L_amyg
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-0.12
|
-1.80 – 1.56
|
0.888
|
cond
|
-0.19
|
-0.38 – 0.00
|
0.054
|
N_Bifact_4SC_z
|
-0.14
|
-0.50 – 0.22
|
0.444
|
age_years
|
0.01
|
-0.05 – 0.07
|
0.759
|
Gender
|
0.06
|
-0.67 – 0.79
|
0.870
|
cond * N_Bifact_4SC_z
|
-0.06
|
-0.25 – 0.13
|
0.517
|
Random Effects
|
σ2
|
0.21
|
τ00 idnum
|
1.27
|
ICC
|
0.86
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.020 / 0.862
|
tab_model(cond_model3_ramy)
|
R_amyg
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
0.18
|
-1.56 – 1.92
|
0.841
|
cond
|
-0.09
|
-0.21 – 0.04
|
0.168
|
N_Bifact_4SC_z
|
-0.05
|
-0.42 – 0.32
|
0.796
|
age_years
|
-0.00
|
-0.06 – 0.06
|
0.948
|
Gender
|
0.14
|
-0.62 – 0.90
|
0.717
|
cond * N_Bifact_4SC_z
|
0.01
|
-0.11 – 0.14
|
0.824
|
Random Effects
|
σ2
|
0.09
|
τ00 idnum
|
1.42
|
ICC
|
0.94
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.005 / 0.942
|
tab_model(cond_model3_precu)
|
Precuneus
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-2.40
|
-4.16 – -0.64
|
0.008
|
cond
|
-0.30
|
-0.49 – -0.11
|
0.002
|
N_Bifact_4SC_z
|
-0.47
|
-0.85 – -0.09
|
0.014
|
age_years
|
0.05
|
-0.01 – 0.11
|
0.111
|
Gender
|
-0.38
|
-1.14 – 0.39
|
0.335
|
cond * N_Bifact_4SC_z
|
-0.08
|
-0.26 – 0.11
|
0.416
|
Random Effects
|
σ2
|
0.20
|
τ00 idnum
|
1.41
|
ICC
|
0.88
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.194 / 0.899
|
tab_model(cond_model3_dacc)
|
dACC
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-1.04
|
-2.68 – 0.60
|
0.213
|
cond
|
0.01
|
-0.23 – 0.26
|
0.922
|
N_Bifact_4SC_z
|
-0.33
|
-0.68 – 0.02
|
0.068
|
age_years
|
0.03
|
-0.03 – 0.09
|
0.357
|
Gender
|
-0.31
|
-1.02 – 0.41
|
0.397
|
cond * N_Bifact_4SC_z
|
0.03
|
-0.21 – 0.27
|
0.806
|
Random Effects
|
σ2
|
0.34
|
τ00 idnum
|
1.14
|
ICC
|
0.77
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.104 / 0.794
|
tab_model(cond_model3_sgacc)
|
sgACC
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-2.11
|
-3.62 – -0.61
|
0.006
|
cond
|
-0.32
|
-0.53 – -0.11
|
0.003
|
N_Bifact_4SC_z
|
-0.27
|
-0.60 – 0.05
|
0.096
|
age_years
|
0.04
|
-0.02 – 0.09
|
0.173
|
Gender
|
-0.17
|
-0.82 – 0.49
|
0.620
|
cond * N_Bifact_4SC_z
|
-0.10
|
-0.31 – 0.11
|
0.365
|
Random Effects
|
σ2
|
0.26
|
τ00 idnum
|
0.97
|
ICC
|
0.79
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.114 / 0.815
|
tab_model(cond_model3_lai)
|
L_dAI
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
0.70
|
-1.04 – 2.44
|
0.429
|
cond
|
0.04
|
-0.16 – 0.25
|
0.672
|
N_Bifact_4SC_z
|
-0.18
|
-0.56 – 0.19
|
0.334
|
age_years
|
-0.01
|
-0.07 – 0.05
|
0.771
|
Gender
|
0.23
|
-0.53 – 0.99
|
0.553
|
cond * N_Bifact_4SC_z
|
0.11
|
-0.09 – 0.31
|
0.284
|
Random Effects
|
σ2
|
0.23
|
τ00 idnum
|
1.36
|
ICC
|
0.85
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.029 / 0.859
|
tab_model(cond_model3_rai)
|
R_dAI
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-0.16
|
-1.70 – 1.37
|
0.834
|
cond
|
0.23
|
0.02 – 0.44
|
0.028
|
N_Bifact_4SC_z
|
-0.21
|
-0.53 – 0.12
|
0.222
|
age_years
|
0.02
|
-0.04 – 0.07
|
0.480
|
Gender
|
0.19
|
-0.48 – 0.86
|
0.577
|
cond * N_Bifact_4SC_z
|
0.09
|
-0.11 – 0.30
|
0.378
|
Random Effects
|
σ2
|
0.25
|
τ00 idnum
|
1.02
|
ICC
|
0.81
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.049 / 0.814
|
4. Testing the primary model with interaction between Self consciousness and Condition + other N factors
cond_model4_lamy <- lmer(L_amyg ~ cond*N_Bifact_4SC_z + N_Bifact_G_z + N_Bifact_2AH_z + age_years + Gender + (1|idnum), data=jfk_se)
cond_model4_ramy <- lmer(R_amyg ~ cond*N_Bifact_4SC_z + N_Bifact_G_z + N_Bifact_2AH_z + age_years + Gender + (1|idnum), data=jfk_se)
cond_model4_precu<- lmer(Precuneus ~ cond*N_Bifact_4SC_z + N_Bifact_G_z + N_Bifact_2AH_z + age_years + Gender + (1|idnum), data=jfk_se)
cond_model4_dacc<- lmer(dACC ~ cond*N_Bifact_4SC_z + N_Bifact_G_z + N_Bifact_2AH_z + age_years + Gender + (1|idnum), data=jfk_se)
cond_model4_sgacc <- lmer(sgACC ~ cond*N_Bifact_4SC_z + N_Bifact_G_z + N_Bifact_2AH_z + age_years + Gender + (1|idnum), data=jfk_se)
cond_model4_lai <- lmer(L_dAI ~ cond*N_Bifact_4SC_z + N_Bifact_G_z + N_Bifact_2AH_z + age_years + Gender + (1|idnum), data=jfk_se)
cond_model4_rai <- lmer(R_dAI ~ cond*N_Bifact_4SC_z + N_Bifact_G_z + N_Bifact_2AH_z + age_years + Gender + (1|idnum), data=jfk_se)
tab_model(cond_model4_lamy)
|
L_amyg
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-0.12
|
-1.92 – 1.68
|
0.897
|
cond
|
-0.19
|
-0.38 – 0.00
|
0.054
|
N_Bifact_4SC_z
|
-0.18
|
-0.65 – 0.29
|
0.460
