Relatório Final

Introdução

Salários sempre foram uma das partes principais de se conquistar um emprego e qualificações adicionais para manter os diferenciais nos currículos de cada um, mas há questões que podem ou não influenciar na quantidade de remuneração que um indivíduo recebe por seus serviços prestados. Com isso em mente, foi gerada uma base de dados com pesquisas, informações em sites de anúncios de empregos e algumas outras fontes disponibilizadas ao público geral, que gerou 6.704 dados coletados dentro de 6 variáveis analisadas: idade, gênero, nível educacional, profissão, anos de experiência e salário.

Com essas informações, poderemos realizar um trabalho com o intuito de analisar como essas variáveis influenciam os salários dos indivíduos que responderam às pesquisas e na maneira como ou se isso impacta o mundo em geral.

Objetivo

Neste trabalho, o objetivo geral é analisar os dados dos valores de salários, que é uma das variáveis, junto a uma relação com as outras 5 variáveis.

Já de uma perspectiva específica, esse relatório analisará se e como algumas variáveis tem influência sobre os salários, ou seja, se a idade, os anos de experiência, o nível educacional, o gênero e a profissão influenciam ou não os valores de salário dos funcionários.

Mais precisamente, temos o objetivo central de responder as seguintes perguntas de pesquisa:

.Se o gênero dos funcionários implica nos ganhos de salário;

.Se o nível educacional do funcionário influencia no salário;

.Se a profissão do funcionário influencia no salário;

.Se quem possui mais anos de experiência ganha mas;

.Se a idade dos funcionários tem influência no salário.

Analisaremos também como esses resultados são impactantes para o meio social, se há influência de fatores externos nas hipóteses, suas possíveis causas e conclusões sobre essas análises.

Metodologia

Foi utilizada nesse relatório a base de dados coletada do site “kaggle” dos colaboradores: “Mohith Sai Ram Reddy, JG Sukumar e Nikhileswar Sambangi”, denominada “Salary_data.csv”.

Para a importação e continuidade de algumas funções do relatório, também foi acrescido o carregamento dos pacotes necessários.

A atualização dos dados é feita anualmente, o que garante uma base com informações atualizadas e precisas.

Essa base de dados, bem como suas variáveis e informações, se encontra na lingua inglesa, então houveram algumas alterações no idioma e nos títulos das análises para melhor entendimento do trabalho.

Também houve uma alteração na variável “Gênero”, onde foi inserido um filtro para retirar os dados do gênero que constava como “Outros” para a realização de uma das hipóteses.

Seguindo as alterações, foi utilizado um filtro para retirada de “dados faltantes” (os famosos NA), assim foi possível realizar todos os tipos de tabelas, gráficos e hipóteses.

Por último, nossa base de dados que antes inicializou como “Salario” foi transformada e finalizada como “Salario3”.

Realizamos outras limpezas de dados para obter resultados de forma mais específica e exata, como a alteração no nível educacional “Phd”, onde antes constava como “phd”, alteramos para “Phd”. Também foi feita uma tabela para “Profissões” para determinar mais precisamente quantos funcionários existem em cada profissão, para evitar dados onde há apenas 1 funcionário em alguma profissão, transformando o relatório em um documento com análises mais precisas e informativas.

Segue abaixo a base de dados escolhida e os pacotes necessários:

library(dplyr)
library(kableExtra)
library(flextable)
library(ggplot2)
library(corrplot)
library(nortest)
library(mgcv)
library(DT)

Salario <- read.csv("C:/Users/eduar/Downloads/Salary_Data.csv")