|
N_Bifact_G_z
|
-0.05
|
-0.96 – 0.87
|
0.921
|
N_Bifact_2AH_z
|
-0.09
|
-0.45 – 0.27
|
0.640
|
age_years
|
0.01
|
-0.05 – 0.07
|
0.764
|
Gender
|
0.09
|
-0.67 – 0.85
|
0.818
|
cond * N_Bifact_4SC_z
|
-0.06
|
-0.25 – 0.13
|
0.517
|
Random Effects
|
σ2
|
0.21
|
τ00 idnum
|
1.34
|
ICC
|
0.87
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.024 / 0.869
|
tab_model(cond_model4_ramy)
|
R_amyg
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
0.35
|
-1.46 – 2.16
|
0.705
|
cond
|
-0.09
|
-0.21 – 0.04
|
0.168
|
N_Bifact_4SC_z
|
0.15
|
-0.33 – 0.62
|
0.546
|
N_Bifact_G_z
|
-0.16
|
-1.08 – 0.76
|
0.733
|
N_Bifact_2AH_z
|
0.30
|
-0.07 – 0.66
|
0.109
|
age_years
|
-0.00
|
-0.07 – 0.06
|
0.919
|
Gender
|
0.07
|
-0.69 – 0.83
|
0.863
|
cond * N_Bifact_4SC_z
|
0.01
|
-0.11 – 0.14
|
0.824
|
Random Effects
|
σ2
|
0.09
|
τ00 idnum
|
1.40
|
ICC
|
0.94
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.059 / 0.944
|
tab_model(cond_model4_precu)
|
Precuneus
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-2.41
|
-4.28 – -0.53
|
0.012
|
cond
|
-0.30
|
-0.49 – -0.11
|
0.002
|
N_Bifact_4SC_z
|
-0.41
|
-0.90 – 0.08
|
0.103
|
N_Bifact_G_z
|
0.09
|
-0.86 – 1.04
|
0.849
|
N_Bifact_2AH_z
|
0.15
|
-0.22 – 0.53
|
0.423
|
age_years
|
0.05
|
-0.01 – 0.12
|
0.118
|
Gender
|
-0.43
|
-1.22 – 0.36
|
0.288
|
cond * N_Bifact_4SC_z
|
-0.08
|
-0.26 – 0.11
|
0.416
|
Random Effects
|
σ2
|
0.20
|
τ00 idnum
|
1.46
|
ICC
|
0.88
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.199 / 0.903
|
tab_model(cond_model4_dacc)
|
dACC
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-1.44
|
-3.14 – 0.25
|
0.095
|
cond
|
0.01
|
-0.23 – 0.26
|
0.922
|
N_Bifact_4SC_z
|
-0.46
|
-0.90 – -0.01
|
0.044
|
N_Bifact_G_z
|
0.74
|
-0.12 – 1.60
|
0.094
|
N_Bifact_2AH_z
|
0.05
|
-0.29 – 0.39
|
0.765
|
age_years
|
0.03
|
-0.03 – 0.09
|
0.311
|
Gender
|
-0.38
|
-1.09 – 0.34
|
0.301
|
cond * N_Bifact_4SC_z
|
0.03
|
-0.21 – 0.27
|
0.806
|
Random Effects
|
σ2
|
0.34
|
τ00 idnum
|
1.10
|
ICC
|
0.76
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.153 / 0.800
|
plot_model(cond_model4_dacc, type = "pred",
terms = c( "cond","N_Bifact_4SC_z[-1.5,1.5]"))

tab_model(cond_model4_sgacc)
|
sgACC
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-2.28
|
-3.88 – -0.67
|
0.005
|
cond
|
-0.32
|
-0.53 – -0.11
|
0.003
|
N_Bifact_4SC_z
|
-0.34
|
-0.76 – 0.08
|
0.113
|
N_Bifact_G_z
|
0.28
|
-0.53 – 1.10
|
0.496
|
N_Bifact_2AH_z
|
-0.01
|
-0.33 – 0.31
|
0.960
|
age_years
|
0.04
|
-0.02 – 0.09
|
0.171
|
Gender
|
-0.18
|
-0.86 – 0.49
|
0.595
|
cond * N_Bifact_4SC_z
|
-0.10
|
-0.31 – 0.11
|
0.365
|
Random Effects
|
σ2
|
0.26
|
τ00 idnum
|
1.01
|
ICC
|
0.80
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.118 / 0.822
|
tab_model(cond_model4_lai)
|
L_dAI
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
0.13
|
-1.62 – 1.89
|
0.881
|
cond
|
0.04
|
-0.16 – 0.25
|
0.672
|
N_Bifact_4SC_z
|
-0.40
|
-0.86 – 0.07
|
0.093
|
N_Bifact_G_z
|
1.01
|
0.12 – 1.91
|
0.026
|
N_Bifact_2AH_z
|
0.01
|
-0.34 – 0.36
|
0.947
|
age_years
|
-0.01
|
-0.07 – 0.05
|
0.849
|
Gender
|
0.15
|
-0.59 – 0.89
|
0.684
|
cond * N_Bifact_4SC_z
|
0.11
|
-0.09 – 0.31
|
0.284
|
Random Effects
|
σ2
|
0.23
|
τ00 idnum
|
1.25
|
ICC
|
0.84
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.123 / 0.863
|
tab_model(cond_model4_rai)
|
R_dAI
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-0.46
|
-2.07 – 1.15
|
0.578
|
cond
|
0.23
|
0.02 – 0.44
|
0.028
|
N_Bifact_4SC_z
|
-0.31
|
-0.73 – 0.11
|
0.149
|
N_Bifact_G_z
|
0.53
|
-0.29 – 1.34
|
0.208
|
N_Bifact_2AH_z
|
0.01
|
-0.31 – 0.34
|
0.939
|
age_years
|
0.02
|
-0.03 – 0.08
|
0.445
|
Gender
|
0.15
|
-0.53 – 0.83
|
0.668
|
cond * N_Bifact_4SC_z
|
0.09
|
-0.11 – 0.30
|
0.378
|
Random Effects
|
σ2
|
0.25
|
τ00 idnum
|
1.03
|
ICC
|
0.81
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.078 / 0.822
|
5. Testing the primary model with the 3 possible N/cond interactions
cond_model5_lamy <- lmer(L_amyg ~ cond*N_Bifact_4SC_z + cond*N_Bifact_G_z + cond*N_Bifact_2AH_z + age_years + Gender + (1|idnum), data=jfk_se)
cond_model5_ramy <- lmer(R_amyg ~ cond*N_Bifact_4SC_z + cond*N_Bifact_G_z + cond*N_Bifact_2AH_z + age_years + Gender + (1|idnum), data=jfk_se)
cond_model5_precu<- lmer(Precuneus ~ cond*N_Bifact_4SC_z + cond*N_Bifact_G_z + cond*N_Bifact_2AH_z + age_years + Gender + (1|idnum), data=jfk_se)
cond_model5_dacc<- lmer(dACC ~ cond*N_Bifact_4SC_z + cond*N_Bifact_G_z + cond*N_Bifact_2AH_z + age_years + Gender + (1|idnum), data=jfk_se)
cond_model5_sgacc <- lmer(sgACC ~ cond*N_Bifact_4SC_z + cond*N_Bifact_G_z + cond*N_Bifact_2AH_z + age_years + Gender + (1|idnum), data=jfk_se)
cond_model5_lai <- lmer(L_dAI ~ cond*N_Bifact_4SC_z + cond*N_Bifact_G_z + cond*N_Bifact_2AH_z + age_years + Gender + (1|idnum), data=jfk_se)
cond_model5_rai <- lmer(R_dAI ~ cond*N_Bifact_4SC_z + cond*N_Bifact_G_z + cond*N_Bifact_2AH_z + age_years + Gender + (1|idnum), data=jfk_se)
tab_model(cond_model5_lamy)
|
L_amyg
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-0.12
|
-1.92 – 1.68
|
0.897
|
cond
|
-0.19
|
-0.52 – 0.14
|
0.249
|
N_Bifact_4SC_z
|
-0.18
|
-0.65 – 0.29
|
0.460
|
N_Bifact_G_z
|
-0.05
|
-0.96 – 0.87
|
0.921
|
N_Bifact_2AH_z
|
-0.09
|
-0.45 – 0.27
|
0.640
|
age_years
|
0.01
|
-0.05 – 0.07
|
0.764
|
Gender
|
0.09
|
-0.67 – 0.85
|
0.818
|
cond * N_Bifact_4SC_z
|
-0.06
|
-0.31 – 0.19
|
0.639
|
cond * N_Bifact_G_z
|
0.01
|
-0.49 – 0.51
|
0.977
|
cond * N_Bifact_2AH_z
|
0.01
|
-0.19 – 0.21
|
0.932
|
Random Effects
|
σ2
|
0.22
|
τ00 idnum
|
1.33
|
ICC
|
0.86
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.024 / 0.862
|
tab_model(cond_model5_ramy)
|
R_amyg
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
0.35
|
-1.46 – 2.16
|
0.705
|
cond
|
-0.07
|
-0.28 – 0.15
|
0.546
|
N_Bifact_4SC_z
|
0.15
|
-0.33 – 0.62
|
0.546
|
N_Bifact_G_z
|
-0.16
|
-1.08 – 0.76
|
0.733
|
N_Bifact_2AH_z
|
0.30
|
-0.07 – 0.66
|
0.109
|
age_years
|
-0.00
|
-0.07 – 0.06
|
0.919
|
Gender
|
0.07
|
-0.69 – 0.83
|
0.863
|
cond * N_Bifact_4SC_z
|
0.03
|
-0.13 – 0.19
|
0.698
|
cond * N_Bifact_G_z
|
-0.04
|
-0.37 – 0.28
|
0.803
|
cond * N_Bifact_2AH_z
|
0.02
|
-0.11 – 0.15
|
0.786
|
Random Effects
|
σ2
|
0.09
|
τ00 idnum
|
1.40
|
ICC
|
0.94
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.059 / 0.942
|
tab_model(cond_model5_precu)
|
Precuneus
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-2.41
|
-4.28 – -0.53
|
0.012
|
cond
|
-0.35
|
-0.66 – -0.04
|
0.027
|
N_Bifact_4SC_z
|
-0.41
|
-0.90 – 0.08
|
0.103
|
N_Bifact_G_z
|
0.09
|
-0.86 – 1.04
|
0.849
|
N_Bifact_2AH_z
|
0.15
|
-0.22 – 0.53
|
0.423
|
age_years
|
0.05
|
-0.01 – 0.12
|
0.118
|
Gender
|
-0.43
|
-1.22 – 0.36
|
0.288
|
cond * N_Bifact_4SC_z
|
-0.03
|
-0.27 – 0.21
|
0.798
|
cond * N_Bifact_G_z
|
0.11
|
-0.37 – 0.59
|
0.650
|
cond * N_Bifact_2AH_z
|
0.14
|
-0.05 – 0.33
|
0.148
|
Random Effects
|
σ2
|
0.20
|
τ00 idnum
|
1.46
|
ICC
|
0.88
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.202 / 0.904
|
tab_model(cond_model5_dacc)
|
dACC
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-1.44
|
-3.14 – 0.25
|
0.095
|
cond
|
-0.38
|
-0.76 – 0.00
|
0.051
|
N_Bifact_4SC_z
|
-0.46
|
-0.90 – -0.01
|
0.044
|
N_Bifact_G_z
|
0.74
|
-0.12 – 1.60
|
0.094
|
N_Bifact_2AH_z
|
0.05
|
-0.29 – 0.39
|
0.765
|
age_years
|
0.03
|
-0.03 – 0.09
|
0.311
|
Gender
|
-0.38
|
-1.09 – 0.34
|
0.301
|
cond * N_Bifact_4SC_z
|
-0.09
|
-0.38 – 0.20
|
0.547
|
cond * N_Bifact_G_z
|
0.77
|
0.18 – 1.36
|
0.010
|
cond * N_Bifact_2AH_z
|
0.10
|
-0.13 – 0.33
|
0.404
|
Random Effects
|
σ2
|
0.30
|
τ00 idnum
|
1.12
|
ICC
|
0.79
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.169 / 0.826
|
tab_model(cond_model5_sgacc)
|
sgACC
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-2.28
|
-3.88 – -0.67
|
0.005
|
cond
|
-0.57
|
-0.92 – -0.23
|
0.001
|
N_Bifact_4SC_z
|
-0.34
|
-0.76 – 0.08
|
0.113
|
N_Bifact_G_z
|
0.28
|
-0.53 – 1.10
|
0.496
|
N_Bifact_2AH_z
|
-0.01
|
-0.33 – 0.31
|
0.960
|
age_years
|
0.04
|
-0.02 – 0.09
|
0.171
|
Gender
|
-0.18
|
-0.86 – 0.49
|
0.595
|
cond * N_Bifact_4SC_z
|
-0.16
|
-0.42 – 0.10
|
0.231
|
cond * N_Bifact_G_z
|
0.50
|
-0.03 – 1.03
|
0.063
|
cond * N_Bifact_2AH_z
|
0.09
|
-0.11 – 0.30
|
0.384
|
Random Effects
|
σ2
|
0.24
|
τ00 idnum
|
1.02
|
ICC
|
0.81
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.126 / 0.833
|
tab_model(cond_model5_lai)
|
L_dAI
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
0.13
|
-1.62 – 1.89
|
0.881
|
cond
|
-0.05
|
-0.39 – 0.28
|
0.751
|
N_Bifact_4SC_z
|
-0.40
|
-0.86 – 0.07
|
0.093
|
N_Bifact_G_z
|
1.01
|
0.12 – 1.91
|
0.026
|
N_Bifact_2AH_z
|
0.01
|
-0.34 – 0.36
|
0.947
|
age_years
|
-0.01
|
-0.07 – 0.05
|
0.849
|
Gender
|
0.15
|
-0.59 – 0.89
|
0.684
|
cond * N_Bifact_4SC_z
|
0.12
|
-0.14 – 0.38
|
0.371
|
cond * N_Bifact_G_z
|
0.20
|
-0.31 – 0.72
|
0.443
|
cond * N_Bifact_2AH_z
|
0.11
|
-0.10 – 0.31
|
0.309
|
Random Effects
|
σ2
|
0.23
|
τ00 idnum
|
1.25
|
ICC
|
0.84
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.125 / 0.863
|
tab_model(cond_model5_rai)
|
R_dAI
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-0.46