kable(Salario, row.names = FALSE)%>%
  kable_styling( full_width = T,bootstrap_options = c("striped", "hover", "condensed", "responsive"), 
                 position = "center", fixed_thead = T) %>%
  scroll_box(width = "900px", height = "600px")
Age Gender Education.Level Job.Title Years.of.Experience Salary
32 Male Bachelor’s Software Engineer 5.0 90000
28 Female Master’s Data Analyst 3.0 65000
45 Male PhD Senior Manager 15.0 150000
36 Female Bachelor’s Sales Associate 7.0 60000
52 Male Master’s Director 20.0 200000
29 Male Bachelor’s Marketing Analyst 2.0 55000
42 Female Master’s Product Manager 12.0 120000
31 Male Bachelor’s Sales Manager 4.0 80000
26 Female Bachelor’s Marketing Coordinator 1.0 45000
38 Male PhD Senior Scientist 10.0 110000
29 Male Master’s Software Developer 3.0 75000
48 Female Bachelor’s HR Manager 18.0 140000
35 Male Bachelor’s Financial Analyst 6.0 65000
40 Female Master’s Project Manager 14.0 130000
27 Male Bachelor’s Customer Service Rep 2.0 40000
44 Male Bachelor’s Operations Manager 16.0 125000
33 Female Master’s Marketing Manager 7.0 90000
39 Male PhD Senior Engineer 12.0 115000
25 Female Bachelor’s Data Entry Clerk 0.0 35000
51 Male Bachelor’s Sales Director 22.0 180000
34 Female Master’s Business Analyst 5.0 80000
47 Male Master’s VP of Operations 19.0 190000
30 Male Bachelor’s IT Support 2.0 50000
36 Female Bachelor’s Recruiter 9.0 60000
41 Male Master’s Financial Manager 13.0 140000
28 Female Bachelor’s Social Media Specialist 3.0 45000
37 Female Master’s Software Manager 11.0 110000
24 Male Bachelor’s Junior Developer 1.0 40000
43 Female PhD Senior Consultant 15.0 140000
33 Male Master’s Product Designer 6.0 90000
50 Male Bachelor’s CEO 25.0 250000
31 Female Bachelor’s Accountant 4.0 55000
29 Male Master’s Data Scientist 3.0 75000
39 Female Bachelor’s Marketing Specialist 10.0 65000
46 Male PhD Senior Manager 20.0 170000
27 Male Bachelor’s Technical Writer 2.0 45000
35 Female Bachelor’s HR Generalist 7.0 60000
42 Male Master’s Project Engineer 14.0 115000
26 Female Bachelor’s Customer Success Rep 1.0 40000
49 Male Bachelor’s Sales Executive 21.0 160000
34 Female Master’s UX Designer 5.0 80000
48 Male Master’s Operations Director 18.0 190000
30 Male Bachelor’s Network Engineer 3.0 60000
36 Female Bachelor’s Administrative Assistant 8.0 45000
41 Male Master’s Strategy Consultant 13.0 130000
28 Female Bachelor’s Copywriter 2.0 40000
32 Male Bachelor’s Account Manager 5.0 75000
45 Female Master’s Director of Marketing 16.0 180000
38 Male PhD Senior Scientist 11.0 120000
25 Male Bachelor’s Help Desk Analyst 0.0 35000
51 Female Bachelor’s Customer Service Manager 22.0 130000
33 Male Master’s Business Intelligence Analyst 7.0 85000
40 Female Bachelor’s Event Coordinator 12.0 60000
47 Male Master’s VP of Finance 19.0 200000
29 Female Bachelor’s Graphic Designer 3.0 50000
36 Male Bachelor’s Sales Manager 9.0 95000
27 Female Master’s UX Researcher 2.0 65000
43 Male PhD Senior Engineer 17.0 140000
30 Female Bachelor’s Social Media Manager 4.0 55000
35 Male Master’s Product Manager 7.0 105000
51 Female Master’s Director of Operations 23.0 170000
29 Male Bachelor’s Marketing Analyst 3.0 50000
40 Female Bachelor’s HR Manager 12.0 80000
47 Male PhD Senior Data Scientist 21.0 180000
26 Male Bachelor’s Junior Accountant 1.0 35000
38 Female Master’s Digital Marketing Manager 10.0 90000
46 Male Bachelor’s IT Manager 19.0 120000
31 Female Bachelor’s Customer Service Representative 5.0 45000
34 Male Master’s Business Development Manager 8.0 90000
49 Female Master’s Senior Financial Analyst 18.0 150000
33 Male Bachelor’s Web Developer 6.0 65000
39 Female Bachelor’s Recruiter 11.0 70000
45 Male PhD Research Director 16.0 190000
28 Male Bachelor’s Technical Support Specialist 2.0 40000
42 Female Master’s Creative Director 14.0 120000
37 Male Bachelor’s Project Manager 10.0 95000
50 Female Bachelor’s Operations Manager 22.0 160000
32 Male Master’s Senior Software Engineer 6.0 100000
48 Female Master’s Human Resources Director 20.0 180000
30 Female Bachelor’s Content Marketing Manager 3.0 55000
36 Male Bachelor’s Technical Recruiter 8.0 70000
41 Female Master’s Data Analyst 13.0 80000
25 Male Bachelor’s Sales Representative 0.0 30000
52 Male PhD Chief Technology Officer 24.0 250000
29 Female Bachelor’s Junior Designer 2.0 40000
34 Female Master’s Financial Advisor 10.0 95000
27 Male Bachelor’s Junior Account Manager 2.0 45000
40 Female Bachelor’s HR Generalist 15.0 80000
46 Male Master’s Senior Project Manager 21.0 135000
31 Female Bachelor’s Marketing Coordinator 6.0 55000
36 Male PhD Principal Scientist 11.0 120000
29 Female Bachelor’s Sales Associate 3.0 40000
43 Male Bachelor’s Supply Chain Manager 18.0 105000
52 Female Master’s Senior Marketing Manager 25.0 170000
33 Male Bachelor’s Business Analyst 7.0 75000
39 Female Bachelor’s Training Specialist 12.0 65000
47 Male PhD Research Scientist 22.0 160000
26 Male Bachelor’s Junior Software Developer 1.0 35000
38 Female Master’s Public Relations Manager 10.0 90000
45 Male Bachelor’s Operations Analyst 20.0 110000
31 Female Bachelor’s Event Coordinator 5.0 45000
35 Male Master’s Product Marketing Manager 8.0 95000
49 Female Master’s Senior HR Manager 19.0 150000
33 Male Bachelor’s Junior Web Developer 5.0 50000
39 Female Master’s Senior Project Coordinator 13.0 80000
44 Male PhD Chief Data Officer 16.0 220000
30 Female Bachelor’s Digital Content Producer 3.0 50000
36 Male Bachelor’s IT Support Specialist 7.0 60000
41 Female Master’s Senior Marketing Analyst 14.0 100000
28 Male Bachelor’s Customer Success Manager 2.0 40000
42 Female Master’s Senior Graphic Designer 15.0 110000
37 Male Bachelor’s Software Project Manager 9.0 95000
50 Female Bachelor’s Supply Chain Analyst 22.0 130000
32 Male Master’s Senior Business Analyst 6.0 90000
23 Female Bachelor’s Junior Marketing Analyst 0.5 35000
31 Male Master’s Senior Financial Analyst 6.0 95000
40 Female Bachelor’s Office Manager 15.0 65000
48 Male PhD Principal Engineer 20.0 170000
29 Female Bachelor’s Junior HR Generalist 3.0 45000
35 Male Master’s Senior Product Manager 10.0 120000
42 Female Bachelor’s Sales Manager 17.0 100000
53 Male Master’s Director of Marketing 25.0 180000
33 Female Bachelor’s Junior Operations Analyst 5.0 50000
38 Male Bachelor’s Customer Service Manager 11.0 80000
44 Female PhD Senior Scientist 16.0 140000
26 Male Bachelor’s Junior Accountant 2.0 40000
37 Female Master’s Senior HR Generalist 9.0 95000
45 Male Bachelor’s Sales Operations Manager 18.0 110000
32 Female Bachelor’s Marketing Coordinator 4.0 50000
34 Male Master’s Senior Software Developer 8.0 105000
50 Female Master’s Director of Operations 21.0 160000
29 Male Bachelor’s Junior Web Designer 3.0 45000
40 Female Master’s Senior Training Specialist 12.0 100000
47 Male PhD Senior Research Scientist 22.0 160000
27 Male Bachelor’s Junior Sales Representative 1.0 35000
39 Female Bachelor’s Administrative Assistant 10.0 55000
46 Male Master’s Senior Project Manager 19.0 140000
30 Female Bachelor’s Junior Marketing Manager 4.0 50000
36 Male Bachelor’s Junior Data Analyst 7.0 60000
43 Female Master’s Senior Product Marketing Manager 14.0 120000
28 Male Bachelor’s Junior Business Analyst 2.0 40000
41 Female Master’s Senior Marketing Manager 13.0 110000
33 Male Bachelor’s Junior Software Developer 5.0 50000
47 Male Bachelor’s Senior Sales Manager 20.0 135000
25 Female Master’s Junior Marketing Specialist 1.5 40000
34 Male Bachelor’s Senior Business Analyst 8.0 90000
42 Female PhD Senior Data Scientist 16.0 150000
31 Male Bachelor’s Junior Project Manager 4.0 60000
38 Female Bachelor’s Senior Accountant 10.0 80000
45 Male Master’s Director of Sales 19.0 175000
29 Female Bachelor’s Junior Recruiter 3.0 45000
36 Male Master’s Senior Business Development Manager 11.0 120000
43 Female PhD Senior Product Designer 18.0 140000
26 Male Bachelor’s Junior Customer Support Specialist 2.0 35000
37 Female Master’s Senior Marketing Analyst 9.0 95000
44 Male Bachelor’s Senior IT Support Specialist 14.0 110000
32 Female Bachelor’s Junior Financial Analyst 5.0 50000
33 Male Master’s Senior Operations Manager 7.0 115000
51 Female PhD Director of Human Resources 23.0 185000
28 Male Bachelor’s Junior Software Engineer 2.0 40000
39 Female Bachelor’s Senior Sales Representative 12.0 90000
48 Male Master’s Director of Product Management 21.0 175000
30 Female Bachelor’s Junior Copywriter 3.0 45000
35 Male Bachelor’s Senior Marketing Coordinator 7.0 80000
41 Female Master’s Senior Human Resources Manager 13.0 120000
27 Male Bachelor’s Junior Business Development Associate 1.5 35000
40 Female Bachelor’s Senior Account Manager 14.0 110000
46 Male PhD Senior Researcher 18.0 150000
31 Female Bachelor’s Junior HR Coordinator 4.0 50000
34 Male Master’s Senior Software Engineer 9.0 105000
50 Female Master’s Director of Finance 20.0 180000
29 Male Bachelor’s Junior Marketing Coordinator 2.0 40000
NA NA NA
43 Male Bachelor’s Senior Project Manager 16.0 140000
26 Female Master’s Junior Data Scientist 1.5 45000
35 Male Bachelor’s Senior Operations Analyst 7.0 85000
42 Female PhD Senior Marketing Manager 18.0 140000
31 Male Bachelor’s Junior Accountant 4.0 50000
38 Female Bachelor’s Senior Human Resources Coordinator 10.0 80000
46 Male Master’s Director of Operations 20.0 170000
29 Female Bachelor’s Junior Sales Representative 2.0 40000
37 Male Master’s Senior Business Analyst 9.0 105000
44 Female PhD Senior UX Designer 15.0 145000
27 Male Bachelor’s Junior Product Manager 2.0 40000
36 Female Bachelor’s Senior Marketing Specialist 8.0 85000
43 Male Bachelor’s Senior IT Project Manager 14.0 130000
33 Female Master’s Senior Financial Analyst 6.0 95000
34 Male Bachelor’s Senior Quality Assurance Analyst 9.0 100000
50 Female PhD Director of Sales and Marketing 22.0 180000
28 Male Bachelor’s Junior Operations Analyst 1.5 35000
39 Female Bachelor’s Senior Account Executive 12.0 95000
47 Male Master’s Director of Business Development 19.0 170000
30 Female Bachelor’s Junior Social Media Manager 3.0 45000
34 Male Bachelor’s Senior Product Manager 7.0 95000
40 Female Master’s Senior Human Resources Specialist 13.0 120000
28 Male Bachelor’s Junior Business Analyst 2.0 40000
41 Female Bachelor’s Senior Marketing Coordinator 11.0 90000
45 Male PhD Senior Data Analyst 17.0 155000
32 Female Bachelor’s Junior Account Manager 5.0 55000
35 Male Master’s Senior Software Developer 9.0 110000
49 Female Master’s Director of Human Capital 21.0 180000
30 Male Bachelor’s Junior Advertising Coordinator 3.0 45000
44 Male Bachelor’s Senior Sales Manager 16.0 130000
27 Female Master’s Junior UX Designer 1.5 45000
36 Male Bachelor’s Senior Accountant 7.0 90000
41 Female PhD Senior Marketing Director 17.0 160000
31 Male Bachelor’s Junior HR Generalist 4.0 50000
39 Female Bachelor’s Senior Operations Manager 10.0 120000
47 Male Master’s Director of Finance 20.0 170000
30 Female Bachelor’s Junior Marketing Coordinator 2.0 40000
38 Male Master’s Senior IT Consultant 9.0 110000
45 Female PhD Senior Product Designer 15.0 150000
28 Male Bachelor’s Junior Business Development Associate 2.0 40000
35 Female Bachelor’s Senior Marketing Analyst 8.0 85000
44 Male Bachelor’s Senior Software Engineer 14.0 130000
34 Female Master’s Senior Financial Advisor 6.0 100000
35 Male Bachelor’s Senior Project Coordinator 9.0 95000
50 Female PhD Director of Operations 22.0 180000
29 Male Bachelor’s Junior Business Operations Analyst 1.5 35000
40 Female Bachelor’s Senior Sales Representative 12.0 100000
48 Male Master’s Director of Marketing 19.0 170000
31 Female Bachelor’s Junior Social Media Specialist 3.0 45000
33 Male Bachelor’s Senior Product Development Manager 7.0 100000
42 Female Master’s Senior Human Resources Manager 13.0 140000
28 Male Bachelor’s Junior Financial Analyst 2.0 40000
40 Female Bachelor’s Senior Marketing Manager 11.0 105000
46 Male PhD Senior Data Scientist 18.0 160000
33 Female Bachelor’s Junior Operations Manager 5.0 70000
37 Male Master’s Senior Software Architect 9.0 120000
51 Female Master’s Director of Human Resources 21.0 190000
30 Male Bachelor’s Junior Marketing Specialist 3.0 45000
43 Male Bachelor’s Senior Project Manager 15.0 120000
27 Female Master’s Junior Research Scientist 1.5 50000
35 Male Bachelor’s Senior Operations Analyst 8.0 85000
42 Female PhD Senior Marketing Manager 13.0 140000
32 Male Bachelor’s Junior Sales Representative 3.0 45000
37 Female Bachelor’s Senior Financial Analyst 9.0 100000
45 Male Master’s Senior Software Developer 16.0 140000
33 Female Bachelor’s Junior Operations Analyst 5.0 70000
39 Male Bachelor’s Senior Marketing Specialist 10.0 120000
44 Female PhD Senior HR Manager 18.0 160000
29 Male Bachelor’s Junior Business Analyst 1.5 40000
38 Female Bachelor’s Senior Product Manager 10.0 120000
46 Male PhD Senior Data Analyst 19.0 150000
34 Female Bachelor’s Junior Marketing Analyst 6.0 70000
36 Male Bachelor’s Senior Operations Manager 8.0 95000
49 Female Master’s Director of Marketing 21.0 180000
31 Male Bachelor’s Junior Financial Analyst 3.0 50000
41 Female Bachelor’s Senior Project Coordinator 11.0 95000
47 Male Master’s Director of Operations 20.0 170000
30 Female Bachelor’s Junior Marketing Coordinator 2.0 40000
38 Male Master’s Senior IT Consultant 9.0 110000
45 Female PhD Senior Product Designer 15.0 150000
28 Male Bachelor’s Junior Business Development Associate 2.0 40000
35 Female Bachelor’s Senior Marketing Analyst 8.0 85000
44 Male Bachelor’s Senior Software Engineer 14.0 130000
34 Female Master’s Senior Financial Advisor 6.0 100000
35 Male Bachelor’s Senior Project Coordinator 9.0 95000
50 Female PhD Director of Operations 22.0 180000
29 Male Bachelor’s Junior Business Operations Analyst 1.5 350
NA NA NA
37 Female Bachelor’s Senior Financial Manager 10.0 120000
46 Male PhD Senior Data Scientist 18.0 160000
31 Female Bachelor’s Junior Marketing Coordinator 3.0 50000
42 Male Bachelor’s Senior Operations Manager 12.0 110000
29 Female Bachelor’s Junior Sales Representative 1.5 40000
36 Male Bachelor’s Senior Marketing Specialist 8.0 95000
44 Female Master’s Senior HR Specialist 15.0 140000
33 Male Bachelor’s Junior Operations Manager 4.0 60000
39 Female Bachelor’s Senior Marketing Coordinator 9.0 110000
45 Male PhD Senior Data Engineer 16.0 150000
32 Female Bachelor’s Junior Marketing Manager 4.0 60000
37 Male Bachelor’s Senior Financial Analyst 8.0 90000
47 Female Master’s Director of Marketing 20.0 180000
30 Male Bachelor’s Junior Business Analyst 2.0 40000
38 Female Bachelor’s Senior Project Manager 9.0 120000
46 Male PhD Senior Data Analyst 17.0 160000
34 Female Bachelor’s Junior Financial Analyst 5.0 70000
36 Male Bachelor’s Senior Product Manager 8.0 95000
49 Female Master’s Director of Operations 21.0 180000
31 Male Bachelor’s Junior Operations Analyst 3.0 50000
41 Female Bachelor’s Senior Project Coordinator 11.0 95000
47 Male Master’s Director of Marketing 19.0 170000
29 Female Bachelor’s Junior Business Development Associate 1.5 35000
35 Male Bachelor’s Senior Financial Manager 9.0 100000
44 Female PhD Senior Product Designer 15.0 150000
33 Male Bachelor’s Junior Business Analyst 4.0 60000
35 Female Bachelor’s Senior Marketing Analyst 8.0 85000
44 Male Bachelor’s Senior Software Engineer 13.0 130000
32 Male Bachelor’s Junior Product Manager 4.0 65000
38 Female Bachelor’s Senior Business Analyst 10.0 110000
49 Male PhD Director of Operations 21.0 180000
29 Female Bachelor’s Junior Marketing Specialist 2.0 40000
35 Male Bachelor’s Senior Business Development Manager 7.0 90000
45 Female Master’s Senior HR Manager 14.0 140000
33 Male Bachelor’s Junior Financial Analyst 4.0 60000
40 Female Bachelor’s Senior Marketing Manager 12.0 130000
44 Male PhD Senior Data Scientist 16.0 160000
30 Female Bachelor’s Junior Operations Coordinator 2.0 40000
37 Male Bachelor’s Senior Marketing Analyst 9.0 100000
48 Female Master’s Director of HR 20.0 180000
31 Male Bachelor’s Junior Project Manager 3.0 55000
38 Female Bachelor’s Senior Operations Coordinator 9.0 120000
45 Male PhD Senior Data Engineer 16.0 150000
33 Female Bachelor’s Junior Marketing Manager 5.0 70000
36 Male Bachelor’s Senior Business Analyst 8.0 95000
49 Female Master’s Director of Marketing 21.0 180000
31 Male Bachelor’s Junior Operations Analyst 3.0 50000
42 Female Bachelor’s Senior Project Manager 12.0 120000
47 Male Master’s Director of Marketing 19.0 170000
29 Female Bachelor’s Junior Business Development Associate 1.5 35000
35 Male Bachelor’s Senior Financial Manager 9.0 100000
44 Female PhD Senior Product Designer 15.0 150000
33 Male Bachelor’s Junior Business Analyst 4.0 60000
35 Female Bachelor’s Senior Marketing Analyst 8.0 85000
44 Male Bachelor’s Senior Software Engineer 13.0 130000
34 Female Master’s Senior Financial Advisor 6.0 80000
36 Male Bachelor’s Senior Marketing Specialist 8.0 95000
30 Female Bachelor’s Junior HR Coordinator 2.0 40000
37 Male Bachelor’s Senior Business Development Manager 10.0 120000
45 Female Master’s Senior Marketing Manager 16.0 160000
32 Male Bachelor’s Junior Financial Advisor 4.0 65000
39 Female Bachelor’s Senior Project Manager 12.0 130000
47 Male PhD Director of Engineering 20.0 180000
29 Female Bachelor’s Junior Marketing Analyst 2.0 40000
36 Male Bachelor’s Senior Operations Manager 9.0 100000
43 Female PhD Senior Data Scientist 15.0 150000
32 Male Bachelor’s Junior Marketing Coordinator 3.0 55000
38 Female Bachelor’s Senior Business Analyst 10.0 110000
48 Male Master’s Director of Marketing 21.0 180000
31 Female Bachelor’s Junior Business Development Associate 3.0 50000
40 Male Bachelor’s Senior Financial Analyst 12.0 130000
45 Female PhD Senior UX Designer 16.0 160000
33 Male Bachelor’s Junior Product Manager 4.0 60000
36 Female Bachelor’s Senior Marketing Manager 8.0 95000
47 Male Master’s Director of Operations 19.0 170000
29 Female Bachelor’s Junior Project Manager 2.0 40000
34 Male Bachelor’s Senior Operations Coordinator 7.0 90000
44 Female PhD Senior Business Analyst 15.0 150000
33 Male Bachelor’s Junior Marketing Specialist 5.0 70000
35 Female Bachelor’s Senior Financial Manager 8.0 90000
43 Male Master’s Director of Marketing 18.0 170000
31 Female Bachelor’s Junior Financial Analyst 3.0 50000
41 Male Bachelor’s Senior Product Manager 14.0 150000
44 Female PhD Senior Data Engineer 16.0 160000
33 Male Bachelor’s Junior Business Analyst 4.0 60000
35 Female Bachelor’s Senior Marketing Analyst 8.0 85000
45 Male Master’s Director of Engineering 19.0 180000
28 Female Bachelor’s Junior Operations Manager 1.0 35000
36 Male Bachelor’s Senior Business Development Manager 8.0 110000
44 Female PhD Senior Data Scientist 16.0 160000
31 Male Bachelor’s Junior Marketing Coordinator 3.0 55000
38 Female Bachelor’s Senior Business Analyst 10.0 110000
48 Male Master’s Director of Marketing 21.0 180000
31 Female Bachelor’s Junior Business Development Associate 3.0 50000
40 Male Bachelor’s Senior Financial Analyst 12.0 130000
45 Female PhD Senior UX Designer 16.0 160000
33 Male Bachelor’s Junior Product Manager 4.0 60000
36 Female Bachelor’s Senior Marketing Manager 8.0 95000
47 Male Master’s Director of Operations 19.0 170000
29 Female Bachelor’s Junior Project Manager 2.0 40000
34 Male Bachelor’s Senior Operations Coordinator 7.0 90000
44 Female PhD Senior Business Analyst 15.0 150000
33 Male Bachelor’s Junior Marketing Specialist 5.0 70000
35 Female Bachelor’s Senior Financial Manager 8.0 90000
43 Male Master’s Director of Marketing 18.0 170000
31 Female Bachelor’s Junior Financial Analyst 3.0 50000
41 Male Bachelor’s Senior Product Manager 14.0 150000
44 Female PhD Senior Data Engineer 16.0 160000
33 Male Bachelor’s Junior Business Analyst 4.0 60000
35 Female Bachelor’s Senior Marketing Analyst 8.0 85000
43 Male Master’s Director of Operations 19.0 170000
29 Female Bachelor’s Junior Project Manager 2.0 40000
34 Male Bachelor’s Senior Operations Coordinator 7.0 90000
44 Female PhD Senior Business Analyst 15.0 150000
31 Male Master’s Data Scientist 6.0 160000
28 Female Bachelor’s Software Engineer 3.0 125000
26 Male Master’s Product Manager 2.0 120000
27 Female Bachelor’s Data Analyst 2.0 110000
30 Male PhD Data Scientist 5.0 180000
29 Female Bachelor’s Software Engineer 4.0 140000
32 Male Bachelor’s Product Manager 7.0 170000
25 Female Master’s Data Analyst 1.0 100000
33 Male PhD Data Scientist 8.0 190000
31 Female Bachelor’s Software Engineer 6.0 155000
28 Male Master’s Product Manager 3.0 130000
30 Female Bachelor’s Data Analyst 5.0 145000
27 Male PhD Data Scientist 2.0 115000
29 Female Bachelor’s Software Engineer 4.0 140000
34 Male Bachelor’s Product Manager 9.0 185000
25 Female Master’s Data Analyst 1.0 100000
33 Male PhD Data Scientist 8.0 190000
31 Female Bachelor’s Software Engineer 6.0 155000
28 Male Master’s Product Manager 3.0 130000
30 Female Bachelor’s Data Analyst 5.0 145000
28 Male Bachelor’s Software Engineer 3.0 125000
26 Female Master’s Product Manager 2.0 120000
27 Male Bachelor’s Data Analyst 2.0 110000
30 Female PhD Data Scientist 5.0 180000
29 Male Bachelor’s Software Engineer 4.0 140000
32 Male Bachelor’s Product Manager 7.0 170000
25 Female Master’s Data Analyst 1.0 100000
33 Male PhD Data Scientist 8.0 190000
31 Female Bachelor’s Software Engineer 6.0 155000
28 Male Master’s Product Manager 3.0 130000
30 Female Bachelor’s Data Analyst 5.0 145000
27 Male PhD Data Scientist 2.0 115000
29 Female Bachelor’s Software Engineer 4.0 140000
34 Male Bachelor’s Product Manager 9.0 185000
25 Female Master’s Data Analyst 1.0 100000
33 Male PhD Data Scientist 8.0 190000
31 Female Bachelor’s Software Engineer 6.0 155000
28 Male Master’s Product Manager 3.0 130000
30 Female Bachelor’s Data Analyst 5.0 145000
28 Male Bachelor’s Software Engineer 3.0 125000
26 Female Master’s Product Manager 2.0 120000
27 Male Bachelor’s Data Analyst 2.0 110000
30 Female PhD Data Scientist 5.0 180000
29 Male Bachelor’s Software Engineer 4.0 140000
32 Male Bachelor’s Product Manager 7.0 170000
25 Female Master’s Data Analyst 1.0 100000
33 Male PhD Data Scientist 8.0 190000
31 Female Bachelor’s Software Engineer 6.0 155000
28 Male Master’s Product Manager 3.0 130000
30 Female Bachelor’s Data Analyst 5.0 145000
27 Male PhD Data Scientist 2.0 115000
29 Female Bachelor’s Software Engineer 4.0 140000
34 Male Bachelor’s Product Manager 9.0 185000
25 Female Master’s Data Analyst 1.0 100000
33 Male PhD Data Scientist 8.0 190000
31 Female Bachelor’s Software Engineer 6.0 155000
28 Male Master’s Product Manager 3.0 130000
30 Female Bachelor’s Data Analyst 5.0 145000
28 Male Bachelor’s Software Engineer 3.0 125000
26 Female Master’s Product Manager 2.0 120000
27 Male Bachelor’s Data Analyst 2.0 110000
30 Female PhD Data Scientist 5.0 180000
29 Male Bachelor’s Software Engineer 4.0 140000
32 Male Bachelor’s Product Manager 7.0 170000
25 Female Master’s Data Analyst 1.0 100000
33 Male PhD Data Scientist 8.0 190000
31 Female Bachelor’s Software Engineer 6.0 155000
28 Male Master’s Product Manager 3.0 130000
30 Female Bachelor’s Data Analyst 5.0 145000
27 Male PhD Data Scientist 2.0 115000
29 Female Bachelor’s Software Engineer 4.0 140000
34 Male Bachelor’s Product Manager 9.0 185000
25 Female Master’s Data Analyst 1.0 100000
33 Male PhD Data Scientist 8.0 190000
31 Female Bachelor’s Software Engineer 6.0 155000
28 Male Master’s Product Manager 3.0 130000
30 Female Bachelor’s Data Analyst 5.0 145000
27 Male PhD Data Scientist 2.0 115000
29 Female Bachelor’s Software Engineer 4.0 140000
34 Male Bachelor’s Product Manager 9.0 185000
25 Female Master’s Data Analyst 1.0 100000
33 Male PhD Data Scientist 8.0 190000
31 Female Bachelor’s Software Engineer 6.0 155000
28 Male Master’s Product Manager 3.0 130000
30 Female Bachelor’s Data Analyst 5.0 145000
28 Male Bachelor’s Software Engineer 3.0 125000
26 Female Master’s Product Manager 2.0 120000
27 Male Bachelor’s Data Analyst 2.0 110000
30 Female PhD Data Scientist 5.0 180000
29 Male Bachelor’s Software Engineer 4.0 140000
32 Male Bachelor’s Product Manager 7.0 170000
25 Female Master’s Data Analyst 1.0 100000
33 Male PhD Data Scientist 8.0 190000
31 Female Bachelor’s Software Engineer 6.0 155000
28 Male Master’s Product Manager 3.0 130000
30 Female Bachelor’s Data Analyst 5.0 145000
27 Male PhD Data Scientist 2.0 115000
29 Female Bachelor’s Software Engineer 4.0 140000
34 Male Bachelor’s Product Manager 9.0 185000
25 Female Master’s Data Analyst 1.0 100000
33 Male PhD Data Scientist 8.0 190000
31 Female Bachelor’s Software Engineer 6.0 155000
28 Male Master’s Product Manager 3.0 130000
30 Female Bachelor’s Data Analyst 5.0 145000
27 Male PhD Data Scientist 2.0 115000
29 Female Bachelor’s Software Engineer 4.0 140000
34 Male Bachelor’s Product Manager 9.0 185000
25 Female Master’s Data Analyst 1.0 100000
33 Male PhD Data Scientist 8.0 190000
31 Female Bachelor’s Software Engineer 6.0 155000
28 Male Master’s Product Manager 3.0 130000
30 Female Bachelor’s Data Analyst 5.0 145000
27 Male PhD Data Scientist 2.0 115000
29 Female Bachelor’s Software Engineer 4.0 140000
34 Male Bachelor’s Product Manager 9.0 185000
25 Female Master’s Data Analyst 1.0 100000
33 Male PhD Data Scientist 8.0 190000
31 Female Bachelor’s Software Engineer 6.0 155000
28 Male Master’s Product Manager 3.0 130000
30 Female Bachelor’s Data Analyst 5.0 145000
27 Male PhD Data Scientist 2.0 115000
29 Female Bachelor’s Software Engineer 4.0 140000
34 Male Bachelor’s Product Manager 9.0 185000
25 Female Master’s Data Analyst 1.0 100000
33 Male PhD Data Scientist 8.0 190000
31 Female Bachelor’s Software Engineer 6.0 155000
28 Male Master’s Product Manager 3.0 130000
30 Female Bachelor’s Data Analyst 5.0 145000
27 Male PhD Data Scientist 2.0 115000
29 Female Bachelor’s Software Engineer 4.0 140000
34 Male Bachelor’s Product Manager 9.0 185000
26 Male Bachelor’s Data Analyst 3.0 130000
29 Female Master’s Data Scientist 6.0 180000
32 Male Bachelor’s Software Engineer 8.0 190000
27 Female Bachelor’s Product Manager 4.0 150000
24 Male Bachelor’s Data Analyst 1.0 90000
31 Female Master’s Data Scientist 9.0 195000
28 Male Bachelor’s Software Engineer 5.0 160000
33 Female Master’s Product Manager 11.0 198000
25 Male Bachelor’s Data Analyst 2.0 110000
30 Female PhD Data Scientist 7.0 185000
27 Male Bachelor’s Software Engineer 4.0 140000
34 Female Master’s Product Manager 12.0 196000
23 Male Bachelor’s Data Analyst 1.0 95000
32 Female PhD Data Scientist 10.0 193000
29 Male Bachelor’s Software Engineer 6.0 175000
30 Female Bachelor’s Product Manager 5.0 160000
26 Male Bachelor’s Data Analyst 3.0 130000
31 Female Master’s Data Scientist 6.0 180000
28 Male Bachelor’s Software Engineer 5.0 160000
33 Female Master’s Product Manager 11.0 198000
24 Male Bachelor’s Data Analyst 1.0 90000
30 Female PhD Data Scientist 7.0 185000
27 Male Bachelor’s Software Engineer 4.0 140000
34 Female Master’s Product Manager 12.0 196000
25 Male Bachelor’s Data Analyst 2.0 110000
29 Female Master’s Data Scientist 6.0 180000
32 Male Bachelor’s Software Engineer 8.0 190000
27 Female Bachelor’s Product Manager 4.0 150000
31 Male Bachelor’s Data Analyst 9.0 195000
28 Female Bachelor’s Software Engineer 5.0 160000
33 Male Master’s Product Manager 11.0 198000
26 Female Bachelor’s Data Analyst 3.0 130000
30 Male PhD Data Scientist 7.0 185000
27 Female Bachelor’s Software Engineer 4.0 140000
34 Male Master’s Product Manager 12.0 196000
25 Female Bachelor’s Data Analyst 2.0 110000
32 Male Bachelor’s Software Engineer 8.0 190000
29 Female Master’s Data Scientist 6.0 180000
30 Male Bachelor’s Data Analyst 5.0 160000
33 Female Master’s Product Manager 11.0 198000
24 Male Bachelor’s Data Analyst 1.0 90000
31 Female PhD Data Scientist 9.0 195000
28 Male Bachelor’s Software Engineer 5.0 160000
27 Female Bachelor’s Product Manager 4.0 150000
26 Male Bachelor’s Data Analyst 3.0 130000
29 Female Master’s Data Scientist 6.0 180000
32 Male Bachelor’s Software Engineer 8.0 190000
33 Female Master’s Product Manager 11.0 198000
25 Male Bachelor’s Data Analyst 2.0 110000
30 Female PhD Data Scientist 7.0 185000
27 Male Bachelor’s Software Engineer 4.0 140000
34 Female Master’s Product Manager 12.0 196000
31 Male Bachelor’s Data Analyst 9.0 195000
28 Female Bachelor’s Software Engineer 5.0 160000
26 Male Bachelor’s Data Analyst 3.0 130000
29 Female Master’s Data Scientist 6.0 180000
32 Male Bachelor’s Software Engineer 8.0 190000
33 Female Master’s Product Manager 11.0 198000
24 Male Bachelor’s Data Analyst 1.0 90000
27 Male Bachelor’s Software Engineer 4.0 140000
25 Female Bachelor’s Data Analyst 2.0 110000
30 Female PhD Data Scientist 7.0 185000
31 Male Bachelor’s Data Analyst 9.0 195000
28 Female Bachelor’s Software Engineer 5.0 160000
26 Male Bachelor’s Data Analyst 3.0 130000
29 Female Master’s Data Scientist 6.0 180000
32 Male Bachelor’s Software Engineer 8.0 190000
33 Female Master’s Product Manager 11.0 198000
24 Male Bachelor’s Data Analyst 1.0 90000
27 Male Bachelor’s Software Engineer 4.0 140000
25 Female Bachelor’s Data Analyst 2.0 110000
30 Female PhD Data Scientist 7.0 185000
31 Male Bachelor’s Data Analyst 9.0 195000
28 Female Bachelor’s Software Engineer 5.0 160000
26 Male Bachelor’s Data Analyst 3.0 130000
29 Female Master’s Data Scientist 6.0 180000
32 Male Bachelor’s Software Engineer 8.0 190000
33 Female Master’s Product Manager 11.0 198000
24 Male Bachelor’s Data Analyst 1.0 90000
27 Male Bachelor’s Software Engineer 4.0 140000
25 Female Bachelor’s Data Analyst 2.0 110000
30 Female PhD Data Scientist 7.0 185000
31 Male Bachelor’s Data Analyst 9.0 195000
28 Female Bachelor’s Software Engineer 5.0 160000
26 Male Bachelor’s Data Analyst 3.0 130000
29 Female Master’s Data Scientist 6.0 180000
32 Male Bachelor’s Software Engineer 8.0 190000
33 Female Master’s Product Manager 11.0 198000
24 Male Bachelor’s Data Analyst 1.0 90000
27 Male Bachelor’s Software Engineer 4.0 140000
25 Male Bachelor’s Data Analyst 2.0 125000
28 Female Master’s Data Scientist 6.0 175000
30 Male Bachelor’s Software Engineer 8.0 190000
27 Female Bachelor’s Product Manager 4.0 150000
24 Male Bachelor’s Data Analyst 1.0 95000
31 Male Master’s Data Scientist 9.0 195000
28 Male Bachelor’s Software Engineer 5.0 160000
33 Female Master’s Product Manager 11.0 198000
26 Male Bachelor’s Data Analyst 3.0 130000
30 Female PhD Data Scientist 7.0 185000
27 Male Bachelor’s Software Engineer 4.0 140000
34 Female Master’s Product Manager 12.0 196000
23 Male Bachelor’s Data Analyst 1.0 90000
32 Female PhD Data Scientist 10.0 193000
29 Male Bachelor’s Software Engineer 6.0 170000
30 Female Bachelor’s Product Manager 5.0 160000
26 Male Bachelor’s Data Analyst 3.0 135000
31 Female Master’s Data Scientist 6.0 180000
28 Male Bachelor’s Software Engineer 5.0 160000
33 Female Master’s Product Manager 11.0 198000
24 Male Bachelor’s Data Analyst 1.0 90000
30 Female PhD Data Scientist 7.0 185000
27 Male Bachelor’s Software Engineer 4.0 140000
34 Female Master’s Product Manager 12.0 196000
25 Male Bachelor’s Data Analyst 2.0 115000
29 Female Master’s Data Scientist 6.0 180000
32 Male Bachelor’s Software Engineer 8.0 190000
27 Female Bachelor’s Product Manager 4.0 150000
31 Male Bachelor’s Data Analyst 9.0 195000
28 Female Bachelor’s Software Engineer 5.0 160000
33 Male Master’s Product Manager 11.0 198000
26 Female Bachelor’s Data Analyst 3.0 130000
30 Male PhD Data Scientist 7.0 185000
27 Female Bachelor’s Software Engineer 4.0 140000
34 Male Master’s Product Manager 12.0 196000
25 Female Bachelor’s Data Analyst 2.0 110000
32 Male Bachelor’s Software Engineer 8.0 190000
29 Female Master’s Data Scientist 6.0 180000
30 Male Bachelor’s Data Analyst 5.0 160000
33 Female Master’s Product Manager 11.0 198000
24 Male Bachelor’s Data Analyst 1.0 90000
31 Female PhD Data Scientist 9.0 195000
28 Male Bachelor’s Software Engineer 5.0 160000
27 Female Bachelor’s Product Manager 4.0 150000
26 Male Bachelor’s Data Analyst 3.0 130000
29 Female Master’s Data Scientist 6.0 180000
32 Male Bachelor’s Software Engineer 8.0 190000
33 Female Master’s Product Manager 11.0 198000
25 Male Bachelor’s Data Analyst 2.0 110000
30 Female PhD Data Scientist 7.0 185000
27 Male Bachelor’s Software Engineer 4.0 140000
34 Female Master’s Product Manager 12.0 196000
31 Male Bachelor’s Data Analyst 9.0 195000
28 Female Bachelor’s Software Engineer 5.0 160000
26 Male Bachelor’s Data Analyst 3.0 130000
29 Female Master’s Data Scientist 6.0 180000
32 Male Bachelor’s Software Engineer 8.0 190000
33 Female Master’s Product Manager 11.0 198000
24 Male Bachelor’s Data Analyst 1.0 90000
27 Male Bachelor’s Software Engineer 4.0 140000
25 Female Bachelor’s Data Analyst 2.0 110000
30 Female PhD Data Scientist 7.0 185000
31 Male Bachelor’s Data Analyst 9.0 195000
28 Female Bachelor’s Software Engineer 5.0 160000
26 Male Bachelor’s Data Analyst 3.0 130000
29 Female Master’s Data Scientist 6.0 180000
32 Male Bachelor’s Software Engineer 8.0 190000
33 Female Master’s Product Manager 11.0 198000
24 Male Bachelor’s Data Analyst 1.0 90000
27 Male Bachelor’s Software Engineer 4.0 140000
25 Female Bachelor’s Data Analyst 2.0 110000
30 Female PhD Data Scientist 7.0 185000
31 Male Bachelor’s Data Analyst 9.0 195000
28 Female Bachelor’s Software Engineer 5.0 160000
26 Male Bachelor’s Data Analyst 3.0 130000
29 Female Master’s Data Scientist 6.0 180000
32 Male Bachelor’s Software Engineer 8.0 190000
33 Female Master’s Product Manager 11.0 198000
24 Male Bachelor’s Data Analyst 1.0 90000
27 Male Bachelor’s Software Engineer 4.0 140000
23 Male Bachelor’s Data Analyst 1.0 90000
27 Female Master’s Data Scientist 4.0 150000
32 Male Bachelor’s Software Engineer 8.0 190000
24 Female Bachelor’s Product Manager 3.0 125000
25 Male Bachelor’s Data Analyst 2.0 110000
31 Male Master’s Data Scientist 7.0 180000
28 Male Bachelor’s Software Engineer 5.0 160000
33 Female Master’s Product Manager 10.0 195000
26 Male Bachelor’s Data Analyst 3.0 130000
30 Female PhD Data Scientist 6.0 170000
27 Male Bachelor’s Software Engineer 4.0 140000
34 Female Master’s Product Manager 11.0 196000
23 Male Bachelor’s Data Analyst 1.0 92000
32 Female PhD Data Scientist 9.0 195000
29 Male Bachelor’s Software Engineer 6.0 170000
30 Female Bachelor’s Product Manager 5.0 160000
26 Male Bachelor’s Data Analyst 3.0 135000
31 Female Master’s Data Scientist 6.0 180000
28 Male Bachelor’s Software Engineer 5.0 165000
33 Female Master’s Product Manager 11.0 198000
24 Male Bachelor’s Data Analyst 1.0 95000
30 Female PhD Data Scientist 7.0 185000
27 Male Bachelor’s Software Engineer 4.0 140000
34 Female Master’s Product Manager 12.0 196000
25 Male Bachelor’s Data Analyst 2.0 115000
29 Female Master’s Data Scientist 6.0 180000
32 Male Bachelor’s Software Engineer 8.0 190000
27 Female Bachelor’s Product Manager 4.0 150000
31 Male Bachelor’s Data Analyst 9.0 195000
28 Female Bachelor’s Software Engineer 5.0 160000
33 Male Master’s Product Manager 11.0 198000
26 Female Bachelor’s Data Analyst 3.0 130000
30 Male PhD Data Scientist 7.0 185000
27 Female Bachelor’s Software Engineer 4.0 140000
34 Male Master’s Product Manager 12.0 196000
25 Female Bachelor’s Data Analyst 2.0 110000
32 Male Bachelor’s Software Engineer 8.0 190000
29 Female Master’s Data Scientist 6.0 180000
30 Male Bachelor’s Data Analyst 5.0 160000
33 Female Master’s Product Manager 11.0 198000
24 Male Bachelor’s Data Analyst 1.0 90000
31 Female PhD Data Scientist 9.0 195000
28 Male Bachelor’s Software Engineer 5.0 160000
27 Female Bachelor’s Product Manager 4.0 150000
26 Male Bachelor’s Data Analyst 3.0 130000
29 Female Master’s Data Scientist 6.0 180000
32 Male Bachelor’s Software Engineer 8.0 190000
33 Female Master’s Product Manager 11.0 198000
25 Male Bachelor’s Data Analyst 2.0 110000
30 Female PhD Data Scientist 7.0 185000
27 Male Bachelor’s Software Engineer 4.0 140000
34 Female Master’s Product Manager 12.0 196000
31 Male Bachelor’s Data Analyst 9.0 195000
28 Female Bachelor’s Software Engineer 5.0 160000
26 Male Bachelor’s Data Analyst 3.0 130000
29 Female Master’s Data Scientist 6.0 180000
32 Male Bachelor’s Software Engineer 8.0 190000
33 Female Master’s Product Manager 11.0 198000
24 Male Bachelor’s Data Analyst 1.0 90000
27 Male Bachelor’s Software Engineer 4.0 140000
25 Female Bachelor’s Data Analyst 2.0 110000
30 Female PhD Data Scientist 7.0 185000
31 Male Bachelor’s Data Analyst 9.0 195000
28 Female Bachelor’s Software Engineer 5.0 160000
26 Male Bachelor’s Data Analyst 3.0 130000
29 Female Master’s Data Scientist 6.0 180000
32 Male Bachelor’s Software Engineer 8.0 190000
33 Female Master’s Product Manager 11.0 198000
24 Male Bachelor’s Data Analyst 1.0 90000
27 Male Bachelor’s Software Engineer 4.0 140000
25 Female Bachelor’s Data Analyst 2.0 110000
30 Female PhD Data Scientist 7.0 185000
31 Male Bachelor’s Data Analyst 9.0 195000
28 Female Bachelor’s Software Engineer 5.0 160000
26 Male Bachelor’s Data Analyst 3.0 130000
29 Female Master’s Data Scientist 6.0 180000
32 Male Bachelor’s Software Engineer 8.0 190000
33 Female Master’s Product Manager 11.0 198000
24 Male Bachelor’s Data Analyst 1.0 90000
27 Male Bachelor’s Software Engineer 4.0 140000
25 Female Bachelor’s Data Analyst 2.0 110000
30 Female PhD Data Scientist 7.0 185000
31 Male Bachelor’s Data Analyst 9.0 195000
28 Female Bachelor’s Software Engineer 5.0 160000
26 Male Bachelor’s Data Analyst 3.0 130000
29 Female Master’s Data Scientist 6.0 180000
32 Male Bachelor’s Software Engineer 8.0 190000
33 Female Master’s Product Manager 11.0 198000
24 Male Bachelor’s Data Analyst 1.0 90000
27 Male Bachelor’s Software Engineer 4.0 140000
25 Female Bachelor’s Data Analyst 2.0 110000
30 Female PhD Data Scientist 7.0 185000
31 Male Bachelor’s Data Analyst 9.0 195000
28 Female Bachelor’s Software Engineer 5.0 160000
26 Male Bachelor’s Data Analyst 3.0 130000
29 Female Master’s Data Scientist 6.0 180000
32 Male Bachelor’s Software Engineer 8.0 190000
33 Female Master’s Product Manager 11.0 198000
24 Male Bachelor’s Data Analyst 1.0 90000
27 Male Bachelor’s Software Engineer 4.0 140000
25 Female Bachelor’s Data Analyst 2.0 110000
30 Female PhD Data Scientist 7.0 185000
31 Male Bachelor’s Data Analyst 9.0 195000
28 Female Bachelor’s Software Engineer 5.0 160000
26 Male Bachelor’s Data Analyst 3.0 130000
29 Female Master’s Data Scientist 6.0 180000
32 Male Bachelor’s Software Engineer 8.0 190000
33 Female Master’s Product Manager 11.0 198000
24 Male Bachelor’s Data Analyst 1.0 90000
27 Male Bachelor’s Software Engineer 4.0 140000
25 Female Bachelor’s Data Analyst 2.0 110000
30 Female PhD Data Scientist 7.0 185000
31 Male Bachelor’s Data Analyst 9.0 195000
28 Female Bachelor’s Software Engineer 5.0 160000
26 Male Bachelor’s Data Analyst 3.0 130000
29 Female Master’s Data Scientist 6.0 180000
32 Male Bachelor’s Software Engineer 8.0 190000
33 Female Master’s Product Manager 11.0 198000
24 Male Bachelor’s Data Analyst 1.0 90000
27 Male Bachelor’s Software Engineer 4.0 140000
25 Female Bachelor’s Data Analyst 2.0 110000
30 Female PhD Data Scientist 7.0 185000
31 Male Bachelor’s Data Analyst 9.0 195000
28 Female Bachelor’s Software Engineer 5.0 160000
26 Male Bachelor’s Data Analyst 3.0 130000
29 Female Master’s Data Scientist 6.0 180000
32 Male Bachelor’s Software Engineer 8.0 190000
33 Female Master’s Product Manager 11.0 198000
24 Male Bachelor’s Data Analyst 1.0 90000
27 Male Bachelor’s Software Engineer 4.0 140000
25 Female Bachelor’s Data Analyst 2.0 110000
30 Female PhD Data Scientist 7.0 185000
31 Male Bachelor’s Data Analyst 9.0 195000
28 Female Bachelor’s Software Engineer 5.0 160000
25 Male Bachelor’s Data Analyst 3.0 135000
32 Male Bachelor’s Software Engineer 8.0 190000
29 Female Master’s Data Scientist 6.0 180000
30 Male Bachelor’s Data Analyst 5.0 160000
24 Male Bachelor’s Data Analyst 1.0 95000
33 Female Master’s Product Manager 11.0 196000
27 Male Bachelor’s Software Engineer 4.0 140000
26 Male Bachelor’s Data Analyst 3.0 130000
30 Female PhD Data Scientist 7.0 185000
31 Male Bachelor’s Data Analyst 9.0 195000
28 Female Bachelor’s Software Engineer 5.0 160000
26 Female Bachelor’s Data Analyst 3.0 130000
30 Male PhD Data Scientist 7.0 185000
27 Female Bachelor’s Product Manager 4.0 150000
24 Male Bachelor’s Data Analyst 1.0 90000
33 Male Master’s Product Manager 11.0 198000
25 Male Bachelor’s Data Analyst 2.0 115000
28 Male Bachelor’s Software Engineer 5.0 165000
26 Male Bachelor’s Data Analyst 3.0 130000
29 Female Master’s Data Scientist 6.0 180000
32 Male Bachelor’s Software Engineer 8.0 190000
33 Female Master’s Product Manager 11.0 198000
27 Male Bachelor’s Software Engineer 4.0 140000
31 Female Master’s Data Scientist 6.0 180000
30 Male Bachelor’s Data Analyst 5.0 160000
24 Male Bachelor’s Data Analyst 1.0 92000
28 Female Bachelor’s Software Engineer 5.0 160000
26 Male Bachelor’s Data Analyst 3.0 130000
32 Male Bachelor’s Software Engineer 8.0 190000
33 Female Master’s Product Manager 11.0 198000
25 Male Bachelor’s Data Analyst 2.0 110000
30 Female PhD Data Scientist 7.0 185000
27 Male Bachelor’s Software Engineer 4.0 140000
34 Female Master’s Product Manager 12.0 196000
31 Male Bachelor’s Data Analyst 9.0 195000
28 Female Bachelor’s Software Engineer 5.0 160000
26 Male Bachelor’s Data Analyst 3.0 130000
29 Female Master’s Data Scientist 6.0 180000
32 Male Bachelor’s Software Engineer 8.0 190000
33 Female Master’s Product Manager 11.0 198000
24 Male Bachelor’s Data Analyst 1.0 90000
27 Male Bachelor’s Software Engineer 4.0 140000
25 Female Bachelor’s Data Analyst 2.0 110000
30 Female PhD Data Scientist 7.0 185000
31 Male Bachelor’s Data Analyst 9.0 195000
28 Female Bachelor’s Software Engineer 5.0 160000
26 Male Bachelor’s Data Analyst 3.0 130000
29 Female Master’s Data Scientist 6.0 180000
32 Male Bachelor’s Software Engineer 8.0 190000
33 Female Master’s Product Manager 11.0 198000
24 Male Bachelor’s Data Analyst 1.0 90000
27 Male Bachelor’s Software Engineer 4.0 140000
25 Female Bachelor’s Data Analyst 2.0 110000
30 Female PhD Data Scientist 7.0 185000
31 Male Bachelor’s Data Analyst 9.0 195000
28 Female Bachelor’s Software Engineer 5.0 160000
26 Male Bachelor’s Data Analyst 3.0 130000
29 Female Master’s Data Scientist 6.0 180000
32 Male Bachelor’s Software Engineer 8.0 190000
33 Female Master’s Product Manager 11.0 198000
24 Male Bachelor’s Data Analyst 1.0 90000
27 Male Bachelor’s Software Engineer 4.0 140000
25 Female Bachelor’s Data Analyst 2.0 110000
30 Female PhD Data Scientist 7.0 185000
31 Male Bachelor’s Data Analyst 9.0 195000
28 Female Bachelor’s Software Engineer 5.0 160000
26 Male Bachelor’s Data Analyst 3.0 130000
29 Female Master’s Data Scientist 6.0 180000
32 Male Bachelor’s Software Engineer 8.0 190000
33 Female Master’s Product Manager 11.0 198000
24 Male Bachelor’s Data Analyst 1.0 90000
27 Male Bachelor’s Software Engineer 4.0 140000
25 Female Bachelor’s Data Analyst 2.0 110000
30 Female PhD Data Scientist 7.0 185000
31 Male Bachelor’s Data Analyst 9.0 195000
28 Female Bachelor’s Software Engineer 5.0 160000
26 Male Bachelor’s Data Analyst 3.0 130000
29 Female Master’s Data Scientist 6.0 180000
32 Male Bachelor’s Software Engineer 8.0 190000
33 Female Master’s Product Manager 11.0 198000
24 Male Bachelor’s Data Analyst 1.0 90000
27 Male Bachelor’s Software Engineer 4.0 140000
25 Female Bachelor’s Data Analyst 2.0 110000
30 Female PhD Data Scientist 7.0 185000
31 Male Bachelor’s Data Analyst 9.0 195000
28 Female Bachelor’s Software Engineer 5.0 160000
26 Male Bachelor’s Data Analyst 3.0 130000
29 Female Master’s Data Scientist 6.0 180000
32 Male Bachelor’s Software Engineer 8.0 190000
33 Female Master’s Product Manager 11.0 198000
24 Male Bachelor’s Data Analyst 1.0 90000
27 Male Bachelor’s Software Engineer 4.0 140000
25 Female Bachelor’s Data Analyst 2.0 110000
30 Female PhD Data Scientist 7.0 185000
31 Male Bachelor’s Data Analyst 9.0 195000
28 Female Bachelor’s Software Engineer 5.0 160000
26 Male Bachelor’s Data Analyst 3.0 130000
29 Female Master’s Data Scientist 6.0 180000
32 Male Bachelor’s Software Engineer 8.0 190000
33 Female Master’s Product Manager 11.0 198000
24 Male Bachelor’s Data Analyst 1.0 90000
27 Male Bachelor’s Software Engineer 4.0 140000
25 Female Bachelor’s Data Analyst 2.0 110000
30 Female PhD Data Scientist 7.0 185000
31 Male Bachelor’s Data Analyst 9.0 195000
28 Female Bachelor’s Software Engineer 5.0 160000
26 Male Bachelor’s Data Analyst 3.0 130000
29 Female Master’s Data Scientist 6.0 180000
32 Male Bachelor’s Software Engineer 8.0 190000
33 Female Master’s Product Manager 11.0 198000
24 Male Bachelor’s Data Analyst 1.0 90000
27 Male Bachelor’s Software Engineer 4.0 140000
25 Female Bachelor’s Data Analyst 2.0 110000
30 Female PhD Data Scientist 7.0 185000
31 Male Bachelor’s Data Analyst 9.0 195000
28 Female Bachelor’s Software Engineer 5.0 160000
26 Male Bachelor’s Data Analyst 3.0 130000
29 Female Master’s Data Scientist 6.0 180000
32 Male Bachelor’s Software Engineer 8.0 190000
33 Female Master’s Product Manager 11.0 198000
24 Male Bachelor’s Data Analyst 1.0 90000
27 Male Bachelor’s Software Engineer 4.0 140000
25 Female Bachelor’s Data Analyst 2.0 110000
30 Female PhD Data Scientist 7.0 185000
31 Male Bachelor’s Data Analyst 9.0 195000
28 Female Bachelor’s Software Engineer 5.0 160000
26 Male Bachelor’s Data Analyst 3.0 130000
29 Female Master’s Data Scientist 6.0 180000
32 Male Bachelor’s Software Engineer 8.0 190000
33 Female Master’s Product Manager 11.0 198000
24 Male Bachelor’s Data Analyst 1.0 90000
27 Male Bachelor’s Software Engineer 4.0 140000
25 Female Bachelor’s Data Analyst 2.0 110000
30 Female PhD Data Scientist 7.0 185000
32 Male Bachelor’s Degree Data Analyst 5.0 135000
27 Female Master’s Degree Data Scientist 3.0 180000
40 Male Bachelor’s Degree Software Engineer 12.0 195000
35 Female Bachelor’s Degree Product Manager 8.0 165000
43 Male Master’s Degree Data Scientist 15.0 198000
29 Female Bachelor’s Degree Software Engineer 4.0 150000
36 Male Bachelor’s Degree Data Analyst 9.0 162000
31 Male Master’s Degree Data Scientist 6.0 175000
42 Female Bachelor’s Degree Software Engineer 13.0 197000
33 Male Bachelor’s Degree Data Analyst 7.0 142000
29 Female Master’s Degree Data Scientist 4.0 182000
41 Male Bachelor’s Degree Software Engineer 11.0 185000
35 Female Bachelor’s Degree Product Manager 8.0 170000
27 Male Bachelor’s Software Engineer 4.0 160000
32 Male Bachelor’s Data Scientist 8.0 180000
29 Female Master’s Data Analyst 6.0 150000
30 Male Bachelor’s Data Analyst 5.0 140000
24 Male Bachelor’s Data Analyst 2.0 100000
33 Female Master’s Product Manager 11.0 190000
27 Male Bachelor’s Software Engineer 4.0 160000
26 Male Bachelor’s Data Analyst 3.0 120000
30 Female PhD Data Scientist 7.0 170000
31 Male Bachelor’s Data Analyst 9.0 190000
28 Female Bachelor’s Software Engineer 5.0 150000
26 Female Bachelor’s Data Analyst 3.0 120000
30 Male PhD Data Scientist 7.0 170000
27 Female Bachelor’s Product Manager 4.0 130000
24 Male Bachelor’s Data Analyst 2.0 95000
33 Male Master’s Product Manager 11.0 195000
25 Male Bachelor’s Data Analyst 2.0 100000
28 Male Bachelor’s Software Engineer 5.0 150000
26 Male Bachelor’s Data Analyst 3.0 120000
29 Female Master’s Data Scientist 6.0 150000
32 Male Bachelor’s Data Scientist 8.0 180000
33 Female Master’s Product Manager 11.0 195000
27 Male Bachelor’s Software Engineer 4.0 160000
31 Female Master’s Data Scientist 6.0 170000
30 Male Bachelor’s Data Analyst 5.0 140000
24 Male Bachelor’s Data Analyst 2.0 95000
28 Female Bachelor’s Software Engineer 5.0 150000
26 Male Bachelor’s Data Analyst 3.0 120000
32 Male Bachelor’s Software Engineer 8.0 180000
33 Female Master’s Product Manager 11.0 195000
25 Male Bachelor’s Data Analyst 2.0 100000
30 Female PhD Data Scientist 7.0 170000
27 Male Bachelor’s Software Engineer 4.0 160000
34 Female Master’s Product Manager 12.0 190000
31 Male Bachelor’s Data Analyst 9.0 190000
28 Female Bachelor’s Software Engineer 5.0 150000
26 Male Bachelor’s Data Analyst 3.0 120000
29 Female Master’s Data Scientist 6.0 150000
32 Male Bachelor’s Software Engineer 8.0 180000
33 Female Master’s Product Manager 11.0 195000
24 Male Bachelor’s Data Analyst 2.0 95000
27 Male Bachelor’s Software Engineer 4.0 160000
25 Female Bachelor’s Data Analyst 2.0 100000
30 Female PhD Data Scientist 7.0 170000
31 Male Bachelor’s Data Analyst 9.0 190000
28 Female Bachelor’s Software Engineer 5.0 150000
26 Male Bachelor’s Data Analyst 3.0 120000
29 Female Master’s Data Scientist 6.0 150000
32 Male Bachelor’s Software Engineer 8.0 180000
33 Female Master’s Product Manager 11.0 195000
24 Male Bachelor’s Data Analyst 2.0 95000
27 Male Bachelor’s Software Engineer 4.0 160000
25 Female Bachelor’s Data Analyst 2.0 100000
30 Female PhD Data Scientist 7.0 170000
31 Male Bachelor’s Data Analyst 9.0 190000
28 Female Bachelor’s Software Engineer 5.0 150000
26 Male Bachelor’s Data Analyst 3.0 120000
29 Female Master’s Data Scientist 6.0 150000
32 Male Bachelor’s Software Engineer 8.0 180000
33 Female Master’s Product Manager 11.0 195000
24 Male Bachelor’s Data Analyst 2.0 95000
27 Male Bachelor’s Software Engineer 4.0 160000
25 Female Bachelor’s Data Analyst 2.0 100000
30 Female PhD Data Scientist 7.0 170000
31 Male Bachelor’s Data Analyst 9.0 190000
28 Female Bachelor’s Software Engineer 5.0 150000
26 Male Bachelor’s Data Analyst 3.0 120000
29 Female Master’s Data Scientist 6.0 150000
32 Male Bachelor’s Software Engineer 8.0 180000
33 Female Master’s Product Manager 11.0 195000
24 Male Bachelor’s Data Analyst 2.0 95000
27 Male Bachelor’s Software Engineer 4.0 160000
25 Female Bachelor’s Data Analyst 2.0 100000
30 Female PhD Data Scientist 7.0 170000
31 Male Bachelor’s Data Analyst 9.0 190000
28 Female Bachelor’s Software Engineer 5.0 150000
26 Male Bachelor’s Data Analyst 3.0 120000
29 Female Master’s Data Scientist 6.0 150000
32 Male Bachelor’s Software Engineer 8.0 180000
33 Female Master’s Product Manager 11.0 195000
24 Male Bachelor’s Data Analyst 2.0 95000
27 Male Bachelor’s Software Engineer 4.0 160000
25 Female Bachelor’s Data Analyst 2.0 100000
30 Female PhD Data Scientist 7.0 170000
31 Male Bachelor’s Data Analyst 9.0 190000
28 Female Bachelor’s Software Engineer 5.0 150000
26 Male Bachelor’s Data Analyst 3.0 120000
29 Female Master’s Data Scientist 6.0 150000
32 Male Bachelor’s Software Engineer 8.0 180000
33 Female Master’s Product Manager 11.0 195000
24 Male Bachelor’s Data Analyst 2.0 95000
27 Male Bachelor’s Software Engineer 4.0 160000
25 Female Bachelor’s Data Analyst 2.0 100000
30 Female PhD Data Scientist 7.0 170000
31 Male Bachelor’s Data Analyst 9.0 190000
28 Female Bachelor’s Software Engineer 5.0 150000
26 Male Bachelor’s Data Analyst 3.0 120000
29 Female Master’s Data Scientist 6.0 150000
32 Male Bachelor’s Software Engineer 8.0 180000
33 Female Master’s Product Manager 11.0 195000
24 Male Bachelor’s Data Analyst 2.0 95000
27 Male Bachelor’s Software Engineer 4.0 160000
25 Female Bachelor’s Data Analyst 2.0 100000
30 Female PhD Data Scientist 7.0 170000
31 Male Bachelor’s Data Analyst 9.0 190000
28 Female Bachelor’s Software Engineer 5.0 150000
26 Male Bachelor’s Data Analyst 3.0 120000
29 Female Master’s Data Scientist 6.0 150000
32 Male Bachelor’s Software Engineer 8.0 180000
33 Female Master’s Product Manager 11.0 195000
24 Male Bachelor’s Data Analyst 2.0 95000
27 Male Bachelor’s Software Engineer 4.0 160000
25 Female Bachelor’s Data Analyst 2.0 100000
30 Female PhD Data Scientist 7.0 170000
31 Male Bachelor’s Data Analyst 9.0 190000
28 Female Bachelor’s Software Engineer 5.0 150000
26 Male Bachelor’s Data Analyst 3.0 120000
29 Female Master’s Data Scientist 6.0 150000
32 Male Bachelor’s Software Engineer 8.0 180000
33 Female Master’s Product Manager 11.0 195000
24 Male Bachelor’s Data Analyst 2.0 95000
27 Male Bachelor’s Software Engineer 4.0 160000
25 Female Bachelor’s Data Analyst 2.0 100000
30 Female PhD Data Scientist 7.0 170000
31 Male Bachelor’s Data Analyst 9.0 190000
28 Female Bachelor’s Software Engineer 5.0 150000
26 Male Bachelor’s Data Analyst 3.0 120000
29 Female Master’s Data Scientist 6.0 150000
32 Male Bachelor’s Software Engineer 8.0 180000
33 Female Master’s Product Manager 11.0 195000
24 Male Bachelor’s Data Analyst 2.0 95000
27 Male Bachelor’s Software Engineer 4.0 160000
25 Female Bachelor’s Data Analyst 2.0 100000
30 Female PhD Data Scientist 7.0 170000
29 Male Bachelor’s Software Engineer 7.0 180000
27 Female Bachelor’s Data Analyst 5.0 120000
33 Male Master’s Data Scientist 10.0 195000
28 Male Bachelor’s Software Engineer 4.0 160000
26 Female Bachelor’s Data Analyst 3.0 100000
31 Male Bachelor’s Product Manager 8.0 190000
30 Male Master’s Software Engineer 6.0 170000
32 Female Bachelor’s Data Scientist 9.0 185000
29 Male Bachelor’s Data Analyst 7.0 130000
35 Female Bachelor’s Product Manager 12.0 190000
27 Male Bachelor’s Software Engineer 5.0 150000
28 Female Master’s Data Scientist 6.0 150000