|
-2.07 – 1.15
|
0.578
|
cond
|
0.15
|
-0.21 – 0.50
|
0.413
|
N_Bifact_4SC_z
|
-0.31
|
-0.73 – 0.11
|
0.149
|
N_Bifact_G_z
|
0.53
|
-0.29 – 1.34
|
0.208
|
N_Bifact_2AH_z
|
0.01
|
-0.31 – 0.34
|
0.939
|
age_years
|
0.02
|
-0.03 – 0.08
|
0.445
|
Gender
|
0.15
|
-0.53 – 0.83
|
0.668
|
cond * N_Bifact_4SC_z
|
0.07
|
-0.20 – 0.34
|
0.634
|
cond * N_Bifact_G_z
|
0.17
|
-0.37 – 0.71
|
0.541
|
cond * N_Bifact_2AH_z
|
0.02
|
-0.19 – 0.23
|
0.846
|
Random Effects
|
σ2
|
0.26
|
τ00 idnum
|
1.02
|
ICC
|
0.80
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.079 / 0.816
|
FDR Correction:
this is collecting all p’s from model [4] for each of the 7 ROIs
Specifically examining the 3 personality main effects and 1 int per model (4x7=28 ps)
#pull the p values from each ROI model
sum_model4_lamy_se <- summary(cond_model4_lamy)
model4_lamy_se_ps <- sum_model4_lamy_se$coefficients[c(3:5,8),5]
sum_model4_ramy_se <- summary(cond_model4_ramy)
model4_ramy_se_ps <- sum_model4_ramy_se$coefficients[c(3:5,8),5]
sum_model4_precu_se <- summary(cond_model4_precu)
model4_precu_se_ps <- sum_model4_precu_se$coefficients[c(3:5,8),5]
sum_model4_dacc_se <- summary(cond_model4_dacc)
model4_dacc_se_ps <- sum_model4_dacc_se$coefficients[c(3:5,8),5]
sum_model4_sgacc_se <- summary(cond_model4_sgacc)
model4_sgacc_se_ps <- sum_model4_sgacc_se$coefficients[c(3:5,8),5]
sum_model4_lai_se <- summary(cond_model4_lai)
model4_lai_se_ps <- sum_model4_lai_se$coefficients[c(3:5,8),5]
sum_model4_rai_se <- summary(cond_model4_rai)
model4_rai_se_ps <- sum_model4_rai_se$coefficients[c(3:5,8),5]
#concat the p values & apply the p.adjust function which uses FDR correction
model4_se_allps <- c(model4_lamy_se_ps,model4_ramy_se_ps,model4_precu_se_ps, model4_dacc_se_ps, model4_sgacc_se_ps,model4_lai_se_ps,model4_rai_se_ps)
model4_se_allps_fdr <- p.adjust(model4_se_allps, method = "fdr")
#Show first the significant uncorrected ps (ignore the labels here, or at least none of them are SC or cond:SC)
old_sig <- which(model4_se_allps < 0.05)
model4_se_allps[old_sig]
## N_Bifact_G_z
## 0.03186147
#Show corrected values -- there are none
new_sig <- which(model4_se_allps_fdr < 0.05)
model4_se_allps[new_sig]
## named numeric(0)
Mixed Effect Linear Models: Conflict Adaptation Effect
Skipping unconditional models and going to 2. Assessing the effect of condition on ROI values (including age and sex covariates)
Incon->Incon is coded 0.5 and Con->Incon is coded -0.5
cond_model2_lamy_ca <- lmer(L_amyg ~ cond + age_years + Gender + (1|idnum), data=jfk_ca)
cond_model2_ramy_ca <- lmer(R_amyg ~ cond + age_years + Gender + (1|idnum), data=jfk_ca)
cond_model2_precu_ca<- lmer(Precuneus ~ cond + age_years + Gender + (1|idnum), data=jfk_ca)
cond_model2_dacc_ca<- lmer(dACC ~ cond + age_years + Gender + (1|idnum), data=jfk_ca)
cond_model2_sgacc_ca <- lmer(sgACC ~ cond + age_years + Gender + (1|idnum), data=jfk_ca)
cond_model2_lai_ca <- lmer(L_dAI ~ cond + age_years + Gender + (1|idnum), data=jfk_ca)
cond_model2_rai_ca <- lmer(R_dAI ~ cond + age_years + Gender + (1|idnum), data=jfk_ca)
tab_model(cond_model2_lamy_ca)
|
L_amyg
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-0.18
|
-1.90 – 1.53
|
0.834
|
cond
|
0.03
|
-0.17 – 0.23
|
0.761
|
age_years
|
0.01
|
-0.05 – 0.07
|
0.713
|
Gender
|
-0.13
|
-0.87 – 0.61
|
0.729
|
Random Effects
|
σ2
|
0.23
|
τ00 idnum
|
1.38
|
ICC
|
0.86
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.006 / 0.861
|
tab_model(cond_model2_ramy_ca)
|
R_amyg
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
0.09
|
-1.63 – 1.80
|
0.920
|
cond
|
-0.06
|
-0.26 – 0.14
|
0.553
|
age_years
|
0.00
|
-0.06 – 0.06
|
0.969
|
Gender
|
0.06
|
-0.67 – 0.80
|
0.866
|
Random Effects
|
σ2
|
0.23
|
τ00 idnum
|
1.38
|
ICC
|
0.85
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.001 / 0.855
|
tab_model(cond_model2_precu_ca)
|
Precuneus
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-2.21
|
-4.14 – -0.28
|
0.025
|
cond
|
0.34
|
0.12 – 0.57
|
0.003
|
age_years
|
0.05
|
-0.02 – 0.12
|
0.201
|
Gender
|
-0.82
|
-1.65 – 0.00
|
0.051
|
Random Effects
|
σ2
|
0.29
|
τ00 idnum
|
1.75
|
ICC
|
0.86
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.119 / 0.875
|
tab_model(cond_model2_dacc_ca)
|
dACC
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-0.52
|
-2.39 – 1.34
|
0.581
|
cond
|
0.14
|
-0.09 – 0.38
|
0.230
|
age_years
|
0.01
|
-0.06 – 0.08
|
0.732
|
Gender
|
-0.55
|
-1.35 – 0.24
|
0.174
|
Random Effects
|
σ2
|
0.32
|
τ00 idnum
|
1.61
|
ICC
|
0.84