37 Male PhD Product Manager 14.0 195000
26 Male Bachelor’s Data Analyst 3.0 110000
30 Female Bachelor’s Software Engineer 8.0 180000
31 Male Master’s Data Scientist 9.0 185000
29 Female Bachelor’s Data Analyst 7.0 130000
32 Male Bachelor’s Software Engineer 10.0 190000
28 Female Master’s Data Scientist 6.0 155000
34 Male Bachelor’s Software Engineer 12.0 195000
25 Female Bachelor’s Data Analyst 2.0 90000
30 Male Bachelor’s Product Manager 8.0 185000
29 Female Bachelor’s Data Analyst 6.0 120000
31 Male Bachelor’s Software Engineer 9.0 180000
26 Female Bachelor’s Data Analyst 3.0 100000
33 Male Master’s Data Scientist 10.0 195000
28 Male Bachelor’s Software Engineer 4.0 160000
27 Female Bachelor’s Data Analyst 5.0 125000
30 Male Master’s Software Engineer 6.0 170000
32 Female Bachelor’s Data Scientist 9.0 185000
29 Male Bachelor’s Data Analyst 7.0 130000
35 Female Bachelor’s Product Manager 12.0 190000
27 Male Bachelor’s Software Engineer 5.0 150000
28 Female Master’s Data Scientist 6.0 150000
37 Male PhD Product Manager 14.0 195000
26 Male Bachelor’s Data Analyst 3.0 110000
30 Female Bachelor’s Software Engineer 8.0 180000
31 Male Master’s Data Scientist 9.0 185000
29 Female Bachelor’s Data Analyst 7.0 130000
32 Male Bachelor’s Software Engineer 10.0 190000
28 Female Master’s Data Scientist 6.0 155000
34 Male Bachelor’s Software Engineer 12.0 195000
25 Female Bachelor’s Data Analyst 2.0 90000
30 Male Bachelor’s Product Manager 8.0 185000
29 Female Bachelor’s Data Analyst 6.0 120000
31 Male Bachelor’s Software Engineer 9.0 180000
26 Female Bachelor’s Data Analyst 3.0 100000
33 Male Master’s Data Scientist 10.0 195000
28 Male Bachelor’s Software Engineer 4.0 160000
27 Female Bachelor’s Data Analyst 5.0 125000
30 Male Master’s Software Engineer 6.0 170000
32 Female Bachelor’s Data Scientist 9.0 185000
29 Male Bachelor’s Data Analyst 7.0 130000
35 Female Bachelor’s Product Manager 12.0 190000
27 Male Bachelor’s Software Engineer 5.0 150000
28 Female Master’s Data Scientist 6.0 150000
37 Male PhD Product Manager 14.0 195000
26 Male Bachelor’s Data Analyst 3.0 110000
30 Female Bachelor’s Software Engineer 8.0 180000
31 Male Master’s Data Scientist 9.0 185000
29 Female Bachelor’s Data Analyst 7.0 130000
32 Male Bachelor’s Software Engineer 10.0 190000
28 Female Master’s Data Scientist 6.0 155000
34 Male Bachelor’s Software Engineer 12.0 195000
25 Female Bachelor’s Data Analyst 2.0 90000
30 Male Bachelor’s Product Manager 8.0 185000
29 Female Bachelor’s Data Analyst 6.0 120000
31 Male Bachelor’s Software Engineer 9.0 180000
26 Female Bachelor’s Data Analyst 3.0 100000
33 Male Master’s Data Scientist 10.0 195000
28 Male Bachelor’s Software Engineer 4.0 160000
27 Female Bachelor’s Data Analyst 5.0 125000
30 Male Master’s Software Engineer 6.0 170000
32 Female Bachelor’s Data Scientist 9.0 185000
29 Male Bachelor’s Data Analyst 7.0 130000
35 Female Bachelor’s Product Manager 12.0 190000
27 Male Bachelor’s Software Engineer 5.0 150000
28 Female Master’s Data Scientist 6.0 150000
37 Male PhD Product Manager 14.0 195000
26 Male Bachelor’s Data Analyst 3.0 110000
30 Female Bachelor’s Software Engineer 8.0 180000
31 Male Master’s Data Scientist 9.0 185000
29 Female Bachelor’s Data Analyst 7.0 130000
32 Male Bachelor’s Software Engineer 10.0 190000
28 Female Master’s Data Scientist 6.0 155000
34 Male Bachelor’s Software Engineer 12.0 195000
25 Female Bachelor’s Data Analyst 2.0 90000
30 Male Bachelor’s Product Manager 8.0 185000
29 Female Bachelor’s Data Analyst 6.0 120000
31 Male Bachelor’s Software Engineer 9.0 180000
26 Female Bachelor’s Data Analyst 3.0 100000
33 Male Master’s Data Scientist 10.0 195000
28 Male Bachelor’s Software Engineer 4.0 160000
27 Female Bachelor’s Data Analyst 5.0 125000
30 Male Master’s Software Engineer 6.0 170000
32 Female Bachelor’s Data Scientist 9.0 185000
29 Male Bachelor’s Data Analyst 7.0 130000
35 Female Bachelor’s Product Manager 12.0 190000
27 Male Bachelor’s Software Engineer 5.0 150000
28 Female Master’s Data Scientist 6.0 150000
37 Male PhD Product Manager 14.0 195000
26 Male Bachelor’s Data Analyst 3.0 110000
30 Female Bachelor’s Software Engineer 8.0 180000
31 Male Master’s Data Scientist 9.0 185000
29 Female Bachelor’s Data Analyst 7.0 130000
32 Male Bachelor’s Software Engineer 10.0 190000
28 Female Master’s Data Scientist 6.0 155000
34 Male Bachelor’s Software Engineer 12.0 195000
25 Female Bachelor’s Data Analyst 2.0 90000
30 Male Bachelor’s Product Manager 8.0 185000
28 Male Bachelor’s Degree Senior Software Engineer 7.0 175000
44 Male PhD Software Engineer Manager 18.0 190000
33 Female Master’s Degree Back end Developer 5.0 110000
50 Male PhD Senior Project Engineer 16.0 195000
27 Female Master’s Degree Full Stack Engineer 3.0 100000
25 Male Bachelor’s Degree Front end Developer 1.0 60000
35 Male Master’s Degree Senior Software Engineer 8.0 155000
47 Female PhD Full Stack Engineer 12.0 175000
46 Female Master’s Degree Senior Project Engineer 13.0 180000
32 Male Bachelor’s Degree Back end Developer 4.0 95000
61 Male PhD Software Engineer Manager 20.0 200000
41 Male Master’s Degree Senior Software Engineer 11.0 165000
37 Male Master’s Degree Senior Project Engineer 9.0 145000
53 Male PhD Software Engineer Manager 19.0 195000
30 Female Bachelor’s Degree Front end Developer 2.0 75000
26 Female Master’s Degree Back end Developer 3.0 90000
37 Female Master’s Degree Senior Software Engineer 9.0 155000
32 Male Bachelor’s Degree Full Stack Engineer 5.0 115000
44 Female Master’s Degree Senior Software Engineer 12.0 170000
50 Female PhD Software Engineer Manager 16.0 190000
27 Male Bachelor’s Degree Senior Project Engineer 4.0 115000
42 Male PhD Full Stack Engineer 14.0 180000
57 Male PhD Software Engineer Manager 18.0 195000
35 Male Master’s Degree Senior Software Engineer 7.0 140000
62 Male PhD Software Engineer Manager 19.0 200000
26 Female Master’s Degree Back end Developer 2.0 70000
42 Female Master’s Degree Senior Project Engineer 11.0 170000
41 Female PhD Software Engineer Manager 14.0 185000
36 Female Master’s Degree Full Stack Engineer 8.0 140000
49 Male PhD Software Engineer Manager 15.0 185000
49 Male PhD Senior Project Engineer 15.0 185000
47 Male PhD Software Engineer Manager 15.0 180000
47 Male PhD Senior Software Engineer 14.0 175000
26 Male Bachelor’s Degree Front end Developer 2.0 70000
24 Female Bachelor’s Degree Back end Developer 1.0 60000
62 Male PhD Software Engineer Manager 20.0 200000
42 Male PhD Senior Software Engineer 14.0 170000
41 Female Master’s Degree Senior Project Engineer 11.0 165000
23 Male Bachelor’s Degree Full Stack Engineer 1.0 55000
55 Male PhD Software Engineer Manager 17.0 190000
26 Female Master’s Degree Back end Developer 3.0 90000
33 Female Bachelor’s Degree Front end Developer 5.0 105000
31 Male Master’s Degree Full Stack Engineer 6.0 130000
50 Female PhD Software Engineer Manager 16.0 185000
24 Female Master’s Degree Back end Developer 1.0 60000
56 Male PhD Software Engineer Manager 17.0 195000
24 Male Bachelor’s Degree Front end Developer 1.0 60000
37 Male Master’s Degree Senior Software Engineer 8.0 150000
43 Female PhD Senior Project Engineer 13.0 180000
44 Female Master’s Degree Senior Software Engineer 12.0 170000
34 Male Master’s Degree Back end Developer 6.0 125000
45 Male PhD Software Engineer Manager 15.0 185000
29 Male Bachelor’s Degree Full Stack Engineer 3.0 90000
29 Male Bachelor’s Degree Front end Developer 3.0 80000
29 Female Bachelor’s Degree Back end Developer 3.0 85000
48 Male PhD Senior Project Engineer 16.0 190000
43 Female Master’s Degree Software Engineer Manager 11.0 160000
62 Male PhD Software Engineer Manager 19.0 200000
54 Male PhD Software Engineer Manager 17.0 195000
60 Male PhD Software Engineer Manager 18.0 195000
54 Female PhD Software Engineer Manager 14.0 190000
27 Female Master’s Degree Full Stack Engineer 3.0 95000
23 Male Bachelor’s Degree Back end Developer 1.0 55000
45 Male PhD Senior Software Engineer 13.0 185000
32 Female Master’s Degree Full Stack Engineer 5.0 120000
57 Male PhD Software Engineer Manager 16.0 195000
47 Male PhD Software Engineer Manager 14.0 175000
25 Female Master’s Degree Back end Developer 2.0 75000
58 Male PhD Software Engineer Manager 17.0 200000
41 Female Master’s Degree Senior Software Engineer 12.0 160000
41 Male PhD Software Engineer Manager 12.0 175000
26 Male Bachelor’s Degree Front end Developer 2.0 70000
47 Male PhD Senior Software Engineer 15.0 180000
24 Female Bachelor’s Degree Back end Developer 1.0 60000
48 Male PhD Senior Project Engineer 16.0 190000
32 Male Bachelor’s Degree Full Stack Engineer 5.0 120000
61 Male PhD Software Engineer Manager 20.0 200000
45 Male PhD Senior Project Engineer 14.0 185000
50 Female PhD Software Engineer Manager 16.0 190000
53 Male PhD Software Engineer Manager 18.0 195000
47 Female PhD Senior Software Engineer 14.0 170000
23 Male Bachelor’s Degree Front end Developer 1.0 55000
33 Male Master’s Degree Back end Developer 6.0 130000
42 Male PhD Software Engineer Manager 14.0 180000
45 Male PhD Senior Project Engineer 14.0 185000
23 Male Bachelor’s Degree Front end Developer 1.0 55000
37 Male Master’s Degree Senior Software Engineer 9.0 145000
44 Female Master’s Degree Senior Project Engineer 12.0 170000
54 Male PhD Software Engineer Manager 17.0 195000
38 Female Master’s Degree Back end Developer 10.0 155000
34 Male Master’s Degree Full Stack Engineer 6.0 125000
46 Female PhD Software Engineer Manager 14.0 180000
30 Male Bachelor’s Degree Back end Developer 4.0 95000
44 Female Master’s Degree Senior Software Engineer 11.0 170000
27 Female Master’s Degree Full Stack Engineer 3.0 100000
42 Male PhD Senior Project Engineer 14.0 175000
27 Male Bachelor’s Degree Front end Developer 3.0 80000
54 Male PhD Software Engineer Manager 18.0 195000
38 Male Master’s Degree Senior Software Engineer 10.0 155000
31 Male Master’s Degree Senior Project Engineer 6.0 125000
28 Female Master’s Degree Full Stack Engineer 4.0 110000
30 Female Master’s Degree Back end Developer 6.0 130000
54 Male PhD Software Engineer Manager 16.0 190000
62 Male PhD Software Engineer Manager 20.0 200000
62 Male PhD Software Engineer Manager 19.0 200000
37 Male Master’s Degree Senior Software Engineer 9.0 150000
31 Male Master’s Degree Senior Software Engineer 7.0 140000
58 Female PhD Software Engineer Manager 17.0 195000
56 Male PhD Software Engineer Manager 17.0 195000
23 Female Bachelor’s Degree Back end Developer 1.0 55000
49 Male PhD Software Engineer Manager 15.0 185000
32 Female Master’s Degree Full Stack Engineer 5.0 120000
52 Female PhD Software Engineer Manager 16.0 190000
32 Female Master’s Degree Full Stack Engineer 6.0 130000
50 Female PhD Software Engineer Manager 16.0 190000
32 Male Master’s Degree Back end Developer 6.0 130000
34 Male Master’s Degree Full Stack Engineer 7.0 140000
28 Male Bachelor’s Degree Front end Developer 2.0 70000
44 Male Master’s Degree Senior Project Engineer 11.0 170000
55 Male PhD Software Engineer Manager 17.0 190000
27 Male Bachelor’s Degree Front end Developer 3.0 80000
46 Male PhD Software Engineer Manager 14.0 180000
27 Female Master’s Degree Back end Developer 2.0 70000
45 Male PhD Senior Project Engineer 14.0 185000
23 Female Bachelor’s Degree Front end Developer 1.0 55000
36 Female Master’s Degree Full Stack Engineer 8.0 140000
47 Female PhD Senior Software Engineer 14.0 170000
33 Male Master’s Degree Back end Developer 6.0 130000
43 Male PhD Software Engineer Manager 13.0 180000
30 Male Bachelor’s Degree Back end Developer 4.0 95000
28 Female Bachelor’s Degree Front end Developer 2.0 70000
43 Male Master’s Degree Senior Project Engineer 12.0 165000
43 Male PhD Senior Project Engineer 13.0 185000
36 Male Master’s Degree Senior Software Engineer 7.0 140000
24 Male Bachelor’s Degree Front end Developer 1.0 60000
28 Female Bachelor’s Degree Front end Developer 3.0 80000
37 Male Master’s Degree Senior Software Engineer 9.0 150000
41 Female PhD Software Engineer Manager 14.0 185000
26 Male Bachelor’s Degree Front end Developer 2.0 70000
28 Female Master’s Degree Back end Developer 3.0 90000
43 Male PhD Senior Software Engineer 12.0 170000
42 Male PhD Senior Software Engineer 14.0 170000
48 Male PhD Senior Project Engineer 16.0 190000
27 Female Master’s Degree Back end Developer 2.0 70000
49 Male PhD Software Engineer Manager 15.0 185000
44 Male PhD Senior Project Engineer 12.0 170000
27 Female Master’s Degree Full Stack Engineer 3.0 100000
37 Male Master’s Degree Senior Software Engineer 10.0 155000
44 Female Master’s Degree Senior Project Engineer 12.0 170000
56 Male PhD Software Engineer Manager 18.0 195000
49 Male PhD Software Engineer Manager 15.0 185000
27 Male Bachelor’s Degree Front end Developer 2.0 70000
48 Male PhD Senior Project Engineer 16.0 190000
31 Male Master’s Degree Full Stack Engineer 7.0 140000
25 Male Bachelor’s Degree Front end Developer 1.0 60000
50 Male PhD Software Engineer Manager 16.0 190000
46 Male PhD Software Engineer Manager 14.0 180000
33 Male Master’s Degree Full Stack Engineer 6.0 130000
42 Male PhD Senior Software Engineer 14.0 170000
41 Male PhD Senior Project Engineer 12.0 165000
43 Male PhD Senior Project Engineer 13.0 185000
32 Male Master’s Degree Back end Developer 6.0 130000
24 Male Bachelor’s Degree Front end Developer 1.0 60000
44 Female Master’s Degree Senior Software Engineer 11.0 170000
36 Male Master’s Degree Senior Software Engineer 7.0 140000
28 Female Master’s Degree Full Stack Engineer 4.0 110000
28 Male Bachelor’s Degree Front end Developer 2.0 70000
37 Male Master’s Degree Senior Software Engineer 9.0 145000
54 Male PhD Software Engineer Manager 16.0 190000
58 Male PhD Software Engineer Manager 17.0 200000
27 Male Bachelor’s Degree Front end Developer 3.0 80000
30 Male Bachelor’s Degree Back end Developer 4.0 95000
27 Female Master’s Degree Full Stack Engineer 3.0 100000
54 Male PhD Software Engineer Manager 17.0 195000
49 Male PhD Software Engineer Manager 15.0 185000
38 Male Master’s Degree Senior Software Engineer 10.0 155000
54 Male PhD Software Engineer Manager 18.0 195000
31 Male Master’s Degree Senior Project Engineer 6.0 125000
56 Male PhD Software Engineer Manager 17.0 195000
31 Male Master’s Degree Senior Software Engineer 7.0 140000
42 Male PhD Senior Software Engineer 14.0 170000
44 Male Master’s Degree Senior Project Engineer 11.0 170000
37 Male Master’s Degree Senior Software Engineer 9.0 150000
24 Female Bachelor’s Degree Back end Developer 1.0 60000
27 Male Bachelor’s Degree Front end Developer 2.0 70000
42 Male PhD Senior Software Engineer 14.0 170000
24 Female Bachelor’s Degree Front end Developer 1.0 55000
28 Female Bachelor’s Degree Front end Developer 3.0 80000
43 Male PhD Senior Project Engineer 13.0 185000
31 Male Master’s Degree Full Stack Engineer 7.0 140000
43 Male PhD Software Engineer Manager 13.0 180000
27 Female Master’s Degree Back end Developer 2.0 70000
49 Male PhD Software Engineer Manager 15.0 185000
48 Male PhD Senior Project Engineer 16.0 190000
30 Female Master’s Degree Back end Developer 6.0 130000
28 Female Master’s Degree Full Stack Engineer 4.0 110000
46 Male PhD Software Engineer Manager 14.0 180000
37 Male Master’s Degree Senior Software Engineer 9.0 145000
42 Male PhD Senior Software Engineer 14.0 170000
43 Male PhD Senior Project Engineer 12.0 165000
31 Male Master’s Degree Senior Software Engineer 7.0 140000
56 Male PhD Software Engineer Manager 17.0 195000
37 Male Master’s Degree Senior Software Engineer 10.0 155000
54 Male PhD Software Engineer Manager 16.0 190000
58 Male PhD Software Engineer Manager 17.0 195000
33 Male Master’s Degree Back end Developer 6.0 130000
29 Female Bachelor’s Degree Front end Developer 3.0 85000
52 Male PhD Software Engineer Manager 18.0 200000
36 Male Master’s Degree Full Stack Engineer 8.0 140000
26 Male Bachelor’s Degree Back end Developer 2.0 65000
47 Male PhD Senior Project Engineer 16.0 190000
32 Male Master’s Degree Full Stack Engineer 6.0 120000
29 Male Bachelor’s Degree Front end Developer 3.0 80000
28 Female Master’s Degree Back end Developer 3.0 90000
54 Male PhD Software Engineer Manager 16.0 190000
57 Male PhD Software Engineer Manager 18.0 200000
51 Male PhD Software Engineer Manager 16.0 190000
28 Female Master’s Degree Full Stack Engineer 4.0 110000
46 Male PhD Software Engineer Manager 14.0 180000
27 Female Master’s Degree Back end Developer 2.0 65000
45 Male PhD Senior Project Engineer 14.0 185000
23 Female Bachelor’s Degree Front end Developer 1.0 55000
36 Male Master’s Degree Full Stack Engineer 7.0 130000
48 Male PhD Senior Project Engineer 16.0 190000
33 Female Master’s Degree Full Stack Engineer 5.0 120000
38 Female Master’s Degree Back end Developer 10.0 155000
51 Male PhD Software Engineer Manager 16.0 190000
27 Female Master’s Degree Full Stack Engineer 3.0 100000
37 Male Master’s Degree Senior Software Engineer 9.0 150000
44 Female Master’s Degree Senior Project Engineer 12.0 170000
27 Male Bachelor’s Degree Front end Developer 3.0 80000
38 Male Master’s Degree Senior Software Engineer 10.0 155000
54 Male PhD Software Engineer Manager 17.0 195000
49 Male PhD Software Engineer Manager 15.0 185000
27 Male Bachelor’s Degree Front end Developer 2.0 70000
48 Male PhD Senior Project Engineer 16.0 190000
31 Male Master’s Degree Full Stack Engineer 7.0 140000
25 Male Bachelor’s Degree Front end Developer 1.0 55000
50 Male PhD Software Engineer Manager 16.0 190000
46 Male PhD Software Engineer Manager 14.0 180000
33 Male Master’s Degree Full Stack Engineer 6.0 130000
42 Male PhD Senior Software Engineer 14.0 170000
41 Male PhD Senior Project Engineer 12.0 165000
43 Male PhD Senior Project Engineer 13.0 185000
32 Male Master’s Degree Back end Developer 6.0 130000
24 Male Bachelor’s Degree Front end Developer 1.0 60000
44 Female Master’s Degree Senior Software Engineer 11.0 170000
36 Male Master’s Degree Senior Software Engineer 7.0 140000
28 Female Master’s Degree Full Stack Engineer 4.0 110000
28 Male Bachelor’s Degree Front end Developer 2.0 70000
37 Male Master’s Degree Senior Software Engineer 9.0 145000
54 Male PhD Software Engineer Manager 16.0 190000
58 Male PhD Software Engineer Manager 17.0 200000
27 Male Bachelor’s Degree Front end Developer 3.0 80000
30 Male Bachelor’s Degree Back end Developer 4.0 95000
27 Female Master’s Degree Full Stack Engineer 3.0 100000
54 Male PhD Software Engineer Manager 17.0 195000
49 Male PhD Software Engineer Manager 15.0 185000
38 Male Master’s Degree Senior Software Engineer 10.0 155000
54 Male PhD Software Engineer Manager 18.0 195000
31 Male Master’s Degree Senior Project Engineer 6.0 125000
56 Male PhD Software Engineer Manager 17.0 195000
31 Male Master’s Degree Senior Software Engineer 7.0 140000
42 Male PhD Senior Software Engineer 14.0 170000
44 Male Master’s Degree Senior Project Engineer 11.0 170000
37 Male Master’s Degree Senior Software Engineer 9.0 150000
24 Female Bachelor’s Degree Back end Developer 1.0 60000
27 Male Bachelor’s Degree Front end Developer 2.0 70000
42 Male PhD Senior Software Engineer 14.0 170000
24 Female Bachelor’s Degree Front end Developer 1.0 55000
28 Female Bachelor’s Degree Front end Developer 3.0 80000
43 Male PhD Senior Project Engineer 13.0 185000
31 Male Master’s Degree Full Stack Engineer 7.0 140000
43 Male PhD Software Engineer Manager 13.0 180000
27 Female Master’s Degree Back end Developer 2.0 70000
49 Male PhD Software Engineer Manager 15.0 185000
48 Male PhD Senior Project Engineer 16.0 190000
31 Male Master’s Degree Senior Project Engineer 6.0 125000
40 Male PhD Senior Software Engineer 12.0 160000
36 Male Master’s Degree Senior Software Engineer 8.0 140000
54 Male PhD Software Engineer Manager 17.0 195000
27 Male Bachelor’s Degree Front end Developer 2.0 70000
28 Male Bachelor’s Degree Front end Developer 2.0 70000
44 Male Master’s Degree Senior Project Engineer 11.0 170000
43 Male PhD Senior Project Engineer 13.0 185000
54 Male PhD Software Engineer Manager 17.0 195000
32 Male Master’s Degree Back end Developer 6.0 130000
38 Male Master’s Degree Senior Software Engineer 10.0 155000
49 Male PhD Software Engineer Manager 15.0 185000
27 Male Bachelor’s Degree Front end Developer 3.0 80000
54 Male PhD Software Engineer Manager 17.0 195000
31 Male Master’s Degree Senior Project Engineer 7.0 135000
24 Male Bachelor’s Degree Back end Developer 1.0 55000
48 Male PhD Senior Project Engineer 16.0 190000
27 Female Master’s Degree Back end Developer 2.0 70000
43 Male PhD Senior Project Engineer 13.0 185000
44 Male Master’s Degree Senior Project Engineer 11.0 170000
37 Male Master’s Degree Senior Software Engineer 9.0 150000
56 Male PhD Software Engineer Manager 17.0 195000
28 Male Bachelor’s Degree Front end Developer 2.0 70000
54 Male PhD Software Engineer Manager 17.0 195000
31 Male Master’s Degree Senior Project Engineer 6.0 125000
49 Male PhD Software Engineer Manager 15.0 185000
27 Female Master’s Degree Back end Developer 2.0 70000
38 Male Master’s Degree Senior Software Engineer 10.0 155000
27 Male Bachelor’s Degree Front end Developer 3.0 80000
43 Male PhD Senior Project Engineer 13.0 185000
48 Male PhD Senior Project Engineer 16.0 190000
44 Male Master’s Degree Senior Project Engineer 11.0 170000
54 Male PhD Software Engineer Manager 17.0 195000
37 Male Master’s Degree Senior Software Engineer 9.0 150000
28 Male Bachelor’s Degree Front end Developer 2.0 70000
27 Female Master’s Degree Back end Developer 2.0 70000
49 Male PhD Software Engineer Manager 15.0 185000
31 Male Master’s Degree Senior Project Engineer 7.0 135000
27 Male Bachelor’s Degree Front end Developer 3.0 80000
54 Male PhD Software Engineer Manager 17.0 195000
38 Male Master’s Degree Senior Software Engineer 10.0 155000
44 Male Master’s Degree Senior Project Engineer 11.0 170000
43 Male PhD Senior Project Engineer 13.0 185000
27 Male Bachelor’s Degree Front end Developer 2.0 70000
48 Male PhD Senior Project Engineer 16.0 190000
31 Male Master’s Degree Senior Project Engineer 6.0 125000
54 Male PhD Software Engineer Manager 17.0 195000
37 Male Master’s Degree Senior Software Engineer 9.0 150000
28 Male Bachelor’s Degree Front end Developer 2.0 70000
27 Female Master’s Degree Back end Developer 2.0 70000
34 Male Bachelor’s Degree Front end Developer 5.0 95000
43 Female Master’s Degree Senior Software Engineer 12.0 170000
27 Male Bachelor’s Degree Back end Developer 2.0 75000
56 Female PhD Software Engineer Manager 18.0 210000
32 Male Master’s Degree Full Stack Engineer 7.0 135000
40 Male PhD Senior Software Engineer 12.0 160000
23 Male Bachelor’s Degree Front end Developer 1.0 55000
46 Male PhD Senior Project Engineer 16.0 190000
41 Female PhD Senior Project Engineer 11.0 165000
28 Female Bachelor’s Degree Front end Developer 3.0 80000
34 Male Bachelor’s Degree Back end Developer 6.0 120000
49 Male PhD Software Engineer Manager 15.0 185000
43 Male PhD Senior Project Engineer 13.0 185000
54 Male PhD Software Engineer Manager 16.0 190000
36 Male Master’s Degree Senior Software Engineer 8.0 140000
33 Male Master’s Degree Full Stack Engineer 6.0 130000
27 Female Master’s Degree Back end Developer 2.0 70000
44 Male Master’s Degree Senior Project Engineer 11.0 170000
31 Male Master’s Degree Senior Project Engineer 6.0 125000
38 Male Master’s Degree Senior Software Engineer 10.0 155000
27 Male Bachelor’s Degree Front end Developer 2.0 70000
54 Male PhD Software Engineer Manager 17.0 195000
31 Male Master’s Degree Senior Software Engineer 7.0 140000
32 Male Master’s Degree Back end Developer 6.0 130000
38 Female Master’s Degree Back end Developer 10.0 155000
51 Male PhD Software Engineer Manager 16.0 190000
28 Male Bachelor’s Degree Front end Developer 2.0 70000
27 Male Bachelor’s Degree Front end Developer 3.0 80000
43 Male PhD Senior Project Engineer 13.0 185000
27 Female Master’s Degree Full Stack Engineer 3.0 100000
49 Male PhD Software Engineer Manager 15.0 185000
48 Male PhD Senior Project Engineer 16.0 190000
31 Male Master’s Degree Senior Project Engineer 7.0 135000
40 Female PhD Senior Software Engineer 12.0 160000
24 Male Bachelor’s Degree Front end Developer 1.0 55000
27 Male Bachelor’s Degree Front end Developer 3.0 80000
42 Male PhD Senior Software Engineer 14.0 170000
24 Female Bachelor’s Degree Front end Developer 1.0 55000
28 Female Bachelor’s Degree Front end Developer 3.0 80000
43 Male PhD Senior Project Engineer 13.0 185000
31 Male Master’s Degree Full Stack Engineer 7.0 140000
43 Male PhD Software Engineer Manager 13.0 180000
27 Female Master’s Degree Back end Developer 2.0 70000
49 Male PhD Software Engineer Manager 15.0 185000
48 Male PhD Senior Project Engineer 16.0 190000
31 Male Master’s Degree Senior Project Engineer 6.0 125000
40 Male PhD Senior Software Engineer 12.0 160000
36 Male Master’s Degree Senior Software Engineer 8.0 140000
54 Male PhD Software Engineer Manager 17.0 195000
27 Male Bachelor’s Degree Front end Developer 2.0 70000
28 Male Bachelor’s Degree Front end Developer 2.0 70000
44 Male Master’s Degree Senior Project Engineer 11.0 170000
43 Male PhD Senior Project Engineer 13.0 185000
54 Male PhD Software Engineer Manager 17.0 195000
32 Male Master’s Degree Back end Developer 6.0 130000
38 Male Master’s Degree Senior Software Engineer 10.0 155000
49 Male PhD Software Engineer Manager 15.0 185000
27 Male Bachelor’s Degree Front end Developer 3.0 80000
54 Male PhD Software Engineer Manager 17.0 195000
31 Male Master’s Degree Senior Project Engineer 7.0 135000
24 Male Bachelor’s Degree Back end Developer 1.0 55000
48 Male PhD Senior Project Engineer 16.0 190000
27 Female Master’s Degree Back end Developer 2.0 70000
43 Male PhD Senior Project Engineer 13.0 185000
44 Male Master’s Degree Senior Project Engineer 11.0 170000
37 Male Master’s Degree Senior Software Engineer 9.0 150000
56 Male PhD Software Engineer Manager 17.0 195000
28 Male Bachelor’s Degree Front end Developer 2.0 70000
54 Male PhD Software Engineer Manager 17.0 195000
31 Male Master’s Degree Senior Project Engineer 6.0 125000
49 Male PhD Software Engineer Manager 15.0 185000
54 Male PhD Software Engineer Manager 17.0 195000
27 Male Bachelor’s Degree Front end Developer 3.0 80000
42 Male PhD Senior Software Engineer 14.0 170000
38 Male Master’s Degree Senior Software Engineer 10.0 155000
43 Male PhD Senior Project Engineer 13.0 185000
27 Male Bachelor’s Degree Front end Developer 2.0 70000