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.043 / 0.843
|
tab_model(cond_model2_sgacc_ca)
|
sgACC
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-1.93
|
-3.60 – -0.27
|
0.023
|
cond
|
0.28
|
0.00 – 0.56
|
0.049
|
age_years
|
0.03
|
-0.03 – 0.09
|
0.327
|
Gender
|
-0.50
|
-1.21 – 0.21
|
0.171
|
Random Effects
|
σ2
|
0.45
|
τ00 idnum
|
1.18
|
ICC
|
0.73
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.066 / 0.743
|
tab_model(cond_model2_lai_ca)
|
L_dAI
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
1.00
|
-0.78 – 2.77
|
0.272
|
cond
|
-0.07
|
-0.29 – 0.14
|
0.506
|
age_years
|
-0.02
|
-0.08 – 0.05
|
0.621
|
Gender
|
0.04
|
-0.72 – 0.80
|
0.921
|
Random Effects
|
σ2
|
0.28
|
τ00 idnum
|
1.47
|
ICC
|
0.84
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.006 / 0.843
|
tab_model(cond_model2_rai_ca)
|
R_dAI
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
0.43
|
-0.99 – 1.84
|
0.557
|
cond
|
-0.04
|
-0.28 – 0.19
|
0.710
|
age_years
|
0.00
|
-0.05 – 0.05
|
0.886
|
Gender
|
0.05
|
-0.55 – 0.66
|
0.861
|
Random Effects
|
σ2
|
0.32
|
τ00 idnum
|
0.86
|
ICC
|
0.73
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.001 / 0.731
|
3. Testing the primary model with interaction between Self consciousness and Condition
cond_model3_lamy_ca <- lmer(L_amyg ~ cond*N_Bifact_4SC_z + age_years + Gender + (1|idnum), data=jfk_ca)
cond_model3_ramy_ca <- lmer(R_amyg ~ cond*N_Bifact_4SC_z + age_years + Gender + (1|idnum), data=jfk_ca)
cond_model3_precu_ca<- lmer(Precuneus ~ cond*N_Bifact_4SC_z + age_years + Gender + (1|idnum), data=jfk_ca)
cond_model3_dacc_ca<- lmer(dACC ~ cond*N_Bifact_4SC_z + age_years + Gender + (1|idnum), data=jfk_ca)
cond_model3_sgacc_ca <- lmer(sgACC ~ cond*N_Bifact_4SC_z + age_years + Gender + (1|idnum), data=jfk_ca)
cond_model3_lai_ca <- lmer(L_dAI ~ cond*N_Bifact_4SC_z + age_years + Gender + (1|idnum), data=jfk_ca)
cond_model3_rai_ca <- lmer(R_dAI ~ cond*N_Bifact_4SC_z + age_years + Gender + (1|idnum), data=jfk_ca)
tab_model(cond_model3_lamy_ca)
|
L_amyg
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-0.34
|
-2.10 – 1.42
|
0.702
|
cond
|
0.02
|
-0.18 – 0.22
|
0.837
|
N_Bifact_4SC_z
|
-0.17
|
-0.54 – 0.21
|
0.388
|
age_years
|
0.02
|
-0.05 – 0.08
|
0.605
|
Gender
|
-0.04
|
-0.81 – 0.73
|
0.922
|
cond * N_Bifact_4SC_z
|
0.07
|
-0.13 – 0.26
|
0.510
|
Random Effects
|
σ2
|
0.23
|
τ00 idnum
|
1.39
|
ICC
|
0.86
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.022 / 0.862
|
tab_model(cond_model3_ramy_ca)
|
R_amyg
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
0.05
|
-1.72 – 1.82
|
0.956
|
cond
|
-0.10
|
-0.29 – 0.09
|
0.300
|
N_Bifact_4SC_z
|
-0.04
|
-0.42 – 0.34
|
0.839
|
age_years
|
0.00
|
-0.06 – 0.07
|
0.940
|
Gender
|
0.09
|
-0.69 – 0.86
|
0.829
|
cond * N_Bifact_4SC_z
|
0.27
|
0.08 – 0.45
|
0.005
|
Random Effects
|
σ2
|
0.20
|
τ00 idnum
|
1.43
|
ICC
|
0.88
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.013 / 0.878
|
tab_model(cond_model3_precu_ca)
|
Precuneus
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-2.69
|
-4.56 – -0.82
|
0.005
|
cond
|
0.35
|
0.12 – 0.58
|
0.003
|
N_Bifact_4SC_z
|
-0.50
|
-0.90 – -0.10
|
0.015
|
age_years
|
0.06
|
-0.01 – 0.13
|
0.077
|
Gender
|
-0.55
|
-1.37 – 0.26
|
0.185
|
cond * N_Bifact_4SC_z
|
-0.03
|
-0.25 – 0.20
|
0.827
|
Random Effects
|
σ2
|
0.30
|
τ00 idnum
|
1.55
|
ICC
|
0.84
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.216 / 0.874
|
plot_model(cond_model3_precu_ca, type = "pred",
terms = c( "cond","N_Bifact_4SC_z[-1.5,1.5]"))

tab_model(cond_model3_dacc_ca)
|
dACC
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-0.81
|
-2.69 – 1.07
|
0.400
|
cond
|
0.14
|
-0.10 – 0.38
|
0.250
|
N_Bifact_4SC_z
|
-0.30
|
-0.70 – 0.11
|
0.152
|
age_years
|
0.02
|
-0.05 – 0.09
|
0.549
|
Gender
|
-0.39
|
-1.21 – 0.43
|
0.349
|
cond * N_Bifact_4SC_z
|
0.02
|
-0.21 – 0.26
|
0.862
|
Random Effects
|
σ2
|
0.32
|
τ00 idnum
|
1.56
|
ICC
|
0.83
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.082 / 0.842
|
tab_model(cond_model3_sgacc_ca)
|
sgACC
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-2.22
|
-3.89 – -0.56
|
0.009
|
cond
|
0.26
|
-0.02 – 0.55
|
0.068
|
N_Bifact_4SC_z
|
-0.30
|
-0.66 – 0.05
|
0.097
|
age_years
|
0.04
|
-0.02 – 0.10
|
0.199
|
Gender
|
-0.33
|
-1.06 – 0.39
|
0.371
|
cond * N_Bifact_4SC_z
|
0.11
|
-0.17 – 0.39
|
0.434
|
Random Effects
|
σ2
|
0.45
|
τ00 idnum
|
1.12
|
ICC
|
0.71
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.115 / 0.746
|
tab_model(cond_model3_lai_ca)
|
L_dAI
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
0.89
|
-0.94 – 2.72
|
0.340
|
cond
|
-0.09
|
-0.31 – 0.13
|
0.424
|
N_Bifact_4SC_z
|
-0.11
|
-0.50 – 0.28
|
0.585
|
age_years
|
-0.01
|
-0.08 – 0.05
|
0.702
|
Gender
|
0.10
|
-0.70 – 0.90
|
0.808
|
cond * N_Bifact_4SC_z
|
0.11
|
-0.11 – 0.33
|
0.317
|
Random Effects
|
σ2
|
0.28
|
τ00 idnum
|
1.50
|
ICC
|
0.84
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.014 / 0.847
|
tab_model(cond_model3_rai_ca)
|
R_dAI
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
0.29
|
-1.16 – 1.74
|
0.695
|
cond
|
-0.06
|
-0.30 – 0.17
|
0.600
|
N_Bifact_4SC_z
|
-0.14
|
-0.45 – 0.17
|
0.378
|
age_years
|
0.01
|
-0.04 – 0.06
|
0.764
|
Gender
|
0.13
|
-0.50 – 0.77
|
0.684
|
cond * N_Bifact_4SC_z
|
0.13
|
-0.10 – 0.36
|
0.275
|
Random Effects
|
σ2
|
0.32
|
τ00 idnum
|
0.87
|
ICC
|
0.73
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.020 / 0.738
|
4. Testing the primary model with interaction between Self consciousness and Condition + other N factors
cond_model4_lamy_ca <- lmer(L_amyg ~ cond*N_Bifact_4SC_z + N_Bifact_G_z + N_Bifact_2AH_z + age_years + Gender + (1|idnum), data=jfk_ca)
cond_model4_ramy_ca <- lmer(R_amyg ~ cond*N_Bifact_4SC_z + N_Bifact_G_z + N_Bifact_2AH_z + age_years + Gender + (1|idnum), data=jfk_ca)
cond_model4_precu_ca<- lmer(Precuneus ~ cond*N_Bifact_4SC_z + N_Bifact_G_z + N_Bifact_2AH_z + age_years + Gender + (1|idnum), data=jfk_ca)
cond_model4_dacc_ca<- lmer(dACC ~ cond*N_Bifact_4SC_z + N_Bifact_G_z + N_Bifact_2AH_z + age_years + Gender + (1|idnum), data=jfk_ca)
cond_model4_sgacc_ca <- lmer(sgACC ~ cond*N_Bifact_4SC_z + N_Bifact_G_z + N_Bifact_2AH_z + age_years + Gender + (1|idnum), data=jfk_ca)
cond_model4_lai_ca <- lmer(L_dAI ~ cond*N_Bifact_4SC_z + N_Bifact_G_z + N_Bifact_2AH_z + age_years + Gender + (1|idnum), data=jfk_ca)
cond_model4_rai_ca <- lmer(R_dAI ~ cond*N_Bifact_4SC_z + N_Bifact_G_z + N_Bifact_2AH_z + age_years + Gender + (1|idnum), data=jfk_ca)
tab_model(cond_model4_lamy_ca)
|
L_amyg
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-0.35
|
-2.24 – 1.54
|
0.717
|
cond
|
0.02
|
-0.18 – 0.22
|
0.837
|
N_Bifact_4SC_z
|
-0.20
|
-0.70 – 0.29
|
0.423
|
N_Bifact_G_z
|
-0.03
|
-0.98 – 0.93
|
0.956
|
N_Bifact_2AH_z
|
-0.08
|
-0.45 – 0.30
|
0.694
|
age_years
|
0.02
|
-0.05 – 0.08
|
0.613
|
Gender
|
-0.01
|
-0.81 – 0.78
|
0.971
|
cond * N_Bifact_4SC_z
|
0.07
|
-0.13 – 0.26
|
0.510
|
Random Effects
|
σ2
|
0.23
|
τ00 idnum
|
1.46
|
ICC
|
0.86
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.024 / 0.868
|
tab_model(cond_model4_ramy_ca)
|
R_amyg
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
0.23
|
-1.61 – 2.07
|
0.806
|
cond
|
-0.10
|
-0.29 – 0.09
|
0.300
|
N_Bifact_4SC_z
|
0.16
|
-0.32 – 0.65
|
0.503
|
N_Bifact_G_z
|
-0.17
|
-1.11 – 0.76
|
0.719
|
N_Bifact_2AH_z
|
0.31
|
-0.06 – 0.68
|
0.102
|
age_years
|
0.00
|
-0.06 – 0.06
|
0.969
|
Gender
|
0.01
|
-0.77 – 0.78
|
0.981
|
cond * N_Bifact_4SC_z
|
0.27
|
0.08 – 0.45
|
0.005
|
Random Effects
|
σ2
|
0.20
|
τ00 idnum
|
1.40
|
ICC
|
0.87
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.067 / 0.883
|
#Shows that for the -0.5 condition [Con->Incon] there is similar amygdalar activity regardless of SC score, but in the +0.5 condition [Incon->Incon] those with lower SC show lower amyg activity than those with higher SC that show slightly increased R amyg activity
plot_model(cond_model4_ramy_ca, type = "pred",
terms = c( "cond","N_Bifact_4SC_z[-1.5,1.5]"))

tab_model(cond_model4_precu_ca)
|
Precuneus
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-2.72
|
-4.69 – -0.75
|
0.007
|
cond
|
0.35
|
0.12 – 0.58
|
0.003
|
N_Bifact_4SC_z
|
-0.41
|
-0.92 – 0.11
|
0.122
|
N_Bifact_G_z
|
0.17
|
-0.82 – 1.17
|
0.732
|
N_Bifact_2AH_z
|
0.23
|
-0.16 – 0.63
|
0.243
|
age_years
|
0.06
|
-0.01 – 0.13
|
0.078
|
Gender
|
-0.63
|
-1.46 – 0.20
|
0.136
|
cond * N_Bifact_4SC_z
|
-0.03
|
-0.25 – 0.20
|
0.827
|
Random Effects
|
σ2
|
0.30
|
τ00 idnum
|
1.57
|
ICC
|
0.84
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.234 / 0.878
|
tab_model(cond_model4_dacc_ca)
|
dACC
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-1.41
|
-3.29 – 0.46
|
0.140
|
cond
|
0.14
|
-0.10 – 0.38
|
0.250
|
N_Bifact_4SC_z
|
-0.48
|
-0.97 – 0.01
|
0.057
|
N_Bifact_G_z
|
1.13
|
0.17 – 2.08
|
0.020
|
N_Bifact_2AH_z
|
0.11
|
-0.27 – 0.48
|
0.572
|
age_years
|
0.02
|
-0.04 – 0.09
|
0.460
|
Gender
|
-0.50
|
-1.29 – 0.29
|
0.211
|
cond * N_Bifact_4SC_z
|
0.02
|
-0.21 – 0.26
|
0.862
|
Random Effects
|
σ2
|
0.32
|
τ00 idnum
|
1.40
|
ICC
|
0.81