31 Male Master’s Degree Full Stack Engineer 7.0 140000
54 Male PhD Software Engineer Manager 17.0 195000
36 Male Master’s Degree Senior Software Engineer 8.0 140000
27 Female Master’s Degree Back end Developer 2.0 70000
49 Male PhD Software Engineer Manager 15.0 185000
48 Male PhD Senior Project Engineer 16.0 190000
31 Male Master’s Degree Senior Project Engineer 7.0 135000
40 Female PhD Senior Software Engineer 12.0 160000
24 Male Bachelor’s Degree Front end Developer 1.0 55000
27 Male Bachelor’s Degree Front end Developer 3.0 80000
43 Male PhD Senior Project Engineer 13.0 185000
27 Female Master’s Degree Full Stack Engineer 3.0 100000
49 Male PhD Software Engineer Manager 15.0 185000
48 Male PhD Senior Project Engineer 16.0 190000
31 Male Master’s Degree Senior Project Engineer 6.0 125000
40 Male PhD Senior Software Engineer 12.0 160000
36 Male Master’s Degree Senior Software Engineer 8.0 140000
54 Male PhD Software Engineer Manager 17.0 195000
27 Male Bachelor’s Degree Front end Developer 2.0 70000
28 Male Bachelor’s Degree Front end Developer 2.0 70000
44 Male Master’s Degree Senior Project Engineer 11.0 170000
43 Male PhD Senior Project Engineer 13.0 185000
54 Male PhD Software Engineer Manager 17.0 195000
32 Male Master’s Degree Back end Developer 6.0 130000
38 Male Master’s Degree Senior Software Engineer 10.0 155000
49 Male PhD Software Engineer Manager 15.0 185000
27 Male Bachelor’s Degree Front end Developer 3.0 80000
54 Male PhD Software Engineer Manager 17.0 195000
31 Male Master’s Degree Senior Project Engineer 7.0 135000
24 Male Bachelor’s Degree Back end Developer 1.0 55000
48 Male PhD Senior Project Engineer 16.0 190000
27 Female Master’s Degree Back end Developer 2.0 70000
43 Male PhD Senior Project Engineer 13.0 185000
44 Male Master’s Degree Senior Project Engineer 11.0 170000
37 Male Master’s Degree Senior Software Engineer 9.0 150000
56 Male PhD Software Engineer Manager 17.0 195000
28 Male Bachelor’s Degree Front end Developer 2.0 70000
54 Male PhD Software Engineer Manager 17.0 195000
31 Male Master’s Degree Senior Project Engineer 6.0 125000
49 Male PhD Software Engineer Manager 15.0 185000
54 Male PhD Software Engineer Manager 17.0 195000
27 Male Bachelor’s Degree Front end Developer 3.0 80000
42 Male PhD Senior Software Engineer 14.0 170000
38 Male Master’s Degree Senior Software Engineer 10.0 155000
36 Male Bachelor’s Degree Front end Developer 7.0 120000
29 Female Master’s Degree Back end Developer 3.0 90000
41 Female PhD Software Engineer Manager 14.0 180000
33 Male Bachelor’s Degree Full Stack Engineer 7.0 130000
42 Male PhD Senior Software Engineer 12.0 170000
28 Male Bachelor’s Degree Back end Developer 2.0 70000
55 Male PhD Software Engineer Manager 18.0 210000
26 Female Master’s Degree Front end Developer 1.0 55000
47 Male PhD Senior Project Engineer 16.0 190000
44 Female PhD Software Engineer Manager 11.0 165000
30 Male Master’s Degree Full Stack Engineer 5.0 105000
39 Female Master’s Degree Senior Software Engineer 11.0 160000
32 Male Bachelor’s Degree Front end Developer 6.0 110000
50 Male PhD Software Engineer Manager 17.0 195000
27 Male Bachelor’s Degree Back end Developer 3.0 85000
46 Male PhD Senior Project Engineer 14.0 180000
25 Female Bachelor’s Degree Front end Developer 1.0 55000
43 Male PhD Senior Project Engineer 13.0 185000
35 Male Bachelor’s Degree Back end Developer 8.0 140000
29 Female Master’s Degree Back end Developer 3.0 90000
40 Female PhD Senior Software Engineer 12.0 160000
35 Male Bachelor’s Degree Full Stack Engineer 8.0 145000
41 Male PhD Senior Project Engineer 13.0 185000
30 Male Master’s Degree Full Stack Engineer 5.0 105000
33 Male Bachelor’s Degree Front end Developer 6.0 110000
55 Male PhD Software Engineer Manager 18.0 210000
26 Female Master’s Degree Front end Developer 1.0 55000
47 Male PhD Senior Project Engineer 16.0 190000
44 Female PhD Software Engineer Manager 11.0 165000
30 Male Master’s Degree Full Stack Engineer 5.0 105000
39 Female Master’s Degree Senior Software Engineer 11.0 160000
32 Male Bachelor’s Degree Front end Developer 6.0 110000
50 Male PhD Software Engineer Manager 17.0 195000
27 Male Bachelor’s Degree Back end Developer 3.0 85000
46 Male PhD Senior Project Engineer 14.0 180000
25 Female Bachelor’s Degree Front end Developer 1.0 55000
43 Male PhD Senior Project Engineer 13.0 185000
35 Male Bachelor’s Degree Back end Developer 8.0 140000
29 Female Master’s Degree Back end Developer 3.0 90000
40 Female PhD Senior Software Engineer 12.0 160000
35 Male Bachelor’s Degree Full Stack Engineer 8.0 145000
41 Male PhD Senior Project Engineer 13.0 185000
30 Male Master’s Degree Full Stack Engineer 5.0 105000
33 Male Bachelor’s Degree Front end Developer 6.0 110000
55 Male PhD Software Engineer Manager 18.0 210000
26 Female Master’s Degree Front end Developer 1.0 55000
47 Male PhD Senior Project Engineer 16.0 190000
44 Female PhD Software Engineer Manager 11.0 165000
30 Male Master’s Degree Full Stack Engineer 5.0 105000
39 Female Master’s Degree Senior Software Engineer 11.0 160000
32 Male Bachelor’s Degree Front end Developer 6.0 110000
50 Male PhD Software Engineer Manager 17.0 195000
27 Male Bachelor’s Degree Back end Developer 3.0 85000
46 Male PhD Senior Project Engineer 14.0 180000
25 Female Bachelor’s Degree Front end Developer 1.0 55000
43 Male PhD Senior Project Engineer 13.0 185000
35 Male Bachelor’s Degree Back end Developer 8.0 140000
29 Female Master’s Degree Back end Developer 3.0 90000
40 Female PhD Senior Software Engineer 12.0 160000
35 Male Bachelor’s Degree Full Stack Engineer 8.0 145000
41 Male PhD Senior Project Engineer 13.0 185000
30 Male Master’s Degree Full Stack Engineer 5.0 105000
33 Male Bachelor’s Degree Front end Developer 6.0 110000
55 Male PhD Software Engineer Manager 18.0 210000
26 Female Master’s Degree Front end Developer 1.0 55000
47 Male PhD Senior Project Engineer 16.0 190000
44 Female PhD Software Engineer Manager 11.0 165000
30 Male Master’s Degree Full Stack Engineer 5.0 105000
39 Female Master’s Degree Senior Software Engineer 11.0 160000
32 Male Bachelor’s Degree Front end Developer 6.0 110000
50 Male PhD Software Engineer Manager 17.0 195000
27 Male Bachelor’s Degree Back end Developer 3.0 85000
46 Male PhD Senior Project Engineer 14.0 180000
25 Female Bachelor’s Degree Front end Developer 1.0 55000
43 Male PhD Senior Project Engineer 13.0 185000
35 Male Bachelor’s Degree Back end Developer 8.0 140000
29 Female Master’s Degree Back end Developer 3.0 90000
40 Female PhD Senior Software Engineer 12.0 160000
35 Male Bachelor’s Degree Full Stack Engineer 8.0 145000
41 Male PhD Senior Project Engineer 13.0 185000
30 Male Master’s Degree Full Stack Engineer 5.0 105000
33 Male Bachelor’s Degree Front end Developer 6.0 110000
55 Male PhD Software Engineer Manager 18.0 210000
26 Female Master’s Degree Front end Developer 1.0 55000
47 Male PhD Senior Project Engineer 16.0 190000
44 Female PhD Software Engineer Manager 11.0 165000
30 Male Master’s Degree Full Stack Engineer 5.0 105000
39 Female Master’s Degree Senior Software Engineer 11.0 160000
32 Male Bachelor’s Degree Front end Developer 6.0 110000
50 Male PhD Software Engineer Manager 17.0 195000
27 Male Bachelor’s Degree Back end Developer 3.0 85000
46 Male PhD Senior Project Engineer 14.0 180000
25 Female Bachelor’s Degree Front end Developer 1.0 55000
43 Male PhD Senior Project Engineer 13.0 185000
35 Male Bachelor’s Degree Back end Developer 8.0 140000
29 Female Master’s Degree Back end Developer 3.0 90000
40 Female PhD Senior Software Engineer 12.0 160000
35 Male Bachelor’s Degree Full Stack Engineer 8.0 145000
41 Male PhD Senior Project Engineer 13.0 185000
30 Male Master’s Degree Full Stack Engineer 5.0 105000
33 Male Bachelor’s Degree Front end Developer 6.0 110000
55 Male PhD Software Engineer Manager 18.0 210000
26 Female Master’s Degree Front end Developer 1.0 55000
47 Male PhD Senior Project Engineer 16.0 190000
44 Female PhD Software Engineer Manager 11.0 165000
30 Male Master’s Degree Full Stack Engineer 5.0 105000
39 Female Master’s Degree Senior Software Engineer 11.0 160000
32 Male Bachelor’s Degree Front end Developer 6.0 110000
50 Male PhD Software Engineer Manager 17.0 195000
27 Male Bachelor’s Degree Back end Developer 3.0 85000
46 Male PhD Senior Project Engineer 14.0 180000
25 Female Bachelor’s Degree Front end Developer 1.0 55000
43 Male PhD Senior Project Engineer 13.0 185000
35 Male Bachelor’s Degree Back end Developer 8.0 140000
29 Female Master’s Degree Back end Developer 3.0 90000
40 Female PhD Senior Software Engineer 12.0 160000
35 Male Bachelor’s Degree Full Stack Engineer 8.0 145000
41 Male PhD Senior Project Engineer 13.0 185000
30 Male Master’s Degree Full Stack Engineer 5.0 105000
33 Male Bachelor’s Degree Front end Developer 6.0 110000
55 Male PhD Software Engineer Manager 18.0 210000
31 Male Bachelor’s Degree Front end Developer 6.0 115000
42 Female Master’s Degree Software Engineer Manager 13.0 170000
27 Female Bachelor’s Degree Back end Developer 3.0 80000
51 Male PhD Senior Project Engineer 19.0 200000
34 Female Master’s Degree Full Stack Engineer 7.0 130000
38 Male Bachelor’s Degree Software Engineer Manager 11.0 155000
29 Male Bachelor’s Degree Front end Developer 5.0 105000
43 Female PhD Senior Project Engineer 14.0 190000
36 Male Master’s Degree Back end Developer 8.0 140000
48 Male PhD Software Engineer Manager 16.0 185000
35 Female Bachelor’s Degree Full Stack Engineer 8.0 145000
30 Female Master’s Degree Front end Developer 4.0 90000
50 Male PhD Senior Project Engineer 18.0 195000
29 Male Bachelor’s Degree Back end Developer 4.0 95000
41 Male Master’s Degree Software Engineer Manager 13.0 170000
33 Female Bachelor’s Degree Full Stack Engineer 6.0 115000
45 Male PhD Senior Project Engineer 16.0 185000
28 Female Bachelor’s Degree Front end Developer 2.0 65000
39 Female Master’s Degree Software Engineer Manager 12.0 160000
30 Male Bachelor’s Degree Back end Developer 5.0 100000
46 Male PhD Senior Project Engineer 15.0 180000
25 Female Bachelor’s Degree Front end Developer 1.0 55000
42 Male PhD Software Engineer Manager 14.0 190000
31 Male Bachelor’s Degree Full Stack Engineer 6.0 115000
49 Female PhD Senior Project Engineer 17.0 195000
36 Male Master’s Degree Back end Developer 9.0 150000
33 Female Bachelor’s Degree Full Stack Engineer 6.0 115000
45 Male PhD Software Engineer Manager 16.0 185000
28 Female Bachelor’s Degree Front end Developer 2.0 65000
39 Female Master’s Degree Software Engineer Manager 12.0 160000
30 Male Bachelor’s Degree Back end Developer 5.0 100000
46 Male PhD Senior Project Engineer 15.0 180000
25 Female Bachelor’s Degree Front end Developer 1.0 55000
42 Male PhD Software Engineer Manager 14.0 190000
31 Male Bachelor’s Degree Full Stack Engineer 6.0 115000
49 Female PhD Senior Project Engineer 17.0 195000
36 Male Master’s Degree Back end Developer 9.0 150000
33 Female Bachelor’s Degree Full Stack Engineer 6.0 115000
45 Male PhD Software Engineer Manager 16.0 185000
28 Female Bachelor’s Degree Front end Developer 2.0 65000
39 Female Master’s Degree Software Engineer Manager 12.0 160000
30 Male Bachelor’s Degree Back end Developer 5.0 100000
46 Male PhD Senior Project Engineer 15.0 180000
25 Female Bachelor’s Degree Front end Developer 1.0 55000
42 Male PhD Software Engineer Manager 14.0 190000
31 Male Bachelor’s Degree Full Stack Engineer 6.0 115000
49 Female PhD Senior Project Engineer 17.0 195000
36 Male Master’s Degree Back end Developer 9.0 150000
33 Female Bachelor’s Degree Full Stack Engineer 6.0 115000
45 Male PhD Software Engineer Manager 16.0 185000
28 Female Bachelor’s Degree Front end Developer 2.0 65000
39 Female Master’s Degree Software Engineer Manager 12.0 160000
30 Male Bachelor’s Degree Back end Developer 5.0 100000
46 Male PhD Senior Project Engineer 15.0 180000
25 Female Bachelor’s Degree Front end Developer 1.0 55000
42 Male PhD Software Engineer Manager 14.0 190000
31 Male Bachelor’s Degree Full Stack Engineer 6.0 115000
49 Female PhD Senior Project Engineer 17.0 195000
36 Male Master’s Degree Back end Developer 9.0 150000
33 Female Bachelor’s Degree Full Stack Engineer 6.0 115000
45 Male PhD Software Engineer Manager 16.0 185000
28 Female Bachelor’s Degree Front end Developer 2.0 65000
39 Female Master’s Degree Software Engineer Manager 12.0 160000
30 Male Bachelor’s Degree Back end Developer 5.0 100000
46 Male PhD Senior Project Engineer 15.0 180000
25 Female Bachelor’s Degree Front end Developer 1.0 55000
42 Male PhD Software Engineer Manager 14.0 190000
31 Male Bachelor’s Degree Full Stack Engineer 6.0 115000
49 Female PhD Senior Project Engineer 17.0 195000
36 Male Master’s Degree Back end Developer 9.0 150000
33 Female Bachelor’s Degree Full Stack Engineer 6.0 115000
45 Male PhD Software Engineer Manager 16.0 185000
28 Female Bachelor’s Degree Front end Developer 2.0 65000
39 Female Master’s Degree Software Engineer Manager 12.0 160000
30 Male Bachelor’s Degree Back end Developer 5.0 100000
46 Male PhD Senior Project Engineer 15.0 180000
25 Female Bachelor’s Degree Front end Developer 1.0 55000
42 Male PhD Software Engineer Manager 14.0 190000
31 Male Bachelor’s Degree Full Stack Engineer 6.0 115000
49 Female PhD Senior Project Engineer 17.0 195000
36 Male Master’s Degree Back end Developer 9.0 150000
33 Female Bachelor’s Degree Full Stack Engineer 6.0 115000
45 Male PhD Software Engineer Manager 16.0 185000
28 Female Bachelor’s Degree Front end Developer 2.0 65000
39 Female Master’s Degree Software Engineer Manager 12.0 160000
30 Male Bachelor’s Degree Back end Developer 5.0 100000
46 Male PhD Senior Project Engineer 15.0 180000
25 Female Bachelor’s Degree Front end Developer 1.0 55000
42 Male PhD Software Engineer Manager 14.0 190000
31 Male Bachelor’s Degree Full Stack Engineer 6.0 115000
49 Female PhD Senior Project Engineer 17.0 195000
36 Male Master’s Degree Back end Developer 9.0 150000
33 Female Bachelor’s Degree Full Stack Engineer 6.0 115000
45 Male PhD Software Engineer Manager 16.0 185000
28 Female Bachelor’s Degree Front end Developer 2.0 65000
39 Female Master’s Degree Software Engineer Manager 12.0 160000
30 Male Bachelor’s Degree Back end Developer 5.0 100000
46 Male PhD Senior Project Engineer 15.0 180000
25 Female Bachelor’s Degree Front end Developer 1.0 55000
42 Male PhD Software Engineer Manager 14.0 190000
31 Male Bachelor’s Degree Full Stack Engineer 6.0 115000
49 Female PhD Senior Project Engineer 17.0 195000
36 Male Master’s Degree Back end Developer 9.0 150000
33 Female Bachelor’s Degree Full Stack Engineer 6.0 115000
45 Male PhD Software Engineer Manager 16.0 185000
28 Female Bachelor’s Degree Front end Developer 2.0 65000
39 Female Master’s Degree Software Engineer Manager 12.0 160000
30 Male Bachelor’s Degree Back end Developer 5.0 100000
46 Male PhD Senior Project Engineer 15.0 180000
25 Female Bachelor’s Degree Front end Developer 1.0 55000
42 Male PhD Software Engineer Manager 14.0 190000
31 Male Bachelor’s Degree Full Stack Engineer 6.0 115000
49 Female PhD Senior Project Engineer 17.0 195000
36 Male Master’s Degree Back end Developer 9.0 150000
33 Female Bachelor’s Degree Full Stack Engineer 6.0 115000
45 Male PhD Software Engineer Manager 16.0 185000
28 Female Bachelor’s Degree Front end Developer 2.0 65000
39 Female Master’s Degree Software Engineer Manager 12.0 160000
30 Male Bachelor’s Degree Back end Developer 5.0 100000
46 Male PhD Senior Project Engineer 15.0 180000
25 Female Bachelor’s Degree Front end Developer 1.0 550
29 Male Bachelor’s Degree Front end Developer 4.0 90000
40 Female Master’s Degree Software Engineer Manager 12.0 160000
27 Female Bachelor’s Degree Back end Developer 3.0 80000
50 Male PhD Senior Project Engineer 18.0 195000
33 Female Master’s Degree Full Stack Engineer 6.0 115000
37 Male Bachelor’s Degree Software Engineer Manager 10.0 150000
28 Male Bachelor’s Degree Front end Developer 2.0 65000
44 Female PhD Senior Project Engineer 14.0 190000
35 Male Master’s Degree Back end Developer 8.0 140000
47 Male PhD Software Engineer Manager 16.0 185000
34 Female Bachelor’s Degree Full Stack Engineer 7.0 130000
31 Female Master’s Degree Front end Developer 5.0 105000
51 Male PhD Senior Project Engineer 19.0 200000
30 Male Bachelor’s Degree Back end Developer 5.0 100000
42 Male Master’s Degree Software Engineer Manager 13.0 170000
33 Female Bachelor’s Degree Full Stack Engineer 6.0 115000
45 Male PhD Senior Project Engineer 16.0 185000
29 Female Bachelor’s Degree Front end Developer 4.0 90000
39 Female Master’s Degree Software Engineer Manager 12.0 160000
27 Male Bachelor’s Degree Back end Developer 3.0 80000
49 Male PhD Senior Project Engineer 17.0 195000
32 Female Master’s Degree Full Stack Engineer 6.0 115000
36 Male Bachelor’s Degree Software Engineer Manager 8.0 135000
27 Male Bachelor’s Degree Front end Developer 2.0 65000
43 Female PhD Senior Project Engineer 14.0 190000
34 Male Master’s Degree Back end Developer 8.0 140000
46 Male PhD Software Engineer Manager 16.0 185000
33 Female Bachelor’s Degree Full Stack Engineer 7.0 130000
30 Female Master’s Degree Front end Developer 5.0 105000
50 Male PhD Senior Project Engineer 19.0 200000
30 Male Bachelor’s Degree Back end Developer 5.0 100000
42 Male Master’s Degree Software Engineer Manager 13.0 170000
33 Female Bachelor’s Degree Full Stack Engineer 6.0 115000
45 Male PhD Senior Project Engineer 16.0 185000
29 Female Bachelor’s Degree Front end Developer 4.0 90000
39 Female Master’s Degree Software Engineer Manager 12.0 160000
27 Male Bachelor’s Degree Back end Developer 3.0 80000
49 Male PhD Senior Project Engineer 17.0 195000
32 Female Master’s Degree Full Stack Engineer 6.0 115000
36 Male Bachelor’s Degree Software Engineer Manager 8.0 135000
27 Male Bachelor’s Degree Front end Developer 2.0 65000
43 Female PhD Senior Project Engineer 14.0 190000
34 Male Master’s Degree Back end Developer 8.0 140000
46 Male PhD Software Engineer Manager 16.0 185000
33 Female Bachelor’s Degree Full Stack Engineer 7.0 130000
30 Female Master’s Degree Front end Developer 5.0 105000
50 Male PhD Senior Project Engineer 19.0 200000
30 Male Bachelor’s Degree Back end Developer 5.0 100000
42 Male Master’s Degree Software Engineer Manager 13.0 170000
33 Female Bachelor’s Degree Full Stack Engineer 6.0 115000
45 Male PhD Senior Project Engineer 16.0 185000
29 Female Bachelor’s Degree Front end Developer 4.0 90000
39 Female Master’s Degree Software Engineer Manager 12.0 160000
27 Male Bachelor’s Degree Back end Developer 3.0 80000
49 Male PhD Senior Project Engineer 17.0 195000
32 Female Master’s Degree Full Stack Engineer 6.0 115000
36 Male Bachelor’s Degree Software Engineer Manager 8.0 135000
27 Male Bachelor’s Degree Front end Developer 2.0 65000
43 Female PhD Senior Project Engineer 14.0 190000
34 Male Master’s Degree Back end Developer 8.0 140000
46 Male PhD Software Engineer Manager 16.0 185000
33 Female Bachelor’s Degree Full Stack Engineer 7.0 130000
30 Female Master’s Degree Front end Developer 5.0 105000
50 Male PhD Senior Project Engineer 19.0 200000
30 Male Bachelor’s Degree Back end Developer 5.0 100000
42 Male Master’s Degree Software Engineer Manager 13.0 170000
33 Female Bachelor’s Degree Full Stack Engineer 6.0 115000
45 Male PhD Senior Project Engineer 16.0 185000
29 Female Bachelor’s Degree Front end Developer 4.0 90000
39 Female Master’s Degree Software Engineer Manager 12.0 160000
27 Male Bachelor’s Degree Back end Developer 3.0 80000
49 Male PhD Senior Project Engineer 17.0 195000
32 Female Master’s Degree Full Stack Engineer 6.0 115000
36 Male Bachelor’s Degree Software Engineer Manager 8.0 135000
27 Male Bachelor’s Degree Front end Developer 2.0 65000
43 Female PhD Senior Project Engineer 14.0 190000
34 Male Master’s Degree Back end Developer 8.0 140000
46 Male PhD Software Engineer Manager 16.0 185000
33 Female Bachelor’s Degree Full Stack Engineer 7.0 130000
30 Female Master’s Degree Front end Developer 5.0 105000
50 Male PhD Senior Project Engineer 19.0 200000
30 Male Bachelor’s Degree Back end Developer 5.0 100000
42 Male Master’s Degree Software Engineer Manager 13.0 170000
33 Female Bachelor’s Degree Full Stack Engineer 6.0 115000
45 Male PhD Senior Project Engineer 16.0 185000
29 Female Bachelor’s Degree Front end Developer 4.0 90000
39 Female Master’s Degree Software Engineer Manager 12.0 160000
27 Male Bachelor’s Degree Back end Developer 3.0 80000
49 Male PhD Senior Project Engineer 17.0 195000
32 Female Master’s Degree Full Stack Engineer 6.0 115000
36 Male Bachelor’s Degree Software Engineer Manager 8.0 135000
27 Male Bachelor’s Degree Front end Developer 2.0 65000
43 Female PhD Senior Project Engineer 14.0 190000
34 Male Master’s Degree Back end Developer 8.0 140000
46 Male PhD Software Engineer Manager 16.0 185000
33 Female Bachelor’s Degree Full Stack Engineer 7.0 130000
30 Female Master’s Degree Front end Developer 5.0 105000
50 Male PhD Senior Project Engineer 19.0 200000
30 Male Bachelor’s Degree Back end Developer 5.0 100000
42 Male Master’s Degree Software Engineer Manager 13.0 170000
33 Female Bachelor’s Degree Full Stack Engineer 6.0 115000
45 Male PhD Senior Project Engineer 16.0 185000
29 Female Bachelor’s Degree Front end Developer 4.0 90000
39 Female Master’s Degree Software Engineer Manager 12.0 160000
27 Male Bachelor’s Degree Back end Developer 3.0 80000
49 Male PhD Senior Project Engineer 17.0 195000
32 Female Master’s Degree Full Stack Engineer 6.0 115000
36 Male Bachelor’s Degree Software Engineer Manager 8.0 135000
27 Male Bachelor’s Degree Front end Developer 2.0 65000
43 Female PhD Senior Project Engineer 14.0 190000
34 Male Master’s Degree Back end Developer 8.0 140000
46 Male PhD Software Engineer Manager 16.0 185000
33 Female Bachelor’s Degree Full Stack Engineer 7.0 130000
30 Female Master’s Degree Front end Developer 5.0 105000
50 Male PhD Senior Project Engineer 19.0 200000
30 Male Bachelor’s Degree Back end Developer 5.0 100000
42 Male Master’s Degree Software Engineer Manager 13.0 170000
33 Female Bachelor’s Degree Full Stack Engineer 6.0 115000
45 Male PhD Senior Project Engineer 16.0 185000
29 Female Bachelor’s Degree Front end Developer 4.0 90000
27 Male Developer 7.0 100000
31 Female Bachelor’s Degree Front end Developer 6.0 110000
37 Male Master’s Degree Software Engineer Manager 10.0 150000
27 Male Bachelor’s Degree Back end Developer 3.0 80000
50 Male PhD Senior Project Engineer 18.0 195000
32 Female Master’s Degree Full Stack Engineer 6.0 115000
36 Male Bachelor’s Degree Software Engineer Manager 8.0 135000
27 Male Bachelor’s Degree Front end Developer 2.0 65000
43 Female PhD Senior Project Engineer 14.0 190000
34 Male Master’s Degree Back end Developer 8.0 140000
46 Male PhD Software Engineer Manager 16.0 185000
33 Female Bachelor’s Degree Full Stack Engineer 7.0 130000
30 Female Master’s Degree Front end Developer 5.0 105000
50 Male PhD Senior Project Engineer 19.0 200000
30 Male Bachelor’s Degree Back end Developer 5.0 100000
42 Male Master’s Degree Software Engineer Manager 13.0 170000
33 Female Bachelor’s Degree Full Stack Engineer 6.0 115000
45 Male PhD Senior Project Engineer 16.0 185000
29 Female Bachelor’s Degree Front end Developer 4.0 90000
39 Female Master’s Degree Software Engineer Manager 12.0 160000
27 Male Bachelor’s Degree Back end Developer 3.0 80000
49 Male PhD Senior Project Engineer 17.0 195000
32 Female Master’s Degree Full Stack Engineer 6.0 115000
36 Male Bachelor’s Degree Software Engineer Manager 8.0 135000
27 Male Bachelor’s Degree Front end Developer 2.0 65000
43 Female PhD Senior Project Engineer 14.0 190000
34 Male Master’s Degree Back end Developer 8.0 140000
46 Male PhD Software Engineer Manager 16.0 185000
33 Female Bachelor’s Degree Full Stack Engineer 7.0 130000
30 Female Master’s Degree Front end Developer 5.0 105000
50 Male PhD Senior Project Engineer 19.0 200000
30 Male Bachelor’s Degree Back end Developer 5.0 100000
42 Male Master’s Degree Software Engineer Manager 13.0 170000
33 Female Bachelor’s Degree Full Stack Engineer 6.0 115000
45 Male PhD Senior Project Engineer 16.0 185000
29 Female Bachelor’s Degree Front end Developer 4.0 90000
39 Female Master’s Degree Software Engineer Manager 12.0 160000
27 Male Bachelor’s Degree Back end Developer 3.0 80000
49 Male PhD Senior Project Engineer 17.0 195000
32 Female Master’s Degree Full Stack Engineer 6.0 115000
36 Male Bachelor’s Degree Software Engineer Manager 8.0 135000
27 Male Bachelor’s Degree Front end Developer 2.0 65000
43 Female PhD Senior Project Engineer 14.0 190000
34 Male Master’s Degree Back end Developer 8.0 140000
46 Male PhD Software Engineer Manager 16.0 185000
33 Female Bachelor’s Degree Full Stack Engineer 7.0 130000
30 Female Master’s Degree Front end Developer 5.0 105000
50 Male PhD Senior Project Engineer 19.0 200000
30 Male Bachelor’s Degree Back end Developer 5.0 100000
42 Male Master’s Degree Software Engineer Manager 13.0 170000
33 Female Bachelor’s Degree Full Stack Engineer 6.0 115000
45 Male PhD Senior Project Engineer 16.0 185000
29 Female Bachelor’s Degree Front end Developer 4.0 90000
39 Female Master’s Degree Software Engineer Manager 12.0 160000
27 Male Bachelor’s Degree Back end Developer 3.0 80000
49 Male PhD Senior Project Engineer 17.0 195000
32 Female Master’s Degree Full Stack Engineer 6.0 115000
36 Male Bachelor’s Degree Software Engineer Manager 8.0 135000
27 Male Bachelor’s Degree Front end Developer 2.0 65000
43 Female PhD Senior Project Engineer 14.0 190000
34 Male Master’s Degree Back end Developer 8.0 140000
46 Male PhD Software Engineer Manager 16.0 185000
33 Female Bachelor’s Degree Full Stack Engineer 7.0 130000
30 Female Master’s Degree Front end Developer 5.0 105000
50 Male PhD Senior Project Engineer 19.0 200000
30 Male Bachelor’s Degree Back end Developer 5.0 100000
42 Male Master’s Degree Software Engineer Manager 13.0 170000
33 Female Bachelor’s Degree Full Stack Engineer 6.0 115000
45 Male PhD Senior Project Engineer 16.0 185000
29 Female Bachelor’s Degree Front end Developer 4.0 90000
39 Female Master’s Degree Software Engineer Manager 12.0 160000
27 Male Bachelor’s Degree Back end Developer 3.0 80000
49 Male PhD Senior Project Engineer 17.0 195000
32 Female Master’s Degree Full Stack Engineer 6.0 115000
36 Male Bachelor’s Degree Software Engineer Manager 8.0 135000
27 Male Bachelor’s Degree Front end Developer 2.0 65000
43 Female PhD Senior Project Engineer 14.0 190000
34 Male Master’s Degree Back end Developer 8.0 140000
46 Male PhD Software Engineer Manager 16.0 185000
33 Female Bachelor’s Degree Full Stack Engineer 7.0 130000
30 Female Master’s Degree Front end Developer 5.0 105000
50 Male PhD Senior Project Engineer 19.0 200000
30 Male Bachelor’s Degree Back end Developer 5.0 100000
42 Male Master’s Degree Software Engineer Manager 13.0 170000
33 Female Bachelor’s Degree Full Stack Engineer 6.0 115000
45 Male PhD Senior Project Engineer 16.0 185000
29 Female Bachelor’s Degree Front end Developer 4.0 90000
39 Female Master’s Degree Software Engineer Manager 12.0 160000
27 Male Bachelor’s Degree Back end Developer 3.0 80000
49 Male PhD Senior Project Engineer 17.0 195000
32 Female Master’s Degree Full Stack Engineer 6.0 115000
36 Male Bachelor’s Degree Software Engineer Manager 8.0 135000
27 Male Bachelor’s Degree Front end Developer 2.0 65000
43 Female PhD Senior Project Engineer 14.0 190000
34 Male Master’s Degree Back end Developer 8.0 140000
46 Male PhD Software Engineer Manager 16.0 185000
33 Female Bachelor’s Degree Full Stack Engineer 7.0 130000
30 Female Master’s Degree Front end Developer 5.0 105000
50 Male PhD Senior Project Engineer 19.0 200000
30 Male Bachelor’s Degree Back end Developer 5.0 100000
42 Male Master’s Degree Software Engineer Manager 13.0 170000
33 Female Bachelor’s Degree Full Stack Engineer 6.0 115000
45 Male PhD Senior Project Engineer 16.0 185000
29 Female Bachelor’s Degree Front end Developer 4.0 90000
39 Female Master’s Degree Software Engineer Manager 12.0 160000
27 Male Bachelor’s Degree Back end Developer 3.0 80000
49 Male PhD Senior Project Engineer 17.0 195000
32 Female Master’s Degree Full Stack Engineer 6.0 115000
36 Male Bachelor’s Degree Software Engineer Manager 8.0 135000
27 Male Bachelor’s Degree Front end Developer 2.0 65000
43 Female PhD Senior Project Engineer 14.0 190000
34 Male Master’s Degree Back end Developer 8.0 140000
46 Male PhD Software Engineer Manager 16.0 185000
33 Female Bachelor’s Degree Full Stack Engineer 7.0 130000
30 Female Master’s Degree Front end Developer 5.0 105000
50 Male PhD Senior Project Engineer 19.0 200000
30 Male Bachelor’s Degree Back end Developer 5.0 100000
42 Male Master’s Degree Software Engineer Manager 13.0 170000
33 Female Bachelor’s Degree Full Stack Engineer 6.0 115000
45 Male PhD Senior Project Engineer 16.0 185000
29 Female Bachelor’s Degree Front end Developer 4.0 90000
31 Male Master’s Degree Software Engineer Manager 8.0 130000
27 Male Bachelor’s Degree Back end Developer 3.0 80000
43 Male PhD Senior Project Engineer 15.0 180000
35 Female Master’s Degree Full Stack Engineer 8.0 140000
42 Male Bachelor’s Degree Software Engineer Manager 12.0 160000
28 Female Bachelor’s Degree Front end Developer 2.0 55000
44 Female PhD Senior Project Engineer 16.0 190000
32 Male Master’s Degree Back end Developer 7.0 120000
48 Male PhD Software Engineer Manager 18.0 200000
30 Female Bachelor’s Degree Full Stack Engineer 5.0 100000
34 Male Master’s Degree Front end Developer 9.0 150000
37 Female Bachelor’s Degree Software Engineer Manager 11.0 170000
26 Male Bachelor’s Degree Back end Developer 2.0 65000
49 Female PhD Senior Project Engineer 19.0 210000
29 Male Bachelor’s Degree Full Stack Engineer 4.0 90000
41 Male Master’s Degree Software Engineer Manager 14.0 180000
31 Female Bachelor’s Degree Front end Developer 6.0 110000
37 Male Master’s Degree Software Engineer Manager 10.0 150000
27 Male Bachelor’s Degree Back end Developer 3.0 80000
50 Male PhD Senior Project Engineer 18.0 195000
32 Female Master’s Degree Full Stack Engineer 6.0 115000
36 Male Bachelor’s Degree Software Engineer Manager 8.0 135000
27 Male Bachelor’s Degree Front end Developer 2.0 65000
43 Female PhD Senior Project Engineer 14.0 190000
34 Male Master’s Degree Back end Developer 8.0 140000
46 Male PhD Software Engineer Manager 16.0 185000
33 Female Bachelor’s Degree Full Stack Engineer 7.0 130000
30 Female Master’s Degree Front end Developer 5.0 105000
50 Male PhD Senior Project Engineer 19.0 200000
30 Male Bachelor’s Degree Back end Developer 5.0 100000
42 Male Master’s Degree Software Engineer Manager 13.0 170000
33 Female Bachelor’s Degree Full Stack Engineer 6.0 115000
45 Male PhD Senior Project Engineer 16.0 185000
29 Female Bachelor’s Degree Front end Developer 4.0 90000
39 Female Master’s Degree Software Engineer Manager 12.0 160000
27 Male Bachelor’s Degree Back end Developer 3.0 80000
49 Male PhD Senior Project Engineer 17.0 195000
32 Female Master’s Degree Full Stack Engineer 6.0 115000
36 Male Bachelor’s Degree Software Engineer Manager 8.0 135000
27 Male Bachelor’s Degree Front end Developer 2.0 65000
43 Female PhD Senior Project Engineer 14.0 190000
34 Male Master’s Degree Back end Developer 8.0 140000
46 Male PhD Software Engineer Manager 16.0 185000
33 Female Bachelor’s Degree Full Stack Engineer 7.0 130000
30 Female Master’s Degree Front end Developer 5.0 105000
50 Male PhD Senior Project Engineer 19.0 200000
30 Male Bachelor’s Degree Back end Developer 5.0 100000
42 Male Master’s Degree Software Engineer Manager 13.0 170000
33 Female Bachelor’s Degree Full Stack Engineer 6.0 115000
45 Male PhD Senior Project Engineer 16.0 185000
29 Female Bachelor’s Degree Front end Developer 4.0 90000
39 Female Master’s Degree Software Engineer Manager 12.0 160000
27 Male Bachelor’s Degree Back end Developer 3.0 80000
49 Male PhD Senior Project Engineer 17.0 195000
32 Female Master’s Degree Full Stack Engineer 6.0 115000
36 Male Bachelor’s Degree Software Engineer Manager 8.0 135000
27 Male Bachelor’s Degree Front end Developer 2.0 65000
43 Female PhD Senior Project Engineer 14.0 190000
34 Male Master’s Degree Back end Developer 8.0 140000
46 Female PhD Senior Project Engineer 16.0 185000
33 Male Bachelor’s Degree Full Stack Engineer 7.0 130000
30 Male Master’s Degree Front end Developer 5.0 105000
50 Male PhD Software Engineer Manager 20.0 210000
31 Male Bachelor’s Degree Back end Developer 6.0 95000
39 Female Master’s Degree Software Engineer Manager 11.0 170000
27 Male Bachelor’s Degree Front end Developer 2.0 65000
44 Female PhD Senior Project Engineer 16.0 190000
32 Male Master’s Degree Back end Developer 7.0 120000
48 Male PhD Software Engineer Manager 19.0 200000
30 Female Bachelor’s Degree Full Stack Engineer 5.0 100000
34 Male Master’s Degree Front end Developer 9.0 150000
37 Female Bachelor’s Degree Software Engineer Manager 11.0 170000
26 Male Bachelor’s Degree Back end Developer 2.0 65000
49 Female PhD Senior Project Engineer 19.0 210000
29 Male Bachelor’s Degree Full Stack Engineer 4.0 90000
41 Male Master’s Degree Software Engineer Manager 14.0 180000
31 Female Bachelor’s Degree Front end Developer 6.0 110000
37 Male Master’s Degree Software Engineer Manager 10.0 150000
27 Male Bachelor’s Degree Back end Developer 3.0 80000
50 Male PhD Senior Project Engineer 18.0 195000
32 Female Master’s Degree Full Stack Engineer 6.0 115000
36 Male Bachelor’s Degree Software Engineer Manager 8.0 135000
27 Male Bachelor’s Degree Front end Developer 2.0 65000
43 Female PhD Senior Project Engineer 14.0 190000
34 Male Master’s Degree Back end Developer 8.0 140000
46 Male PhD Software Engineer Manager 16.0 185000
33 Female Bachelor’s Degree Full Stack Engineer 7.0 130000
30 Female Master’s Degree Front end Developer 5.0 105000
50 Male PhD Senior Project Engineer 19.0 200000
30 Male Bachelor’s Degree Back end Developer 5.0 100000
42 Male Master’s Degree Software Engineer Manager 13.0 170000
33 Female Bachelor’s Degree Full Stack Engineer 6.0 115000
45 Male PhD Senior Project Engineer 16.0 185000
29 Female Bachelor’s Degree Front end Developer 4.0 90000
39 Female Master’s Degree Software Engineer Manager 12.0 160000
27 Male Bachelor’s Degree Back end Developer 3.0 80000
49 Male PhD Senior Project Engineer 17.0 195000
32 Female Master’s Degree Full Stack Engineer 6.0 115000
36 Male Bachelor’s Degree Software Engineer Manager 8.0 135000
27 Male Bachelor’s Degree Front end Developer 2.0 65000
43 Female PhD Senior Project Engineer 14.0 190000
34 Male Master’s Degree Back end Developer 8.0 140000
46 Male PhD Software Engineer Manager 16.0 185000
33 Female Bachelor’s Degree Full Stack Engineer 7.0 130000
30 Female Master’s Degree Front end Developer 5.0 105000
50 Male PhD Senior Project Engineer 19.0 200000
30 Male Bachelor’s Degree Back end Developer 5.0 100000
42 Male Master’s Degree Software Engineer Manager 13.0 170000
33 Female Bachelor’s Degree Full Stack Engineer 6.0 115000
45 Male PhD Senior Project Engineer 16.0 185000
29 Female Bachelor’s Degree Front end Developer 4.0 90000
39 Female Master’s Degree Software Engineer Manager 12.0 160000
27 Male Bachelor’s Degree Back end Developer 3.0 80000
49 Male PhD Senior Project Engineer 17.0 195000
32 Female Master’s Degree Full Stack Engineer 6.0 115000
36 Male Bachelor’s Degree Software Engineer Manager 8.0 135000
27 Male Bachelor’s Degree Front end Developer 2.0 65000
43 Female PhD Senior Project Engineer 14.0 190000
34 Male Master’s Degree Back end Developer 8.0 140000
28 Male Bachelor’s Degree Software Engineer 4.0 75000
33 Female Master’s Degree Data Analyst 7.0 95000
22 Male Bachelor’s Degree Front End Developer 1.0 50000
44 Male PhD Senior Data Scientist 15.0 180000
29 Female Bachelor’s Degree Software Developer 3.0 65000
31 Male Master’s Degree Product Manager 6.0 120000
25 Female Master’s Degree Software Engineer 2.0 60000
38 Male Bachelor’s Degree Data Scientist 10.0 150000
27 Male Bachelor’s Degree Software Engineer 3.0 70000
46 Female PhD Director of Data Science 20.0 220000
33 Male Master’s Degree Data Analyst 8.0 100000
24 Female Bachelor’s Degree Software Developer 2.0 55000
36 Male PhD Senior Data Scientist 12.0 170000
30 Female Bachelor’s Degree Software Engineer 5.0 90000
29 Male Bachelor’s Degree Front End Developer 4.0 80000
42 Male Master’s Degree Product Manager 14.0 180000
26 Male Bachelor’s Degree Software Developer 2.0 60000
35 Female Master’s Degree Data Analyst 9.0 120000
27 Female Bachelor’s Degree Software Engineer 3.0 70000
48 Male PhD Director of Data Science 18.0 210000
34 Male Master’s Degree Data Scientist 9.0 140000
23 Female Bachelor’s Degree Software Engineer 1.0 50000
32 Male Master’s Degree Product Manager 7.0 110000
25 Female Master’s Degree Software Engineer 2.0 60000
37 Male Bachelor’s Degree Data Analyst 11.0 160000
28 Male Bachelor’s Degree Software Engineer 4.0 75000
41 Female PhD Director of Data Science 16.0 200000
34 Male Master’s Degree Data Analyst 8.0 100000
24 Female Bachelor’s Degree Software Developer 2.0 55000
36 Male PhD Senior Data Scientist 12.0 170000
30 Female Bachelor’s Degree Software Engineer 5.0 90000
29 Male Bachelor’s Degree Front End Developer 4.0 80000
42 Male Master’s Degree Product Manager 14.0 180000
26 Male Bachelor’s Degree Software Developer 2.0 60000
35 Female Master’s Degree Data Analyst 9.0 120000
27 Female Bachelor’s Degree Software Engineer 3.0 70000
48 Male PhD Director of Data Science 18.0 210000
34 Male Master’s Degree Data Scientist 9.0 140000
23 Female Bachelor’s Degree Software Engineer 1.0 50000
32 Male Master’s Degree Product Manager 7.0 110000
25 Female Master’s Degree Software Engineer 2.0 60000
37 Male Bachelor’s Degree Data Analyst 11.0 160000
28 Male Bachelor’s Degree Software Engineer 4.0 75000
41 Female PhD Director of Data Science 16.0 200000
34 Male Master’s Degree Data Analyst 8.0 100000
24 Female Bachelor’s Degree Software Developer 2.0 55000
36 Male PhD Senior Data Scientist 12.0 170000
30 Female Bachelor’s Degree Software Engineer 5.0 90000
29 Male Bachelor’s Degree Front End Developer 4.0 80000
42 Male Master’s Degree Product Manager 14.0 180000
26 Male Bachelor’s Degree Software Developer 2.0 60000
35 Female Master’s Degree Data Analyst 9.0 120000
27 Female Bachelor’s Degree Software Engineer 3.0 70000
48 Male PhD Director of Data Science 18.0 210000
34 Male Master’s Degree Data Scientist 9.0 140000
23 Female Bachelor’s Degree Software Engineer 1.0 50000
32 Male Master’s Degree Product Manager 7.0 110000
25 Female Master’s Degree Software Engineer 2.0 60000
37 Male Bachelor’s Degree Data Analyst 11.0 160000
28 Male Bachelor’s Degree Software Engineer 4.0 75000
41 Female PhD Director of Data Science 16.0 200000
34 Male Master’s Degree Data Analyst 8.0 100000
24 Female Bachelor’s Degree Software Developer 2.0 55000
36 Male PhD Senior Data Scientist 12.0 170000
30 Female Bachelor’s Degree Software Engineer 5.0 90000
29 Male Bachelor’s Degree Front End Developer 4.0 80000
42 Male Master’s Degree Product Manager 14.0 180000
26 Male Bachelor’s Degree Software Developer 2.0 60000
35 Female Master’s Degree Data Analyst 9.0 120000
27 Female Bachelor’s Degree Software Engineer 3.0 70000
48 Male PhD Director of Data Science 18.0 210000
34 Male Master’s Degree Data Scientist 9.0 140000
23 Female Bachelor’s Degree Software Engineer 1.0 50000
32 Male Master’s Degree Product Manager 7.0 110000
25 Female Master’s Degree Software Engineer 2.0 60000
37 Male Bachelor’s Degree Data Analyst 11.0 160000
28 Male Bachelor’s Degree Software Engineer 4.0 75000
41 Female PhD Director of Data Science 16.0 200000
34 Male Master’s Degree Data Analyst 8.0 100000
24 Female Bachelor’s Degree Software Developer 2.0 55000
36 Male PhD Senior Data Scientist 12.0 170000
30 Female Bachelor’s Degree Software Engineer 5.0 90000
29 Male Bachelor’s Degree Front End Developer 4.0 80000
42 Male Master’s Degree Product Manager 14.0 180000
26 Male Bachelor’s Degree Software Developer 2.0 60000
35 Female Master’s Degree Data Analyst 9.0 120000
27 Female Bachelor’s Degree Software Engineer 3.0 70000
48 Male PhD Director of Data Science 18.0 210000
34 Male Master’s Degree Data Scientist 9.0 140000
23 Female Bachelor’s Degree Software Engineer 1.0 50000
32 Male Master’s Degree Product Manager 7.0 110000
25 Female Master’s Degree Software Engineer 2.0 60000
37 Male Bachelor’s Degree Data Analyst 11.0 160000
28 Male Bachelor’s Degree Software Engineer 4.0 75000
41 Female PhD Director of Data Science 16.0 200000
34 Male Master’s Degree Data Analyst 8.0 100000
24 Female Bachelor’s Degree Software Developer 2.0 55000
36 Male PhD Senior Data Scientist 12.0 170000
30 Female Bachelor’s Degree Software Engineer 5.0 90000
29 Male Bachelor’s Degree Front End Developer 4.0 80000
42 Male Master’s Degree Product Manager 14.0 180000
26 Male Bachelor’s Degree Software Developer 2.0 60000
35 Female Master’s Degree Data Analyst 9.0 120000
27 Female Bachelor’s Degree Software Engineer 3.0 70000
48 Male PhD Director of Data Science 18.0 210000
34 Male Master’s Degree Data Scientist 9.0 140000
23 Female Bachelor’s Degree Software Engineer 1.0 50000
32 Male Master’s Degree Product Manager 7.0 110000
25 Female Master’s Degree Software Engineer 2.0 60000
37 Male Bachelor’s Degree Data Analyst 11.0 160000
28 Male Bachelor’s Degree Software Engineer 4.0 75000
41 Female PhD Director of Data Science 16.0 200000
34 Male Master’s Degree Data Analyst 8.0 100000
24 Female Bachelor’s Degree Software Developer 2.0 55000
36 Male PhD Senior Data Scientist 12.0 170000
30 Female Bachelor’s Degree Software Engineer 5.0 90000
29 Male Bachelor’s Degree Front End Developer 4.0 80000
42 Male Master’s Degree Product Manager 14.0 180000
26 Male Bachelor’s Degree Software Developer 2.0 60000
35 Female Master’s Degree Data Analyst 9.0 120000
27 Female Bachelor’s Degree Software Engineer 3.0 70000
48 Male PhD Director of Data Science 18.0 210000
34 Male Master’s Degree Data Scientist 9.0 140000
23 Female Bachelor’s Degree Software Engineer 1.0 50000
34 Female Bachelor’s Degree Full Stack Engineer 8.0 122485
25 Male PhD Software Engineer Manager 12.0 169159
43 Male Master’s Degree Senior Software Engineer 21.0 187081
53 Other High School Senior Project Engineer 31.0 166109
27 Female Master’s Degree Front end Developer 5.0 78354
25 Male Bachelor’s Degree Back end Developer 2.0 90249
29 Female Master’s Degree Senior Software Engineer 6.0 132720
52 Male PhD Software Engineer Manager 23.0 161568
41 Male Master’s Degree Front end Developer 13.0 127346
49 Female Bachelor’s Degree Back end Developer 19.0 120177
25 Other High School Full Stack Engineer 2.0 69032
35 Male Master’s Degree Senior Project Engineer 8.0 101332
57 Female PhD Full Stack Engineer 30.0 121450
35 Female Bachelor’s Degree Senior Project Engineer 12.0 166375
43 Male Master’s Degree Senior Software Engineer 21.0 185119
37 Female Bachelor’s Degree Full Stack Engineer 10.0 149217
50 Male Master’s Degree Software Engineer Manager 21.0 166512
52 Female Master’s Degree Senior Software Engineer 28.0 186963
26 Male Bachelor’s Degree Back end Developer 3.0 75072
34 Female Master’s Degree Full Stack Engineer 10.0 163398
30 Male High School Senior Project Engineer 11.0 103947
60 Female PhD Software Engineer Manager 33.0 179180
50 Male Bachelor’s Degree Back end Developer 23.0 175966
58 Male Master’s Degree Senior Software Engineer 27.0 190004
35 Female Master’s Degree Full Stack Engineer 10.0 152039
28 Male Master’s Degree Front end Developer 5.0 76742
57 Female PhD Software Engineer Manager 33.0 191790
46 Female Bachelor’s Degree Senior Software Engineer 20.0 139398
28 Male High School Back end Developer 7.0 95845
34 Male Master’s Degree Full Stack Engineer 12.0 160976
33 Female Master’s Degree Senior Project Engineer 9.0 126753
37 Other Master’s Degree Full Stack Engineer 14.0 161393
33 Male Master’s Degree Senior Software Engineer 8.0 139817
53 Male PhD Software Engineer Manager 25.0 181714
35 Female Bachelor’s Degree Back end Developer 10.0 114776
30 Male Master’s Degree Full Stack Engineer 6.0 105725
24 Female High School Senior Project Engineer 1.0 52731
36 Male Master’s Degree Front end Developer 8.0 106492
27 Female Bachelor’s Degree Full Stack Engineer 4.0 73895
23 Male PhD Software Engineer Manager 1.0 119836
28 Female Master’s Degree Senior Software Engineer 5.0 99747
52 Male Bachelor’s Degree Back end Developer 25.0 168287
28 Female Master’s Degree Full Stack Engineer 7.0 115920
32 Male Master’s Degree Senior Project Engineer 11.0 128078
24 Female Bachelor’s Degree Front end Developer 1.0 51265
43 Male High School Senior Software Engineer 22.0 165919
60 Female PhD Software Engineer Manager 34.0 188651
24 Male Master’s Degree Back end Developer 0.0 55538
55 Male Bachelor’s Degree Senior Project Engineer 28.0 193964
29 Female Master’s Degree Full Stack Engineer 4.0 104702
44 Male PhD Software Engineer Manager 19.0 172955
40 Female Master’s Degree Senior Software Engineer 16.0 138032
27 Male Bachelor’s Degree Back end Developer 4.0 82683
43 Male Master’s Degree Full Stack Engineer 17.0 155414
49 Female High School Senior Project Engineer 25.0 154207
30 Male Master’s Degree Front end Developer 8.0 107895
42 Female Bachelor’s Degree Senior Software Engineer 18.0 148446
26 Male Master’s Degree Full Stack Engineer 4.0 102859
41 Female PhD Software Engineer Manager 13.0 138662
46 Male Bachelor’s Degree Senior Project Engineer 23.0 181699
57 Female Master’s Degree Full Stack Engineer 33.0 188232
22 Female High School Back end Developer 0.0 51832
54 Male PhD Software Engineer Manager 28.0 188484
42 Female Master’s Degree Senior Software Engineer 16.0 138286
49 Male Bachelor’s Degree Full Stack Engineer 22.0 181132
27 Female Master’s Degree Back end Developer 4.0 73938
36 Male Bachelor’s Degree Senior Project Engineer 14.0 119224
31 Female Master’s Degree Full Stack Engineer 6.0 101186
39 Male Master’s Degree Software Engineer Manager 14.0 142360
41 Female Bachelor’s Degree Senior Project Engineer 20.0 151315
48 Male PhD Full Stack Engineer 23.0 181021
39 Female Master’s Degree Senior Software Engineer 15.0 134641
48 Male Bachelor’s Degree Front end Developer 23.0 173851
31 Other High School Back end Developer 8.0 104127
47 Male Master’s Degree Senior Project Engineer 25.0 178859
29 Female PhD Full Stack Engineer 5.0 98568
32 Male Bachelor’s Degree Software Engineer Manager 9.0 104661
38 Female Master’s Degree Senior Software Engineer 13.0 134858
34 Male Bachelor’s Degree Back end Developer 10.0 94502
23 Other High School Front end Developer 2.0 62852
34 Female Bachelor’s Degree Full Stack Engineer 8.0 122485
25 Male PhD Software Engineer Manager 12.0 169159
43 Male Master’s Degree Senior Software Engineer 21.0 187081
53 Other High School Senior Project Engineer 31.0 166109
27 Female Master’s Degree Front end Developer 5.0 78354
25 Male Bachelor’s Degree Back end Developer 2.0 90249
29 Female Master’s Degree Senior Software Engineer 6.0 132720
52 Male PhD Software Engineer Manager 23.0 161568
41 Male Master’s Degree Front end Developer 13.0 127346
49 Female Bachelor’s Degree Back end Developer 19.0 120177
25 Other High School Full Stack Engineer 2.0 69032
35 Male Master’s Degree Senior Project Engineer 8.0 101332
57 Female PhD Full Stack Engineer 30.0 121450
35 Female Bachelor’s Degree Senior Project Engineer 12.0 166375
43 Male Master’s Degree Senior Software Engineer 21.0 185119
37 Female Bachelor’s Degree Full Stack Engineer 10.0 149217
50 Male Master’s Degree Software Engineer Manager 21.0 166512
52 Female Master’s Degree Senior Software Engineer 28.0 186963
26 Male Bachelor’s Degree Back end Developer 3.0 75072
34 Female Master’s Degree Full Stack Engineer 10.0 163398
30 Male High School Senior Project Engineer 11.0 103947
60 Female PhD Software Engineer Manager 33.0 179180
50 Male Bachelor’s Degree Back end Developer 23.0 175966
58 Male Master’s Degree Senior Software Engineer 27.0 190004
35 Female Master’s Degree Full Stack Engineer 10.0 152039
28 Male Master’s Degree Front end Developer 5.0 76742
57 Female PhD Software Engineer Manager 33.0 191790
46 Female Bachelor’s Degree Senior Software Engineer 20.0 139398
28 Male High School Back end Developer 7.0 95845
34 Male Master’s Degree Full Stack Engineer 12.0 160976
33 Female Master’s Degree Senior Project Engineer 9.0 126753
37 Other Master’s Degree Full Stack Engineer 14.0 161393
33 Male Master’s Degree Senior Software Engineer 8.0 139817
53 Male PhD Software Engineer Manager 25.0 181714
35 Female Bachelor’s Degree Back end Developer 10.0 114776
30 Male Master’s Degree Full Stack Engineer 6.0 105725
24 Female High School Senior Project Engineer 1.0 52731
36 Male Master’s Degree Front end Developer 8.0 106492
27 Female Bachelor’s Degree Full Stack Engineer 4.0 73895
23 Male PhD Software Engineer Manager 1.0 119836
28 Female Master’s Degree Senior Software Engineer 5.0 99747
52 Male Bachelor’s Degree Back end Developer 25.0 168287
28 Female Master’s Degree Full Stack Engineer 7.0 115920
32 Male Master’s Degree Senior Project Engineer 11.0 128078
24 Female Bachelor’s Degree Front end Developer 1.0 51265
43 Male High School Senior Software Engineer 22.0 165919
60 Female PhD Software Engineer Manager 34.0 188651
24 Male Master’s Degree Back end Developer 0.0 55538
55 Male Bachelor’s Degree Senior Project Engineer 28.0 193964
29 Female Master’s Degree Full Stack Engineer 4.0 104702
44 Male PhD Software Engineer Manager 19.0 172955
40 Female Master’s Degree Senior Software Engineer 16.0 138032
27 Male Bachelor’s Degree Back end Developer 4.0 82683
43 Male Master’s Degree Full Stack Engineer 17.0 155414
49 Female High School Senior Project Engineer 25.0 154207
30 Male Master’s Degree Front end Developer 8.0 107895
42 Female Bachelor’s Degree Senior Software Engineer 18.0 148446
26 Male Master’s Degree Full Stack Engineer 4.0 102859
41 Female PhD Software Engineer Manager 13.0 138662
46 Male Bachelor’s Degree Senior Project Engineer 23.0 181699
57 Female Master’s Degree Full Stack Engineer 33.0 188232
22 Female High School Back end Developer 0.0 51832
54 Male PhD Software Engineer Manager 28.0 188484
42 Female Master’s Degree Senior Software Engineer 16.0 138286
49 Male Bachelor’s Degree Full Stack Engineer 22.0 181132
27 Female Master’s Degree Back end Developer 4.0 73938
36 Male Bachelor’s Degree Senior Project Engineer 14.0 119224
31 Female Master’s Degree Full Stack Engineer 6.0 101186
39 Male Master’s Degree Software Engineer Manager 14.0 142360
41 Female Bachelor’s Degree Senior Project Engineer 20.0 151315
48 Male PhD Full Stack Engineer 23.0 181021
39 Female Master’s Degree Senior Software Engineer 15.0 134641
48 Male Bachelor’s Degree Front end Developer 23.0 173851
31 Other High School Back end Developer 8.0 104127
47 Male Master’s Degree Senior Project Engineer 25.0 178859
29 Female PhD Full Stack Engineer 5.0 98568
32 Male Bachelor’s Degree Software Engineer Manager 9.0 104661
38 Female Master’s Degree Senior Software Engineer 13.0 134858
34 Male Bachelor’s Degree Back end Developer 10.0 94502
23 Other High School Front end Developer 2.0 62852
36 Male Bachelor’s Degree Front end Developer 14.0 139095
30 Female Master’s Degree Senior Project Engineer 5.0 106278
28 Male Master’s Degree Full Stack Engineer 4.0 90452
46 Female PhD Software Engineer Manager 23.0 168304
34 Male Bachelor’s Degree Back end Developer 10.0 126593
44 Male Master’s Degree Senior Software Engineer 19.0 152203
55 Female PhD Software Engineer Manager 30.0 183138
35 Male Master’s Degree Full Stack Engineer 9.0 130275
54 Male Bachelor’s Degree Senior Project Engineer 29.0 191915
23 Female High School Back end Developer 2.0 62807
46 Male Master’s Degree Senior Software Engineer 21.0 174305
33 Female Bachelor’s Degree Full Stack Engineer 9.0 133326
26 Male Master’s Degree Front end Developer 4.0 75656
43 Female PhD Software Engineer Manager 19.0 155944
36 Male Master’s Degree Full Stack Engineer 11.0 137775
23 Female Bachelor’s Degree Senior Project Engineer 0.0 51831
49 Male Master’s Degree Software Engineer Manager 22.0 182237
35 Female Master’s Degree Full Stack Engineer 10.0 151901
31 Male Bachelor’s Degree Back end Developer 8.0 100052
54 Other High School Senior Software Engineer 29.0 158254
43 Male Master’s Degree Full Stack Engineer 20.0 167207
33 Female Master’s Degree Senior Project Engineer 10.0 112439
52 Female PhD Software Engineer Manager 29.0 194214
28 Male Bachelor’s Degree Full Stack Engineer 5.0 84407
36 Female Master’s Degree Senior Software Engineer 13.0 139413
43 Male Bachelor’s Degree Senior Project Engineer 20.0 143084
50 Female Master’s Degree Full Stack Engineer 25.0 192344
24 Male PhD Software Engineer Manager 1.0 106132
52 Male Master’s Degree Senior Software Engineer 26.0 184816
46 Female Bachelor’s Degree Back end Developer 19.0 150248