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.184 / 0.847
|
tab_model(cond_model4_sgacc_ca)
|
sgACC
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-2.52
|
-4.28 – -0.77
|
0.005
|
cond
|
0.26
|
-0.02 – 0.55
|
0.068
|
N_Bifact_4SC_z
|
-0.39
|
-0.85 – 0.06
|
0.092
|
N_Bifact_G_z
|
0.55
|
-0.34 – 1.44
|
0.223
|
N_Bifact_2AH_z
|
0.05
|
-0.30 – 0.40
|
0.781
|
age_years
|
0.04
|
-0.02 – 0.10
|
0.182
|
Gender
|
-0.39
|
-1.12 – 0.35
|
0.306
|
cond * N_Bifact_4SC_z
|
0.11
|
-0.17 – 0.39
|
0.434
|
Random Effects
|
σ2
|
0.45
|
τ00 idnum
|
1.14
|
ICC
|
0.71
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.139 / 0.755
|
tab_model(cond_model4_lai_ca)
|
L_dAI
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
0.28
|
-1.55 – 2.10
|
0.767
|
cond
|
-0.09
|
-0.31 – 0.13
|
0.424
|
N_Bifact_4SC_z
|
-0.31
|
-0.79 – 0.17
|
0.203
|
N_Bifact_G_z
|
1.13
|
0.20 – 2.05
|
0.017
|
N_Bifact_2AH_z
|
0.07
|
-0.29 – 0.44
|
0.691
|
age_years
|
-0.01
|
-0.07 – 0.05
|
0.774
|
Gender
|
-0.00
|
-0.77 – 0.77
|
0.994
|
cond * N_Bifact_4SC_z
|
0.11
|
-0.11 – 0.33
|
0.317
|
Random Effects
|
σ2
|
0.28
|
τ00 idnum
|
1.34
|
ICC
|
0.83
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.127 / 0.851
|
tab_model(cond_model4_rai_ca)
|
R_dAI
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-0.04
|
-1.56 – 1.47
|
0.955
|
cond
|
-0.06
|
-0.30 – 0.17
|
0.600
|
N_Bifact_4SC_z
|
-0.26
|
-0.65 – 0.14
|
0.207
|
N_Bifact_G_z
|
0.61
|
-0.16 – 1.37
|
0.122
|
N_Bifact_2AH_z
|
0.03
|
-0.28 – 0.33
|
0.858
|
age_years
|
0.01
|
-0.04 – 0.06
|
0.706
|
Gender
|
0.08
|
-0.56 – 0.72
|
0.805
|
cond * N_Bifact_4SC_z
|
0.13
|
-0.10 – 0.36
|
0.275
|
Random Effects
|
σ2
|
0.32
|
τ00 idnum
|
0.86
|
ICC
|
0.73
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.066 / 0.748
|
5. Testing the primary model with the 3 possible N/cond interactions
cond_model5_lamy_ca <- lmer(L_amyg ~ cond*N_Bifact_4SC_z + cond*N_Bifact_G_z + cond*N_Bifact_2AH_z + age_years + Gender + (1|idnum), data=jfk_ca)
cond_model5_ramy_ca <- lmer(R_amyg ~ cond*N_Bifact_4SC_z + cond*N_Bifact_G_z + cond*N_Bifact_2AH_z + age_years + Gender + (1|idnum), data=jfk_ca)
cond_model5_precu_ca<- lmer(Precuneus ~ cond*N_Bifact_4SC_z + cond*N_Bifact_G_z + cond*N_Bifact_2AH_z + age_years + Gender + (1|idnum), data=jfk_ca)
cond_model5_dacc_ca<- lmer(dACC ~ cond*N_Bifact_4SC_z + cond*N_Bifact_G_z + cond*N_Bifact_2AH_z + age_years + Gender + (1|idnum), data=jfk_ca)
cond_model5_sgacc_ca <- lmer(sgACC ~ cond*N_Bifact_4SC_z + cond*N_Bifact_G_z + cond*N_Bifact_2AH_z + age_years + Gender + (1|idnum), data=jfk_ca)
cond_model5_lai_ca <- lmer(L_dAI ~ cond*N_Bifact_4SC_z + cond*N_Bifact_G_z + cond*N_Bifact_2AH_z + age_years + Gender + (1|idnum), data=jfk_ca)
cond_model5_rai_ca <- lmer(R_dAI ~ cond*N_Bifact_4SC_z + cond*N_Bifact_G_z + cond*N_Bifact_2AH_z + age_years + Gender + (1|idnum), data=jfk_ca)
tab_model(cond_model5_lamy_ca)
|
L_amyg
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-0.35
|
-2.24 – 1.54
|
0.717
|
cond
|
-0.17
|
-0.51 – 0.16
|
0.306
|
N_Bifact_4SC_z
|
-0.20
|
-0.70 – 0.29
|
0.423
|
N_Bifact_G_z
|
-0.03
|
-0.98 – 0.93
|
0.956
|
N_Bifact_2AH_z
|
-0.08
|
-0.45 – 0.30
|
0.694
|
age_years
|
0.02
|
-0.05 – 0.08
|
0.613
|
Gender
|
-0.01
|
-0.81 – 0.78
|
0.971
|
cond * N_Bifact_4SC_z
|
-0.03
|
-0.28 – 0.23
|
0.824
|
cond * N_Bifact_G_z
|
0.38
|
-0.14 – 0.89
|
0.151
|
cond * N_Bifact_2AH_z
|
-0.03
|
-0.23 – 0.18
|
0.807
|
Random Effects
|
σ2
|
0.23
|
τ00 idnum
|
1.46
|
ICC
|
0.87
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.027 / 0.869
|
tab_model(cond_model5_ramy_ca)
|
R_amyg
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
0.23
|
-1.61 – 2.07
|
0.806
|
cond
|
-0.33
|
-0.64 – -0.03
|
0.034
|
N_Bifact_4SC_z
|
0.16
|
-0.32 – 0.65
|
0.503
|
N_Bifact_G_z
|
-0.17
|
-1.11 – 0.76
|
0.719
|
N_Bifact_2AH_z
|
0.31
|
-0.06 – 0.68
|
0.102
|
age_years
|
0.00
|
-0.06 – 0.06
|
0.969
|
Gender
|
0.01
|
-0.77 – 0.78
|
0.981
|
cond * N_Bifact_4SC_z
|
0.19
|
-0.05 – 0.42
|
0.114
|
cond * N_Bifact_G_z
|
0.45
|
-0.02 – 0.92
|
0.059
|
cond * N_Bifact_2AH_z
|
0.04
|
-0.15 – 0.22
|
0.679
|
Random Effects
|
σ2
|
0.19
|
τ00 idnum
|
1.41
|
ICC
|
0.88
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.072 / 0.888
|
tab_model(cond_model5_precu_ca)
|
Precuneus
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-2.72
|
-4.69 – -0.75
|
0.007
|
cond
|
0.14
|
-0.24 – 0.52
|
0.477
|
N_Bifact_4SC_z
|
-0.41
|
-0.92 – 0.11
|
0.122
|
N_Bifact_G_z
|
0.17
|
-0.82 – 1.17
|
0.732
|
N_Bifact_2AH_z
|
0.23
|
-0.16 – 0.63
|
0.243
|
age_years