38 Male Master’s Degree Full Stack Engineer 15.0 170995
29 Male Bachelor’s Degree Senior Project Engineer 6.0 88035
33 Female Master’s Degree Front end Developer 10.0 119419
47 Male PhD Software Engineer Manager 21.0 173582
45 Female Master’s Degree Senior Software Engineer 23.0 174436
28 Male Bachelor’s Degree Back end Developer 4.0 71699
42 Female Master’s Degree Full Stack Engineer 14.0 163558
46 Male Bachelor’s Degree Senior Project Engineer 24.0 166828
38 Female PhD Software Engineer Manager 15.0 144496
54 Male Master’s Degree Senior Software Engineer 31.0 193746
33 Female Master’s Degree Full Stack Engineer 8.0 122581
27 Male High School Back end Developer 4.0 79767
50 Female Bachelor’s Degree Senior Project Engineer 25.0 177177
26 Male Master’s Degree Full Stack Engineer 4.0 89843
31 Female Master’s Degree Senior Software Engineer 6.0 113563
35 Male Bachelor’s Degree Front end Developer 10.0 128712
44 Female PhD Software Engineer Manager 18.0 161621
32 Male Master’s Degree Senior Project Engineer 8.0 121454
54 Male Bachelor’s Degree Full Stack Engineer 25.0 179987
26 Female Master’s Degree Front end Developer 3.0 72649
23 Male PhD Software Engineer Manager 0.0 52612
48 Female Master’s Degree Senior Software Engineer 24.0 184006
38 Male Bachelor’s Degree Back end Developer 12.0 131960
30 Female Master’s Degree Full Stack Engineer 5.0 102465
40 Male Master’s Degree Software Engineer Manager 16.0 149748
45 Female Bachelor’s Degree Senior Project Engineer 22.0 171036
36 Male Master’s Degree Full Stack Engineer 13.0 146351
52 Male PhD Software Engineer Manager 26.0 185462
31 Female Bachelor’s Degree Senior Software Engineer 7.0 107718
26 Male Master’s Degree Full Stack Engineer 4.0 90944
30 Female Master’s Degree Senior Project Engineer 5.0 100425
24 Male Bachelor’s Degree Back end Developer 2.0 63901
45 Male Master’s Degree Senior Software Engineer 22.0 181902
33 Female Master’s Degree Full Stack Engineer 9.0 136533
38 Male Bachelor’s Degree Front end Developer 11.0 136285
54 Female PhD Software Engineer Manager 31.0 191818
42 Male Master’s Degree Full Stack Engineer 19.0 176643
28 Female Bachelor’s Degree Senior Project Engineer 4.0 70022
30 Male Master’s Degree Front end Developer 6.0 99363
43 Female Master’s Degree Senior Software Engineer 19.0 152944
35 Male Bachelor’s Degree Back end Developer 10.0 123386
44 Male Master’s Degree Full Stack Engineer 21.0 168906
55 Female Bachelor’s Degree Senior Project Engineer 30.0 183020
23 Male High School Front end Developer 1.0 47898
39 Female Master’s Degree Senior Software Engineer 14.0 135853
43 Male Bachelor’s Degree Full Stack Engineer 17.0 149198
29 Male PhD Software Engineer Manager 6.0 106662
51 Male Master’s Degree Senior Software Engineer 28.0 186610
30 Female Bachelor’s Degree Senior Project Engineer 6.0 89995
26 Male Master’s Degree Full Stack Engineer 4.0 85825
39 Female PhD Software Engineer Manager 13.0 143814
49 Male Master’s Degree Front end Developer 24.0 174726
42 Female Bachelor’s Degree Senior Software Engineer 20.0 150534
27 Male Bachelor’s Degree Back end Developer 4.0 68732
43 Male Master’s Degree Full Stack Engineer 21.0 187951
37 Female Bachelor’s Degree Senior Project Engineer 13.0 137336
51 Male PhD Software Engineer Manager 26.0 191159
29 Female Master’s Degree Full Stack Engineer 5.0 102868
43 Male Bachelor’s Degree Senior Software Engineer 20.0 154281
31 Male Master’s Degree Back end Developer 8.0 111535
30 Female Master’s Degree Senior Project Engineer 6.0 107906
36 Male Bachelor’s Degree Full Stack Engineer 13.0 143885
52 Female PhD Software Engineer Manager 27.0 180958
28 Male Master’s Degree Senior Software Engineer 6.0 108607
49 Male Bachelor’s Degree Back end Developer 24.0 178284
27 Female Master’s Degree Front end Developer 4.0 75969
41 Male Master’s Degree Senior Project Engineer 15.0 143705
56 Female PhD Software Engineer Manager 31.0 197354
46 Male Bachelor’s Degree Senior Software Engineer 22.0 174324
32 Female Master’s Degree Full Stack Engineer 8.0 123781
38 Male PhD Software Engineer Manager 12.0 141735
52 Male Master’s Degree Senior Project Engineer 28.0 187120
24 Female Bachelor’s Degree Back end Developer 1.0 61095
49 Male Master’s Degree Full Stack Engineer 22.0 179045
35 Female Master’s Degree Senior Software Engineer 10.0 130355
31 Male Bachelor’s Degree Front end Developer 7.0 103282
44 Female PhD Software Engineer Manager 18.0 157872
33 Male Master’s Degree Senior Project Engineer 10.0 117314
54 Male Bachelor’s Degree Senior Software Engineer 30.0 186321
33 Female Master’s Degree Full Stack Engineer 11.0 129686
27 Male High School Back end Developer 3.0 68611
51 Female Master’s Degree Senior Project Engineer 25.0 177913
26 Male Master’s Degree Full Stack Engineer 3.0 68472
31 Female Master’s Degree Senior Software Engineer 6.0 113065
35 Male Bachelor’s Degree Front end Developer 9.0 125091
45 Female PhD Software Engineer Manager 23.0 172925
32 Male Master’s Degree Senior Project Engineer 9.0 126916
54 Male Bachelor’s Degree Full Stack Engineer 27.0 183417
26 Female Master’s Degree Front end Developer 4.0 76898
23 Male PhD Software Engineer Manager 1.0 579
26 Female Bachelor’s Degree Software Engineer 2.0 65000
33 Male Master’s Degree Data Analyst 8.0 120000
29 Female Bachelor’s Degree Product Manager 4.0 90000
41 Male PhD Data Scientist 15.0 190000
35 Female Master’s Degree Software Engineer 9.0 140000
28 Male Bachelor’s Degree Software Developer 3.0 75000
37 Female Master’s Degree Data Scientist 11.0 160000
33 Male Bachelor’s Degree Product Manager 8.0 130000
24 Female Master’s Degree Software Engineer 2.0 60000
46 Male PhD Director of Data Science 20.0 220000
29 Female Bachelor’s Degree Software Developer 5.0 80000
31 Male Master’s Degree Data Scientist 7.0 130000
27 Female Bachelor’s Degree Software Engineer 3.0 65000
38 Male PhD Senior Data Scientist 13.0 170000
30 Female Master’s Degree Product Manager 6.0 110000
25 Male Bachelor’s Degree Front End Developer 2.0 50000
44 Male PhD Director of Data Science 18.0 210000
33 Female Master’s Degree Data Analyst 8.0 100000
22 Male Bachelor’s Degree Software Engineer 1.0 50000
36 Male Master’s Degree Product Manager 10.0 160000
28 Female Bachelor’s Degree Software Engineer 4.0 70000
41 Male PhD Senior Data Scientist 16.0 190000
34 Female Master’s Degree Data Scientist 9.0 140000
23 Male Bachelor’s Degree Software Developer 1.0 45000
32 Female Master’s Degree Product Manager 7.0 120000
25 Male Master’s Degree Software Engineer 2.0 60000
37 Female Bachelor’s Degree Data Analyst 11.0 150000
28 Male Bachelor’s Degree Software Engineer 4.0 70000
41 Female PhD Director of Data Science 16.0 200000
34 Male Master’s Degree Data Analyst 8.0 100000
24 Female Bachelor’s Degree Software Developer 2.0 55000
36 Male PhD Senior Data Scientist 12.0 170000
30 Female Bachelor’s Degree Software Engineer 5.0 90000
29 Male Bachelor’s Degree Front End Developer 4.0 80000
42 Male Master’s Degree Product Manager 14.0 180000
26 Male Bachelor’s Degree Software Developer 2.0 60000
35 Female Master’s Degree Data Analyst 9.0 120000
27 Female Bachelor’s Degree Software Engineer 3.0 70000
48 Male PhD Director of Data Science 18.0 210000
34 Male Master’s Degree Data Scientist 9.0 140000
23 Female Bachelor’s Degree Software Engineer 1.0 50000
32 Male Master’s Degree Product Manager 7.0 110000
25 Female Master’s Degree Software Engineer 2.0 60000
37 Male Bachelor’s Degree Data Analyst 11.0 160000
28 Male Bachelor’s Degree Software Engineer 4.0 75000
41 Female PhD Director of Data Science 16.0 200000
34 Male Master’s Degree Data Analyst 8.0 100000
24 Female Bachelor’s Degree Software Developer 2.0 55000
36 Male PhD Senior Data Scientist 12.0 170000
30 Female Bachelor’s Degree Software Engineer 5.0 90000
29 Male Bachelor’s Degree Front End Developer 4.0 80000
42 Male Master’s Degree Product Manager 14.0 180000
26 Male Bachelor’s Degree Software Developer 2.0 60000
35 Female Master’s Degree Data Analyst 9.0 120000
27 Female Bachelor’s Degree Software Engineer 3.0 70000
48 Male PhD Director of Data Science 18.0 210000
34 Male Master’s Degree Data Scientist 9.0 140000
23 Female Bachelor’s Degree Software Engineer 1.0 50000
32 Male Master’s Degree Product Manager 7.0 110000
25 Female Master’s Degree Software Engineer 2.0 60000
37 Male Bachelor’s Degree Data Analyst 11.0 160000
28 Male Bachelor’s Degree Software Engineer 4.0 75000
41 Female PhD Director of Data Science 16.0 200000
34 Male Master’s Degree Data Analyst 8.0 100000
24 Female Bachelor’s Degree Software Developer 2.0 55000
36 Male PhD Senior Data Scientist 12.0 170000
30 Female Bachelor’s Degree Software Engineer 5.0 90000
29 Male Bachelor’s Degree Front End Developer 4.0 80000
42 Male Master’s Degree Product Manager 14.0 180000
26 Male Bachelor’s Degree Software Developer 2.0 60000
35 Female Master’s Degree Data Analyst 9.0 120000
27 Female Bachelor’s Degree Software Engineer 3.0 70000
48 Male PhD Director of Data Science 18.0 210000
34 Male Master’s Degree Data Scientist 9.0 140000
23 Female Bachelor’s Degree Software Engineer 1.0 50000
32 Male Master’s Degree Product Manager 7.0 110000
25 Female Master’s Degree Software Engineer 2.0 60000
37 Male Bachelor’s Degree Data Analyst 11.0 160000
28 Male Bachelor’s Degree Software Engineer 4.0 75000
41 Female PhD Director of Data Science 16.0 200000
34 Male Master’s Degree Data Analyst 8.0 100000
24 Female Bachelor’s Degree Software Developer 2.0 55000
36 Male PhD Senior Data Scientist 12.0 170000
30 Female Bachelor’s Degree Software Engineer 5.0 90000
29 Male Bachelor’s Degree Front End Developer 4.0 80000
42 Male Master’s Degree Product Manager 14.0 180000
26 Male Bachelor’s Degree Software Developer 2.0 60000
35 Female Master’s Degree Data Analyst 9.0 120000
27 Female Bachelor’s Degree Software Engineer 3.0 70000
48 Male PhD Director of Data Science 18.0 210000
34 Male Master’s Degree Data Scientist 9.0 140000
23 Female Bachelor’s Degree Software Engineer 1.0 50000
32 Male Master’s Degree Product Manager 7.0 110000
25 Female Master’s Degree Software Engineer 2.0 60000
37 Male Bachelor’s Degree Data Analyst 11.0 160000
28 Male Bachelor’s Degree Software Engineer 4.0 75000
41 Female PhD Director of Data Science 16.0 200000
34 Male Master’s Degree Data Analyst 8.0 100000
24 Female Bachelor’s Degree Software Developer 2.0 55000
36 Male PhD Senior Data Scientist 12.0 170000
30 Female Bachelor’s Degree Software Engineer 5.0 90000
29 Male Bachelor’s Degree Front End Developer 4.0 80000
42 Male Master’s Degree Product Manager 14.0 180000
26 Male Bachelor’s Degree Software Developer 2.0 60000
35 Female Master’s Degree Data Analyst 9.0 120000
27 Female Bachelor’s Degree Software Engineer 3.0 70000
48 Male PhD Director of Data Science 18.0 210000
34 Male Master’s Degree Data Scientist 9.0 140000
23 Female Bachelor’s Degree Software Engineer 1.0 50000
32 Male Master’s Degree Product Manager 7.0 110000
25 Female Master’s Degree Software Engineer 2.0 60000
37 Male Bachelor’s Degree Data Analyst 11.0 160000
28 Male Bachelor’s Degree Software Engineer 4.0 75000
41 Female PhD Director of Data Science 16.0 200000
34 Male Master’s Degree Data Analyst 8.0 100000
24 Female Bachelor’s Degree Software Developer 2.0 55000
36 Male PhD Senior Data Scientist 12.0 170000
30 Female Bachelor’s Degree Software Engineer 5.0 90000
29 Male Bachelor’s Degree Front End Developer 4.0 80000
42 Male Master’s Degree Product Manager 14.0 180000
26 Male Bachelor’s Degree Software Developer 2.0 60000
35 Female Master’s Degree Data Analyst 9.0 120000
27 Female Bachelor’s Degree Software Engineer 3.0 70000
48 Male PhD Director of Data Science 18.0 210000
29 Female Bachelor’s Degree Full Stack Engineer 6.0 103579
45 Male Master’s Degree Software Engineer Manager 19.0 163780
36 Male Bachelor’s Degree Front end Developer 12.0 137878
30 Female Master’s Degree Senior Project Engineer 4.0 92438
28 Male Master’s Degree Full Stack Engineer 5.0 84181
46 Female PhD Software Engineer Manager 21.0 174821
34 Male Bachelor’s Degree Back end Developer 10.0 126520
44 Male Master’s Degree Senior Software Engineer 18.0 152168
55 Female PhD Software Engineer Manager 29.0 190543
35 Male Master’s Degree Full Stack Engineer 9.0 131547
54 Male Bachelor’s Degree Senior Project Engineer 28.0 192292
23 Female High School Back end Developer 1.0 52807
46 Male Master’s Degree Senior Software Engineer 20.0 174938
33 Female Bachelor’s Degree Full Stack Engineer 8.0 124071
26 Male Master’s Degree Front end Developer 3.0 73640
43 Female PhD Software Engineer Manager 19.0 156486
36 Male Master’s Degree Full Stack Engineer 11.0 138859
23 Female Bachelor’s Degree Senior Project Engineer 0.0 52831
49 Male Master’s Degree Software Engineer Manager 23.0 182392
35 Female Master’s Degree Full Stack Engineer 11.0 151078
31 Male Bachelor’s Degree Back end Developer 8.0 100679
54 Other High School Senior Software Engineer 29.0 158966
43 Male Master’s Degree Full Stack Engineer 20.0 167924
33 Female Master’s Degree Senior Project Engineer 10.0 113334
52 Female PhD Software Engineer Manager 29.0 194778
28 Male Bachelor’s Degree Full Stack Engineer 4.0 77606
36 Female Master’s Degree Senior Software Engineer 13.0 140010
43 Male Bachelor’s Degree Senior Project Engineer 20.0 142421
50 Female Master’s Degree Full Stack Engineer 24.0 192756
24 Male PhD Software Engineer Manager 1.0 106686
52 Male Master’s Degree Senior Software Engineer 27.0 186794
46 Female Bachelor’s Degree Back end Developer 19.0 150729
38 Male Master’s Degree Full Stack Engineer 15.0 171652
29 Male Bachelor’s Degree Senior Project Engineer 6.0 88552
33 Female Master’s Degree Front end Developer 9.0 119918
47 Male PhD Software Engineer Manager 21.0 174985
45 Female Master’s Degree Senior Software Engineer 23.0 174336
28 Male Bachelor’s Degree Back end Developer 4.0 72389
42 Female Master’s Degree Full Stack Engineer 14.0 163978
46 Male Bachelor’s Degree Senior Project Engineer 25.0 166958
38 Female PhD Software Engineer Manager 15.0 145052
54 Male Master’s Degree Senior Software Engineer 32.0 195270
33 Female Master’s Degree Full Stack Engineer 8.0 122970
27 Male High School Back end Developer 4.0 80247
50 Female Bachelor’s Degree Senior Project Engineer 25.0 177862
26 Male Master’s Degree Full Stack Engineer 4.0 91062
31 Female Master’s Degree Senior Software Engineer 6.0 114290
35 Male Bachelor’s Degree Front end Developer 10.0 128999
44 Female PhD Software Engineer Manager 18.0 162454
32 Male Master’s Degree Senior Project Engineer 8.0 122354
54 Male Bachelor’s Degree Full Stack Engineer 25.0 179756
26 Female Master’s Degree Front end Developer 3.0 73218
23 Male PhD Software Engineer Manager 0.0 52612
48 Female Master’s Degree Senior Software Engineer 24.0 184480
38 Male Bachelor’s Degree Back end Developer 12.0 132442
30 Female Master’s Degree Full Stack Engineer 5.0 102828
40 Male Master’s Degree Software Engineer Manager 16.0 150301
45 Female Bachelor’s Degree Senior Project Engineer 22.0 171468
36 Male Master’s Degree Full Stack Engineer 13.0 147326
52 Male PhD Software Engineer Manager 26.0 185982
31 Female Bachelor’s Degree Senior Software Engineer 7.0 108267
26 Male Master’s Degree Full Stack Engineer 4.0 91397
30 Female Master’s Degree Senior Project Engineer 5.0 100867
24 Male Bachelor’s Degree Back end Developer 2.0 64182
45 Male Master’s Degree Senior Software Engineer 22.0 182506
33 Female Master’s Degree Full Stack Engineer 9.0 136986
38 Male Bachelor’s Degree Front end Developer 11.0 136662
54 Female PhD Software Engineer Manager 32.0 191510
42 Male Master’s Degree Full Stack Engineer 19.0 177347
28 Female Bachelor’s Degree Senior Project Engineer 3.0 70397
34 Male Master’s Degree Software Engineer Manager 9.0 146075
46 Female Bachelor’s Degree Back end Developer 18.0 155795
35 Male Master’s Degree Full Stack Engineer 9.0 132638
49 Female PhD Software Engineer Manager 22.0 178684
32 Male Bachelor’s Degree Senior Software Engineer 7.0 106218
54 Male Master’s Degree Full Stack Engineer 28.0 191239
26 Female Master’s Degree Front end Developer 2.0 65840
23 Male PhD Software Engineer Manager 0.0 52779
48 Female Master’s Degree Senior Software Engineer 23.0 185038
38 Male Bachelor’s Degree Back end Developer 14.0 136449
30 Female Master’s Degree Full Stack Engineer 6.0 110707
40 Male Master’s Degree Software Engineer Manager 17.0 151670
45 Female Bachelor’s Degree Senior Project Engineer 21.0 167015
36 Male Master’s Degree Full Stack Engineer 13.0 146508
52 Male PhD Software Engineer Manager 27.0 190596
31 Female Bachelor’s Degree Senior Software Engineer 6.0 104378
26 Male Master’s Degree Full Stack Engineer 3.0 70216
30 Female Master’s Degree Senior Project Engineer 5.0 101733
24 Male Bachelor’s Degree Back end Developer 1.0 55935
45 Male Master’s Degree Senior Software Engineer 21.0 180367
33 Female Master’s Degree Full Stack Engineer 9.0 135596
38 Male Bachelor’s Degree Front end Developer 11.0 136062
54 Female PhD Software Engineer Manager 32.0 191267
42 Male Master’s Degree Full Stack Engineer 19.0 177347
28 Female Bachelor’s Degree Senior Project Engineer 3.0 70397
34 Male Master’s Degree Software Engineer Manager 9.0 146075
46 Female Bachelor’s Degree Back end Developer 18.0 155795
35 Male Master’s Degree Full Stack Engineer 9.0 132638
49 Female PhD Software Engineer Manager 22.0 178684
32 Male Bachelor’s Degree Senior Software Engineer 7.0 106218
54 Male Master’s Degree Full Stack Engineer 28.0 191239
26 Female Master’s Degree Front end Developer 2.0 65840
23 Male PhD Software Engineer Manager 0.0 52779
48 Female Master’s Degree Senior Software Engineer 23.0 185038
38 Male Bachelor’s Degree Back end Developer 14.0 136449
30 Female Master’s Degree Full Stack Engineer 6.0 110707
40 Male Master’s Degree Software Engineer Manager 17.0 151670
45 Female Bachelor’s Degree Senior Project Engineer 21.0 167015
36 Male Master’s Degree Full Stack Engineer 13.0 146508
52 Male PhD Software Engineer Manager 27.0 190596
31 Female Bachelor’s Degree Senior Software Engineer 6.0 104378
26 Male Master’s Degree Full Stack Engineer 3.0 70216
30 Female Master’s Degree Senior Project Engineer 5.0 101733
24 Male Bachelor’s Degree Back end Developer 1.0 55935
45 Male Master’s Degree Senior Software Engineer 21.0 180367
33 Female Master’s Degree Full Stack Engineer 9.0 135596
38 Male Bachelor’s Degree Front end Developer 11.0 136062
54 Female PhD Software Engineer Manager 32.0 191267
42 Male Master’s Degree Full Stack Engineer 19.0 177347
29 Female Bachelor’s Degree Full Stack Engineer 6.0 103579
45 Male Master’s Degree Software Engineer Manager 19.0 163780
36 Male Bachelor’s Degree Front end Developer 12.0 137878
30 Female Master’s Degree Senior Project Engineer 4.0 92438
28 Male Master’s Degree Full Stack Engineer 5.0 84181
46 Female PhD Software Engineer Manager 21.0 174821
34 Male Bachelor’s Degree Back end Developer 10.0 126520
44 Male Master’s Degree Senior Software Engineer 18.0 152168
55 Female PhD Software Engineer Manager 29.0 190543
35 Male Master’s Degree Full Stack Engineer 9.0 131547
54 Male Bachelor’s Degree Senior Project Engineer 28.0 192292
23 Female High School Back end Developer 1.0 52807
46 Male Master’s Degree Senior Software Engineer 20.0 174938
33 Female Bachelor’s Degree Full Stack Engineer 8.0 124071
26 Male Master’s Degree Front end Developer 3.0 73640
43 Female PhD Software Engineer Manager 19.0 156486
36 Male Master’s Degree Full Stack Engineer 11.0 138859
23 Female Bachelor’s Degree Senior Project Engineer 0.0 52831
49 Male Master’s Degree Software Engineer Manager 23.0 182392
35 Female Master’s Degree Full Stack Engineer 11.0 151078
31 Male Bachelor’s Degree Back end Developer 8.0 100679
54 Other High School Senior Software Engineer 29.0 158966
43 Male Master’s Degree Full Stack Engineer 20.0 167924
33 Female Master’s Degree Senior Project Engineer 10.0 113334
52 Female PhD Software Engineer Manager 29.0 194778
28 Male Bachelor’s Degree Full Stack Engineer 4.0 77606
36 Female Master’s Degree Senior Software Engineer 13.0 140010
43 Male Bachelor’s Degree Senior Project Engineer 20.0 142421
50 Female Master’s Degree Full Stack Engineer 24.0 192756
24 Male PhD Software Engineer Manager 1.0 106686
52 Male Master’s Degree Senior Software Engineer 27.0 186794
46 Female Bachelor’s Degree Back end Developer 19.0 150729
38 Male Master’s Degree Full Stack Engineer 15.0 171652
29 Male Bachelor’s Degree Senior Project Engineer 6.0 88552
33 Female Master’s Degree Front end Developer 9.0 119918
47 Male PhD Software Engineer Manager 21.0 174985
45 Female Master’s Degree Senior Software Engineer 23.0 174336
28 Male Bachelor’s Degree Back end Developer 4.0 72389
42 Female Master’s Degree Full Stack Engineer 14.0 163978
46 Male Bachelor’s Degree Senior Project Engineer 25.0 166958
38 Female PhD Software Engineer Manager 15.0 145052
54 Male Master’s Degree Senior Software Engineer 32.0 195270
33 Female Master’s Degree Full Stack Engineer 8.0 122970
27 Male High School Back end Developer 4.0 80247
50 Female Bachelor’s Degree Senior Project Engineer 25.0 177862
26 Male Master’s Degree Full Stack Engineer 4.0 91062
31 Female Master’s Degree Senior Software Engineer 6.0 114290
35 Male Bachelor’s Degree Front end Developer 10.0 128999
44 Female PhD Software Engineer Manager 18.0 162454
32 Male Master’s Degree Senior Project Engineer 8.0 122354
54 Male Bachelor’s Degree Full Stack Engineer 25.0 179756
26 Female Master’s Degree Front end Developer 3.0 73218
23 Male PhD Software Engineer Manager 0.0 52612
48 Female Master’s Degree Senior Software Engineer 24.0 184480
38 Male Bachelor’s Degree Back end Developer 12.0 132442
30 Female Master’s Degree Full Stack Engineer 5.0 102828
40 Male Master’s Degree Software Engineer Manager 16.0 150301
45 Female Bachelor’s Degree Senior Project Engineer 22.0 171468
36 Male Master’s Degree Full Stack Engineer 13.0 147326
52 Male PhD Software Engineer Manager 26.0 185982
31 Female Bachelor’s Degree Senior Software Engineer 7.0 108267
26 Male Master’s Degree Full Stack Engineer 4.0 91397
30 Female Master’s Degree Senior Project Engineer 5.0 100867
24 Male Bachelor’s Degree Back end Developer 2.0 64182
45 Male Master’s Degree Senior Software Engineer 22.0 182506
33 Female Master’s Degree Full Stack Engineer 9.0 136986
38 Male Bachelor’s Degree Front end Developer 11.0 136662
54 Female PhD Software Engineer Manager 32.0 191510
42 Male Master’s Degree Full Stack Engineer 19.0 177347
28 Female Bachelor’s Degree Senior Project Engineer 3.0 70397
34 Male Master’s Degree Software Engineer Manager 9.0 146075
46 Female Bachelor’s Degree Back end Developer 18.0 155795
35 Male Master’s Degree Full Stack Engineer 9.0 132638
49 Female PhD Software Engineer Manager 22.0 178684
32 Male Bachelor’s Degree Senior Software Engineer 7.0 106218
54 Male Master’s Degree Full Stack Engineer 28.0 191239
26 Female Master’s Degree Front end Developer 2.0 65840
23 Male PhD Software Engineer Manager 0.0 52779
48 Female Master’s Degree Senior Software Engineer 23.0 185038
38 Male Bachelor’s Degree Back end Developer 14.0 136449
30 Female Master’s Degree Full Stack Engineer 6.0 110707
40 Male Master’s Degree Software Engineer Manager 17.0 151670
45 Female Bachelor’s Degree Senior Project Engineer 21.0 167015
36 Male Master’s Degree Full Stack Engineer 13.0 146508
52 Male PhD Software Engineer Manager 27.0 190596
31 Female Bachelor’s Degree Senior Software Engineer 6.0 104378
26 Male Master’s Degree Full Stack Engineer 3.0 70216
30 Female Master’s Degree Senior Project Engineer 5.0 101733
24 Male Bachelor’s Degree Back end Developer 1.0 55935
45 Male Master’s Degree Senior Software Engineer 21.0 180367
33 Female Master’s Degree Full Stack Engineer 9.0 135596
38 Male Bachelor’s Degree Front end Developer 11.0 136062
54 Female PhD Software Engineer Manager 32.0 191267
42 Male Master’s Degree Full Stack Engineer 19.0 177347
28 Female Bachelor’s Degree Senior Project Engineer 3.0 70397
34 Male Master’s Degree Software Engineer Manager 9.0 146075
46 Female Bachelor’s Degree Back end Developer 18.0 155795
35 Male Master’s Degree Full Stack Engineer 9.0 132638
49 Female PhD Software Engineer Manager 22.0 178684
32 Male Bachelor’s Degree Senior Software Engineer 7.0 106218
54 Male Master’s Degree Full Stack Engineer 28.0 191239
26 Female Master’s Degree Front end Developer 2.0 65840
23 Male PhD Software Engineer Manager 0.0 52779
48 Female Master’s Degree Senior Software Engineer 23.0 185038
38 Male Bachelor’s Degree Back end Developer 14.0 136449
30 Female Master’s Degree Full Stack Engineer 6.0 110707
40 Male Master’s Degree Software Engineer Manager 17.0 151670
45 Female Bachelor’s Degree Senior Project Engineer 21.0 167015
36 Male Master’s Degree Full Stack Engineer 13.0 146508
52 Male PhD Software Engineer Manager 27.0 190596
31 Female Bachelor’s Degree Senior Software Engineer 6.0 104378
26 Male Master’s Degree Full Stack Engineer 3.0 70216
30 Female Master’s Degree Senior Project Engineer 5.0 101733
24 Male Bachelor’s Degree Back end Developer 1.0 55935
45 Male Master’s Degree Senior Software Engineer 21.0 180367
33 Female Master’s Degree Full Stack Engineer 9.0 135596
38 Male Bachelor’s Degree Front end Developer 11.0 136062
54 Female PhD Software Engineer Manager 32.0 191267
42 Male Master’s Degree Full Stack Engineer 19.0 177347
29 Female Bachelor’s Degree Full Stack Engineer 6.0 103579
45 Male Master’s Degree Software Engineer Manager 19.0 163780
36 Male Bachelor’s Degree Front end Developer 12.0 137878
30 Female Master’s Degree Senior Project Engineer 4.0 92438
28 Male Master’s Degree Full Stack Engineer 5.0 84181
46 Female PhD Software Engineer Manager 21.0 174821
34 Male Bachelor’s Degree Back end Developer 10.0 126520
44 Male Master’s Degree Senior Software Engineer 18.0 152168
55 Female PhD Software Engineer Manager 29.0 190543
35 Male Master’s Degree Full Stack Engineer 9.0 131547
54 Male Bachelor’s Degree Senior Project Engineer 28.0 192292
23 Female High School Back end Developer 1.0 52807
46 Male Master’s Degree Senior Software Engineer 20.0 174938
33 Female Bachelor’s Degree Full Stack Engineer 8.0 124071
26 Male Master’s Degree Front end Developer 3.0 73640
43 Female PhD Software Engineer Manager 19.0 156486
36 Male Master’s Degree Full Stack Engineer 11.0 138859
23 Female Bachelor’s Degree Senior Project Engineer 0.0 52831
49 Male Master’s Degree Software Engineer Manager 23.0 182392