|
0.06
|
-0.01 – 0.13
|
0.078
|
Gender
|
-0.63
|
-1.46 – 0.20
|
0.136
|
cond * N_Bifact_4SC_z
|
-0.15
|
-0.44 – 0.14
|
0.306
|
cond * N_Bifact_G_z
|
0.39
|
-0.19 – 0.98
|
0.189
|
cond * N_Bifact_2AH_z
|
-0.08
|
-0.31 – 0.15
|
0.492
|
Random Effects
|
σ2
|
0.30
|
τ00 idnum
|
1.57
|
ICC
|
0.84
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.236 / 0.878
|
tab_model(cond_model5_dacc_ca)
|
dACC
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-1.41
|
-3.29 – 0.46
|
0.140
|
cond
|
-0.04
|
-0.44 – 0.36
|
0.836
|
N_Bifact_4SC_z
|
-0.48
|
-0.97 – 0.01
|
0.057
|
N_Bifact_G_z
|
1.13
|
0.17 – 2.08
|
0.020
|
N_Bifact_2AH_z
|
0.11
|
-0.27 – 0.48
|
0.572
|
age_years
|
0.02
|
-0.04 – 0.09
|
0.460
|
Gender
|
-0.50
|
-1.29 – 0.29
|
0.211
|
cond * N_Bifact_4SC_z
|
-0.03
|
-0.34 – 0.27
|
0.832
|
cond * N_Bifact_G_z
|
0.36
|
-0.25 – 0.97
|
0.250
|
cond * N_Bifact_2AH_z
|
0.05
|
-0.19 – 0.29
|
0.684
|
Random Effects
|
σ2
|
0.33
|
τ00 idnum
|
1.40
|
ICC
|
0.81
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.186 / 0.846
|
tab_model(cond_model5_sgacc_ca)
|
sgACC
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-2.52
|
-4.28 – -0.77
|
0.005
|
cond
|
-0.06
|
-0.52 – 0.40
|
0.790
|
N_Bifact_4SC_z
|
-0.39
|
-0.85 – 0.06
|
0.092
|
N_Bifact_G_z
|
0.55
|
-0.34 – 1.44
|
0.223
|
N_Bifact_2AH_z
|
0.05
|
-0.30 – 0.40
|
0.781
|
age_years
|
0.04
|
-0.02 – 0.10
|
0.182
|
Gender
|
-0.39
|
-1.12 – 0.35
|
0.306
|
cond * N_Bifact_4SC_z
|
-0.12
|
-0.47 – 0.23
|
0.515
|
cond * N_Bifact_G_z
|
0.61
|
-0.09 – 1.32
|
0.090
|
cond * N_Bifact_2AH_z
|
-0.18
|
-0.46 – 0.09
|
0.192
|
Random Effects
|
σ2
|
0.43
|
τ00 idnum
|
1.15
|
ICC
|
0.73
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.149 / 0.767
|
tab_model(cond_model5_lai_ca)
|
L_dAI
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
0.28
|
-1.55 – 2.10
|
0.767
|
cond
|
-0.18
|
-0.55 – 0.19
|
0.334
|
N_Bifact_4SC_z
|
-0.31
|
-0.79 – 0.17
|
0.203
|
N_Bifact_G_z
|
1.13
|
0.20 – 2.05
|
0.017
|
N_Bifact_2AH_z
|
0.07
|
-0.29 – 0.44
|
0.691
|
age_years
|
-0.01
|
-0.07 – 0.05
|
0.774
|
Gender
|
-0.00
|
-0.77 – 0.77
|
0.994
|
cond * N_Bifact_4SC_z
|
0.01
|
-0.27 – 0.29
|
0.958
|
cond * N_Bifact_G_z
|
0.16
|
-0.40 – 0.73
|
0.575
|
cond * N_Bifact_2AH_z
|
-0.13
|
-0.36 – 0.09
|
0.239
|
Random Effects
|
σ2
|
0.28
|
τ00 idnum
|
1.34
|
ICC
|
0.83
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.129 / 0.850
|
tab_model(cond_model5_rai_ca)
|
R_dAI
|
Predictors
|
Estimates
|
CI
|
p
|
(Intercept)
|
-0.04
|
-1.56 – 1.47
|
0.955
|
cond
|
-0.23
|
-0.63 – 0.17
|
0.264
|
N_Bifact_4SC_z
|
-0.26
|
-0.65 – 0.14
|
0.207
|
N_Bifact_G_z
|
0.61
|
-0.16 – 1.37
|
0.122
|
N_Bifact_2AH_z
|
0.03
|
-0.28 – 0.33
|
0.858
|
age_years
|
0.01
|
-0.04 – 0.06
|
0.706
|
Gender
|
0.08
|
-0.56 – 0.72
|
0.805
|
cond * N_Bifact_4SC_z
|
0.06
|
-0.24 – 0.37
|
0.680
|
cond * N_Bifact_G_z
|
0.32
|
-0.29 – 0.93
|
0.308
|
cond * N_Bifact_2AH_z
|
0.01
|
-0.23 – 0.25
|
0.947
|
Random Effects
|
σ2
|
0.32
|
τ00 idnum
|
0.85
|
ICC
|
0.72
|
N idnum
|
44
|
Observations
|
88
|
Marginal R2 / Conditional R2
|
0.069 / 0.744
|
FDR Correction:
sum_model4_lamy_ca <- summary(cond_model4_lamy_ca)
model4_lamy_ca_ps <- sum_model4_lamy_ca$coefficients[c(3:5,8),5]
sum_model4_ramy_ca <- summary(cond_model4_ramy_ca)
model4_ramy_ca_ps <- sum_model4_ramy_ca$coefficients[c(3:5,8),5]
sum_model4_precu_ca <- summary(cond_model4_precu_ca)
model4_precu_ca_ps <- sum_model4_precu_ca$coefficients[c(3:5,8),5]
sum_model4_dacc_ca <- summary(cond_model4_dacc_ca)
model4_dacc_ca_ps <- sum_model4_dacc_ca$coefficients[c(3:5,8),5]
sum_model4_sgacc_ca <- summary(cond_model4_sgacc_ca)
model4_sgacc_ca_ps <- sum_model4_sgacc_ca$coefficients[c(3:5,8),5]
sum_model4_lai_ca <- summary(cond_model4_lai_ca)
model4_lai_ca_ps <- sum_model4_lai_ca$coefficients[c(3:5,8),5]
sum_model4_rai_ca <- summary(cond_model4_rai_ca)
model4_rai_ca_ps <- sum_model4_rai_ca$coefficients[c(3:5,8),5]
model4_ca_allps <- c(model4_lamy_ca_ps,model4_ramy_ca_ps,model4_precu_ca_ps, model4_dacc_ca_ps, model4_sgacc_ca_ps,model4_lai_ca_ps,model4_rai_ca_ps)
model4_ca_allps_fdr <- p.adjust(model4_ca_allps, method = "fdr")
#Show first the significant uncorrected ps (ignore the labels here, or at least none of them are SC or cond:SC)
old_sig <- which(model4_ca_allps < 0.05)
model4_ca_allps[old_sig]
## cond:N_Bifact_4SC_z N_Bifact_G_z N_Bifact_G_z
## 0.006947227 0.025823994 0.022378223
#Show corrected values -- there are none
new_sig <- which(model4_ca_allps_fdr < 0.05)
model4_ca_allps[new_sig]
## named numeric(0)