35 Female Master’s Degree Full Stack Engineer 11.0 151078
31 Male Bachelor’s Degree Back end Developer 8.0 100679
54 Other High School Senior Software Engineer 29.0 158966
43 Male Master’s Degree Full Stack Engineer 20.0 167924
33 Female Master’s Degree Senior Project Engineer 10.0 113334
52 Female PhD Software Engineer Manager 29.0 194778
28 Male Bachelor’s Degree Full Stack Engineer 4.0 77606
36 Female Master’s Degree Senior Software Engineer 13.0 140010
43 Male Bachelor’s Degree Senior Project Engineer 20.0 142421
50 Female Master’s Degree Full Stack Engineer 24.0 192756
24 Male PhD Software Engineer Manager 1.0 106686
52 Male Master’s Degree Senior Software Engineer 27.0 186794
46 Female Bachelor’s Degree Back end Developer 19.0 150729
38 Male Master’s Degree Full Stack Engineer 15.0 171652
29 Male Bachelor’s Degree Senior Project Engineer 6.0 88552
33 Female Master’s Degree Front end Developer 9.0 119918
47 Male PhD Software Engineer Manager 21.0 174985
45 Female Master’s Degree Senior Software Engineer 23.0 174336
28 Male Bachelor’s Degree Back end Developer 4.0 72389
42 Female Master’s Degree Full Stack Engineer 14.0 163978
46 Male Bachelor’s Degree Senior Project Engineer 25.0 166958
38 Female PhD Software Engineer Manager 15.0 145052
54 Male Master’s Degree Senior Software Engineer 32.0 195270
33 Female Master’s Degree Full Stack Engineer 8.0 122970
27 Male High School Back end Developer 4.0 80247
50 Female Bachelor’s Degree Senior Project Engineer 25.0 177862
26 Male Master’s Degree Full Stack Engineer 4.0 91062
31 Female Master’s Degree Senior Software Engineer 6.0 114290
35 Male Bachelor’s Degree Front end Developer 10.0 128999
44 Female PhD Software Engineer Manager 18.0 162454
32 Male Master’s Degree Senior Project Engineer 8.0 122354
54 Male Bachelor’s Degree Full Stack Engineer 25.0 179756
26 Female Master’s Degree Front end Developer 3.0 73218
23 Male PhD Software Engineer Manager 0.0 52612
48 Female Master’s Degree Senior Software Engineer 23.0 185038
38 Male Bachelor’s Degree Back end Developer 12.0 132442
30 Female Master’s Degree Full Stack Engineer 5.0 102828
40 Male Master’s Degree Software Engineer Manager 16.0 150301
45 Female Bachelor’s Degree Senior Project Engineer 22.0 171468
36 Male Master’s Degree Full Stack Engineer 13.0 147326
52 Male PhD Software Engineer Manager 26.0 185982
31 Female Bachelor’s Degree Senior Software Engineer 7.0 108267
26 Male Master’s Degree Full Stack Engineer 3.0 91397
30 Female Master’s Degree Senior Project Engineer 5.0 100867
24 Male Bachelor’s Degree Back end Developer 2.0 64182
45 Male Master’s Degree Senior Software Engineer 22.0 182506
33 Female Master’s Degree Full Stack Engineer 9.0 136986
38 Male Bachelor’s Degree Front end Developer 11.0 136662
54 Female PhD Software Engineer Manager 32.0 191510
42 Male Master’s Degree Full Stack Engineer 19.0 177347
28 Female Bachelor’s Degree Senior Project Engineer 4.0 82944
48 Male PhD Software Engineer Manager 23.0 188288
36 Female Master’s Degree Senior Software Engineer 14.0 141090
43 Male Bachelor’s Degree Full Stack Engineer 19.0 152726
33 Female Master’s Degree Back end Developer 9.0 124141
26 Male Bachelor’s Degree Front end Developer 3.0 67556
50 Female Master’s Degree Senior Project Engineer 22.0 182768
41 Male PhD Software Engineer Manager 15.0 148727
29 Female Bachelor’s Degree Full Stack Engineer 6.0 91903
38 Male Master’s Degree Senior Software Engineer 14.0 147708
48 Female Bachelor’s Degree Senior Project Engineer 21.0 163209
31 Male Master’s Degree Full Stack Engineer 8.0 120288
45 Male PhD Software Engineer Manager 21.0 170226
35 Female Master’s Degree Senior Software Engineer 11.0 134979
42 Male Bachelor’s Degree Back end Developer 16.0 137489
27 Female Master’s Degree Full Stack Engineer 4.0 83577
33 Male Bachelor’s Degree Front end Developer 9.0 117904
36 Female Master’s Degree Senior Project Engineer 11.0 134482
54 Male PhD Software Engineer Manager 30.0 184660
30 Female Bachelor’s Degree Senior Software Engineer 5.0 100151
26 Male Master’s Degree Full Stack Engineer 3.0 88678
45 Female PhD Senior Project Engineer 21.0 181285
38 Male Master’s Degree Software Engineer Manager 16.0 154990
31 Female Bachelor’s Degree Full Stack Engineer 7.0 108204
42 Male Master’s Degree Senior Software Engineer 19.0 175684
28 Female Bachelor’s Degree Back end Developer 5.0 77766
48 Male PhD Software Engineer Manager 24.0 192211
36 Female Master’s Degree Full Stack Engineer 13.0 144647
43 Male Bachelor’s Degree Senior Project Engineer 20.0 162231
33 Female Master’s Degree Front end Developer 9.0 121120
26 Male Bachelor’s Degree Full Stack Engineer 4.0 79652
50 Female Master’s Degree Senior Software Engineer 21.0 177002
27 Male Master’s Degree Back end Developer 5.0 87584
38 Female Bachelor’s Degree Senior Project Engineer 13.0 131860
54 Male PhD Software Engineer Manager 28.0 182013
31 Female Master’s Degree Full Stack Engineer 7.0 108799
36 Male Bachelor’s Degree Senior Software Engineer 13.0 135378
45 Female Master’s Degree Software Engineer Manager 22.0 183530
42 Male Bachelor’s Degree Back end Developer 18.0 150901
28 Female Master’s Degree Full Stack Engineer 4.0 82697
48 Male PhD Senior Software Engineer 26.0 194638
36 Female Master’s Degree Senior Project Engineer 12.0 130356
43 Male Bachelor’s Degree Full Stack Engineer 18.0 152560
33 Female Master’s Degree Front end Developer 9.0 121432
26 Male Bachelor’s Degree Back end Developer 2.0 63789
50 Female Master’s Degree Senior Software Engineer 23.0 183690
41 Male PhD Software Engineer Manager 16.0 151310
29 Female Bachelor’s Degree Full Stack Engineer 6.0 100358
38 Male Master’s Degree Senior Software Engineer 15.0 148437
48 Female Bachelor’s Degree Senior Project Engineer 22.0 168691
31 Male Master’s Degree Full Stack Engineer 8.0 NA
28 Male Bachelor’s Degree Software Developer 1.0 50000
32 Female Master’s Degree Product Manager 5.0 100000
26 Male Bachelor’s Degree Software Engineer 2.0 60000
33 Female Master’s Degree Data Analyst 6.0 90000
29 Male Bachelor’s Degree Front End Developer 3.0 70000
42 Male PhD Director of Data Science 12.0 170000
36 Female Master’s Degree Data Scientist 8.0 130000
27 Male Bachelor’s Degree Software Developer 1.0 50000
34 Female Master’s Degree Product Manager 7.0 120000
29 Male Bachelor’s Degree Software Engineer 4.0 80000
41 Female PhD Senior Data Scientist 16.0 200000
34 Male Master’s Degree Data Analyst 8.0 100000
24 Female Bachelor’s Degree Software Developer 2.0 55000
36 Male PhD Director of Data Science 12.0 170000
30 Female Bachelor’s Degree Software Engineer 5.0 90000
29 Male Bachelor’s Degree Front End Developer 4.0 80000
42 Male Master’s Degree Product Manager 14.0 180000
26 Male Bachelor’s Degree Software Developer 2.0 60000
35 Female Master’s Degree Data Analyst 9.0 120000
27 Female Bachelor’s Degree Software Engineer 3.0 70000
48 Male PhD Director of Data Science 18.0 210000
34 Male Master’s Degree Data Scientist 9.0 140000
23 Female Bachelor’s Degree Software Engineer 1.0 50000
32 Male Master’s Degree Product Manager 7.0 110000
25 Female Master’s Degree Software Engineer 2.0 60000
37 Male Bachelor’s Degree Data Analyst 11.0 160000
28 Male Bachelor’s Degree Software Engineer 4.0 75000
41 Female PhD Director of Data Science 16.0 200000
34 Male Master’s Degree Data Analyst 8.0 100000
24 Female Bachelor’s Degree Software Developer 2.0 55000
36 Male PhD Senior Data Scientist 12.0 170000
30 Female Bachelor’s Degree Software Engineer 5.0 90000
29 Male Bachelor’s Degree Front End Developer 4.0 80000
42 Male Master’s Degree Product Manager 14.0 180000
26 Male Bachelor’s Degree Software Developer 2.0 60000
35 Female Master’s Degree Data Analyst 9.0 120000
27 Female Bachelor’s Degree Software Engineer 3.0 70000
48 Male PhD Director of Data Science 18.0 210000
34 Male Master’s Degree Data Scientist 9.0 140000
23 Female Bachelor’s Degree Software Engineer 1.0 50000
32 Male Master’s Degree Product Manager 7.0 110000
25 Female Master’s Degree Software Engineer 2.0 60000
37 Male Bachelor’s Degree Data Analyst 11.0 160000
28 Male Bachelor’s Degree Software Engineer 4.0 75000
41 Female PhD Director of Data Science 16.0 200000
34 Male Master’s Degree Data Analyst 8.0 100000
24 Female Bachelor’s Degree Software Developer 2.0 55000
36 Male PhD Senior Data Scientist 12.0 170000
30 Female Bachelor’s Degree Software Engineer 5.0 90000
29 Male Bachelor’s Degree Front End Developer 4.0 80000
42 Male Master’s Degree Product Manager 14.0 180000
26 Male Bachelor’s Degree Software Developer 2.0 60000
35 Female Master’s Degree Data Analyst 9.0 120000
27 Female Bachelor’s Degree Software Engineer 3.0 70000
48 Male PhD Director of Data Science 18.0 210000
34 Male Master’s Degree Data Scientist 9.0 140000
23 Female Bachelor’s Degree Software Engineer 1.0 50000
32 Male Master’s Degree Product Manager 7.0 110000
25 Female Master’s Degree Software Engineer 2.0 60000
37 Male Bachelor’s Degree Data Analyst 11.0 160000
28 Male Bachelor’s Degree Software Engineer 4.0 75000
41 Female PhD Director of Data Science 16.0 200000
34 Male Master’s Degree Data Analyst 8.0 100000
24 Female Bachelor’s Degree Software Developer 2.0 55000
36 Male PhD Senior Data Scientist 12.0 170000
30 Female Bachelor’s Degree Software Engineer 5.0 90000
29 Male Bachelor’s Degree Front End Developer 4.0 80000
42 Male Master’s Degree Product Manager 14.0 180000
26 Male Bachelor’s Degree Software Developer 2.0 60000
35 Female Master’s Degree Data Analyst 9.0 120000
27 Female Bachelor’s Degree Software Engineer 3.0 70000
48 Male PhD Director of Data Science 18.0 210000
34 Male Master’s Degree Data Scientist 9.0 140000
23 Female Bachelor’s Degree Software Engineer 1.0 50000
32 Male Master’s Degree Product Manager 7.0 110000
25 Female Master’s Degree Software Engineer 2.0 60000
37 Male Bachelor’s Degree Data Analyst 11.0 160000
28 Male Bachelor’s Degree Software Engineer 4.0 75000
41 Female PhD Director of Data Science 16.0 200000
34 Male Master’s Degree Data Analyst 8.0 100000
24 Female Bachelor’s Degree Software Developer 2.0 55000
36 Male PhD Senior Data Scientist 12.0 170000
30 Female Bachelor’s Degree Software Engineer 5.0 90000
29 Male Bachelor’s Degree Front End Developer 4.0 80000
42 Male Master’s Degree Product Manager 14.0 180000
26 Male Bachelor’s Degree Software Developer 2.0 60000
35 Female Master’s Degree Data Analyst 9.0 120000
27 Female Bachelor’s Degree Software Engineer 3.0 70000
48 Male PhD Director of Data Science 18.0 210000
34 Male Master’s Degree Data Scientist 9.0 140000
23 Female Bachelor’s Degree Software Engineer 1.0 50000
32 Male Master’s Degree Product Manager 7.0 110000
25 Female Master’s Degree Software Engineer 2.0 60000
37 Male Bachelor’s Degree Data Analyst 11.0 160000
28 Male Bachelor’s Degree Software Engineer 4.0 75000
41 Female PhD Director of Data Science 16.0 200000
34 Male Master’s Degree Data Analyst 8.0 100000
24 Female Bachelor’s Degree Software Developer 2.0 55000
36 Male PhD Senior Data Scientist 12.0 170000
30 Female Bachelor’s Degree Software Engineer 5.0 90000
29 Male Bachelor’s Degree Front End Developer 4.0 80000
42 Male Master’s Degree Product Manager 14.0 180000
26 Male Bachelor’s Degree Software Developer 2.0 60000
35 Female Master’s Degree Data Analyst 9.0 120000
27 Female Bachelor’s Degree Software Engineer 3.0 70000
48 Male PhD Director of Data Science 18.0 210000
34 Male Master’s Degree Data Scientist 9.0 140000
23 Female Bachelor’s Degree Software Engineer 1.0 50000
32 Male Master’s Degree Product Manager 7.0 110000
25 Female Master’s Degree Software Engineer 2.0 60000
37 Male Bachelor’s Degree Data Analyst 11.0 160000
28 Male Bachelor’s Degree Software Engineer 4.0 75000
41 Female PhD Director of Data Science 16.0 200000
34 Male Master’s Degree Data Analyst 8.0 100000
24 Female Bachelor’s Degree Software Developer 2.0 55000
36 Male PhD Senior Data Scientist 12.0 170000
30 Female Bachelor’s Degree Software Engineer 5.0 90000
29 Male Bachelor’s Degree Front End Developer 4.0 80000
42 Male Master’s Degree Product Manager 14.0 180000
26 Male Bachelor’s Degree Software Developer 2.0 60000
35 Female Master’s Degree Data Analyst 9.0 120000
27 Female Bachelor’s Degree Software Engineer 3.0 70000
48 Male PhD Director of Data Science 18.0 210000
34 Male Master’s Degree Data Scientist 9.0 140000
30 Female Bachelor’s Degree Software Engineer 4.0 80000
29 Male Bachelor’s Degree Front End Developer 3.0 70000
42 Male Master’s Degree Product Manager 14.0 180000
26 Male Bachelor’s Degree Software Developer 2.0 60000
35 Female Master’s Degree Data Analyst 9.0 120000
27 Female Bachelor’s Degree Software Engineer 3.0 70000
48 Male PhD Director of Data Science 18.0 210000
34 Male Master’s Degree Data Scientist 9.0 140000
23 Female Bachelor’s Degree Software Engineer 1.0 50000
32 Male Master’s Degree Product Manager 7.0 110000
25 Female Master’s Degree Software Engineer 2.0 60000
37 Male Bachelor’s Degree Data Analyst 11.0 160000
28 Male Bachelor’s Degree Software Engineer 4.0 75000
41 Female PhD Director of Data Science 16.0 200000
34 Male Master’s Degree Data Analyst 8.0 100000
24 Female Bachelor’s Degree Software Developer 2.0 55000
36 Male PhD Senior Data Scientist 12.0 170000
30 Female Bachelor’s Degree Software Engineer 5.0 90000
29 Male Bachelor’s Degree Front End Developer 4.0 80000
42 Male Master’s Degree Product Manager 14.0 180000
26 Male Bachelor’s Degree Software Developer 2.0 60000
35 Female Master’s Degree Data Analyst 9.0 120000
27 Female Bachelor’s Degree Software Engineer 3.0 70000
48 Male PhD Director of Data Science 18.0 210000
34 Male Master’s Degree Data Scientist 9.0 140000
23 Female Bachelor’s Degree Software Engineer 1.0 50000
32 Male Master’s Degree Product Manager 7.0 110000
25 Female Master’s Degree Software Engineer 2.0 60000
37 Male Bachelor’s Degree Data Analyst 11.0 160000
28 Male Bachelor’s Degree Software Engineer 4.0 75000
41 Female PhD Director of Data Science 16.0 200000
34 Male Master’s Degree Data Analyst 8.0 100000
24 Female Bachelor’s Degree Software Developer 2.0 55000
36 Male PhD Senior Data Scientist 12.0 170000
30 Female Bachelor’s Degree Software Engineer 5.0 90000
29 Male Bachelor’s Degree Front End Developer 4.0 80000
42 Male Master’s Degree Product Manager 14.0 180000
26 Male Bachelor’s Degree Software Developer 2.0 60000
35 Female Master’s Degree Data Analyst 9.0 120000
27 Female Bachelor’s Degree Software Engineer 3.0 70000
48 Male PhD Director of Data Science 18.0 210000
34 Male Master’s Degree Data Scientist 9.0 140000
23 Female Bachelor’s Degree Software Engineer 1.0 50000
32 Male Master’s Degree Product Manager 7.0 110000
25 Female Master’s Degree Software Engineer 2.0 60000
37 Male Bachelor’s Degree Data Analyst 11.0 160000
28 Male Bachelor’s Degree Software Engineer 4.0 75000
41 Female PhD Director of Data Science 16.0 200000
34 Male Master’s Degree Data Analyst 8.0 100000
24 Female Bachelor’s Degree Software Developer 2.0 55000
36 Male PhD Senior Data Scientist 12.0 170000
30 Female Bachelor’s Degree Software Engineer 5.0 90000
29 Male Bachelor’s Degree Front End Developer 4.0 80000
42 Male Master’s Degree Product Manager 14.0 180000
26 Male Bachelor’s Degree Software Developer 2.0 60000
35 Female Master’s Degree Data Analyst 9.0 120000
27 Female Bachelor’s Degree Software Engineer 3.0 70000
48 Male PhD Director of Data Science 18.0 210000
34 Male Master’s Degree Data Scientist 9.0 140000
23 Female Bachelor’s Degree Software Engineer 1.0 50000
32 Male Master’s Degree Product Manager 7.0 110000
25 Female Master’s Degree Software Engineer 2.0 60000
37 Male Bachelor’s Degree Data Analyst 11.0 160000
28 Male Bachelor’s Degree Software Engineer 4.0 75000
41 Female PhD Director of Data Science 16.0 200000
34 Male Master’s Degree Data Analyst 8.0 100000
24 Female Bachelor’s Degree Software Developer 2.0 55000
36 Male PhD Senior Data Scientist 12.0 170000
30 Female Bachelor’s Degree Software Engineer 5.0 90000
29 Male Bachelor’s Degree Front End Developer 4.0 80000
42 Male Master’s Degree Product Manager 14.0 180000
26 Male Bachelor’s Degree Software Developer 2.0 60000
35 Female Master’s Degree Data Analyst 9.0 120000
27 Female Bachelor’s Degree Software Engineer 3.0 70000
48 Male PhD Director of Data Science 18.0 210000
34 Male Master’s Degree Data Scientist 9.0 140000
23 Female Bachelor’s Degree Software Engineer 1.0 50000
32 Male Master’s Degree Product Manager 7.0 110000
25 Female Master’s Degree Software Engineer 2.0 60000
37 Male Bachelor’s Degree Data Analyst 11.0 160000
28 Male Bachelor’s Degree Software Engineer 4.0 75000
41 Female PhD Director of Data Science 16.0 200000
34 Male Master’s Degree Data Analyst 8.0 100000
24 Female Bachelor’s Degree Software Developer 2.0 55000
36 Male PhD Senior Data Scientist 12.0 170000
30 Female Bachelor’s Degree Software Engineer 5.0 90000
29 Male Bachelor’s Degree Front End Developer 4.0 80000
42 Male Master’s Degree Product Manager 14.0 180000
26 Male Bachelor’s Degree Software Developer 2.0 60000
35 Female Master’s Degree Data Analyst 9.0 120000
27 Female Bachelor’s Degree Software Engineer 3.0 70000
48 Male PhD Director of Data Science 18.0 210000
34 Male Master’s Degree Data Scientist 9.0 140000
23 Female Bachelor’s Degree Software Engineer 1.0 50000
32 Male Master’s Degree Product Manager 7.0 110000
25 Female Master’s Degree Software Engineer 2.0 60000
37 Male Bachelor’s Degree Data Analyst 11.0 160000
28 Male Bachelor’s Degree Software Engineer 4.0 75000
41 Female PhD Director of Data Science 16.0 200000
34 Male Master’s Degree Data Analyst 8.0 100000
24 Female Bachelor’s Degree Software Developer 2.0 55000
36 Male PhD Senior Data Scientist 12.0 170000
30 Female Bachelor’s Degree Software Engineer 5.0 90000
29 Male Bachelor’s Degree Front End Developer 4.0 80000
42 Male Master’s Degree Product Manager 14.0 180000
26 Male Bachelor’s Degree Software Developer 2.0 60000
35 Female Master’s Degree Data Analyst 9.0 120000
27 Female Bachelor’s Degree Software Engineer 3.0 70000
48 Male PhD Director of Data Science 18.0 210000
34 Male Master’s Degree Data Scientist 9.0 140000
23 Female Bachelor’s Degree Software Engineer 1.0 50000
32 Male Master’s Degree Product Manager 7.0 110000
25 Female Master’s Degree Software Engineer 2.0 60000
37 Male Bachelor’s Degree Data Analyst 11.0 160000
28 Male Bachelor’s Degree Software Engineer 4.0 75000
41 Female PhD Director of Data Science 16.0 200000
34 Male Master’s Degree Data Analyst 8.0 100000
24 Female Bachelor’s Degree Software Developer 2.0 55000
36 Male PhD Senior Data Scientist 12.0 170000
30 Female Bachelor’s Degree Software Engineer 5.0 90000
29 Male Bachelor’s Degree Front End Developer 4.0 80000
42 Male Master’s Degree Product Manager 14.0 180000
26 Male Bachelor’s Degree Software Developer 2.0 60000
35 Female Master’s Degree Data Analyst 9.0 120000
28 Male Master’s Degree Web Developer 5.0 80000
30 Female Bachelor’s Degree Junior HR Coordinator 4.0 60000
25 Male Bachelor’s Degree Junior Web Developer 2.0 50000
45 Female Master’s Degree Senior Human Resources Manager 18.0 160000
33 Male PhD Director of HR 9.0 120000
22 Female High School Junior HR Generalist 0.0 40000
36 Male Bachelor’s Degree Web Developer 10.0 100000
29 Female Master’s Degree Senior HR Generalist 4.0 75000
42 Male PhD Director of HR 16.0 140000
27 Female Bachelor’s Degree Junior HR Coordinator 2.0 50000
38 Male Master’s Degree Senior Human Resources Manager 11.0 110000
24 Female Bachelor’s Degree Web Developer 1.0 45000
31 Male High School Junior Web Developer 4.0 55000
39 Female PhD Director of HR 13.0 130000
26 Male Bachelor’s Degree Junior HR Generalist 2.0 50000
32 Female Master’s Degree Senior HR Generalist 7.0 80000
32 Male Bachelor’s Degree Junior Web Developer 2.0 45000
24 Female High School Junior HR Generalist 1.0 32000
45 Male PhD Senior Human Resources Manager 12.0 120000
29 Female Master’s Degree Web Developer 4.0 65000
38 Male Bachelor’s Degree Senior HR Generalist 8.0 95000
27 Female Master’s Degree Director of HR 5.0 80000
31 Female High School Junior HR Coordinator 3.0 38000
42 Male Master’s Degree Web Developer 10.0 110000
26 Female Bachelor’s Degree Junior Web Developer 2.0 45000
36 Male Master’s Degree Senior HR Generalist 7.0 89000
28 Male High School Junior HR Generalist 1.0 32000
33 Female Bachelor’s Degree Web Developer 5.0 70000
46 Male PhD Director of HR 15.0 150000
25 Female Bachelor’s Degree Junior Web Developer 1.0 40000
37 Female Master’s Degree Senior Human Resources Manager 9.0 105000
30 Male Master’s Degree Web Developer 4.0 65000
43 Female PhD Director of HR 14.0 140000
34 Male Bachelor’s Degree Junior Web Developer 3.0 50000
26 Female High School Junior HR Generalist 2.0 35000
41 Male Master’s Degree Senior HR Generalist 11.0 115000
29 Female Master’s Degree Web Developer 5.0 70000
35 Male Bachelor’s Degree Web Developer 6.0 80000
27 Female High School Junior HR Coordinator 1.0 30000
40 Male PhD Director of HR 13.0 135000
23 Female Bachelor’s Degree Junior Web Developer 1.0 40000
39 Male Master’s Degree Senior HR Generalist 10.0 105000
31 Male High School Junior HR Generalist 2.0 35000
44 Female PhD Senior Human Resources Manager 12.0 120000
28 Male Master’s Degree Web Developer 3.0 55000
32 Female Bachelor’s Degree Junior Web Developer 2.0 45000
45 Male Master’s Degree Director of HR 14.0 140000
26 Female Bachelor’s Degree Web Developer 3.0 55000
38 Male PhD Senior Human Resources Manager 11.0 115000
27 Female Master’s Degree Senior HR Generalist 4.0 70000
33 Male High School Junior HR Coordinator 3.0 38000
42 Female Master’s Degree Director of HR 13.0 135000
29 Male Bachelor’s Degree Junior Web Developer 2.0 45000
36 Female Master’s Degree Web Developer 7.0 85000
30 Male High School Junior HR Generalist 1.0 32000
43 Female PhD Senior Human Resources Manager 15.0 150000
34 Male Bachelor’s Degree Web Developer 4.0 65000
25 Female Master’s Degree Junior HR Generalist 1.0 32000
37 Male PhD Director of HR 12.0 120000
24 Female Bachelor’s Degree Junior Web Developer 1.0 40000
39 Male Master’s Degree Senior HR Generalist 9.0 95000
31 Male High School Junior HR Generalist 2.0 35000
44 Female PhD Director of HR 14.0 140000
28 Male Bachelor’s Degree Web Developer 3.0 55000
32 Female Master’s Degree Senior Human Resources Manager 6.0 80000
45 Male PhD Director of HR 13.0 135000
26 Female Bachelor’s Degree Junior Web Developer 2.0 45000
38 Male Master’s Degree Senior HR Generalist 8.0 95000
27 Female High School Junior HR Generalist 1.0 32000
33 Male Bachelor’s Degree Web Developer 5.0 70000
42 Female Master’s Degree Director of HR 12.0 120000
29 Male Master’s Degree Senior Human Resources Manager 4.0 70000
36 Female Master’s Degree Web Developer 7.0 85000
30 Male High School Junior HR Coordinator 2.0 33000
43 Female PhD Senior Human Resources Manager 15.0 150000
34 Male Bachelor’s Degree Junior Web Developer 3.0 50000
25 Female Master’s Degree Junior HR Generalist 1.0 32000
37 Male PhD Director of HR 11.0 115000
24 Female Bachelor’s Degree Web Developer 1.0 40000
39 Male Master’s Degree Senior HR Generalist 10.0 105000
31 Male High School Junior HR Generalist 2.0 35000
44 Female PhD Director of HR 13.0 135000
28 Male Bachelor’s Degree Web Developer 4.0 65000
32 Female Master’s Degree Senior Human Resources Manager 6.0 80000
45 Male PhD Director of HR 14.0 140000
26 Female Bachelor’s Degree Junior Web Developer 2.0 45000
38 Male Master’s Degree Senior HR Generalist 8.0 95000
27 Female High School Junior HR Generalist 1.0 32000
33 Male Bachelor’s Degree Web Developer 5.0 70000
42 Female Master’s Degree Director of HR 12.0 120000
29 Male Master’s Degree Senior Human Resources Manager 4.0 70000
36 Female Master’s Degree Web Developer 7.0 85000
30 Male High School Junior HR Coordinator 2.0 33000
43 Female PhD Senior Human Resources Manager 15.0 150000
34 Male Bachelor’s Degree Junior Web Developer 3.0 50000
25 Female Master’s Degree Junior HR Generalist 1.0 32000
37 Male PhD Director of HR 11.0 115000
24 Female Bachelor’s Degree Web Developer 1.0 40000
39 Male Master’s Degree Senior HR Generalist 10.0 105000
31 Male High School Junior HR Generalist 2.0 35000
44 Female PhD Director of HR 13.0 135000
28 Male Bachelor’s Degree Web Developer 4.0 65000
32 Female Master’s Degree Senior Human Resources Manager 6.0 80000
45 Male PhD Director of HR 14.0 140000
26 Female Bachelor’s Degree Junior Web Developer 2.0 45000
38 Male Master’s Degree Senior HR Generalist 8.0 95000
27 Female High School Junior HR Generalist 1.0 32000
33 Male Bachelor’s Degree Web Developer 5.0 70000
42 Female Master’s Degree Director of HR 12.0 120000
29 Male Master’s Degree Senior Human Resources Manager 4.0 70000
36 Female Master’s Degree Web Developer 7.0 85000
30 Male High School Junior HR Coordinator 2.0 33000
43 Female PhD Senior Human Resources Manager 15.0 150000
34 Male Bachelor’s Degree Junior Web Developer 3.0 50000
25 Female Master’s Degree Junior HR Generalist 1.0 32000
37 Male PhD Director of HR 11.0 115000
24 Female Bachelor’s Degree Web Developer 1.0 40000
39 Male Master’s Degree Senior HR Generalist 10.0 105000
31 Male High School Junior HR Generalist 2.0 35000
44 Female PhD Director of HR 13.0 135000
28 Male Bachelor’s Degree Web Developer 4.0 65000
32 Female Master’s Degree Senior Human Resources Manager 6.0 80000
45 Male PhD Director of HR 14.0 140000
26 Female Bachelor’s Degree Junior Web Developer 2.0 45000
38 Male Master’s Degree Senior HR Generalist 8.0 95000
27 Female High School Junior HR Generalist 1.0 32000
33 Male Bachelor’s Degree Web Developer 5.0 70000
42 Female Master’s Degree Director of HR 12.0 120000
29 Male Master’s Degree Senior Human Resources Manager 4.0 70000
36 Female Master’s Degree Web Developer 7.0 85000
30 Male High School Junior HR Coordinator 2.0 33000
43 Female PhD Senior Human Resources Manager 15.0 150000
34 Male Bachelor’s Degree Junior Web Developer 3.0 50000
25 Female Master’s Degree Junior HR Generalist 1.0 32000
37 Male PhD Director of HR 11.0 115000
32 Male Bachelor’s Degree Junior Web Developer 2.0 45000
24 Female High School Junior HR Generalist 1.0 32000
45 Male PhD Senior Human Resources Manager 12.0 120000
29 Female Master’s Degree Web Developer 4.0 65000
38 Male Bachelor’s Degree Senior HR Generalist 8.0 95000
27 Female Master’s Degree Director of HR 5.0 80000
31 Female High School Junior HR Coordinator 3.0 38000
42 Male Master’s Degree Web Developer 10.0 110000
26 Female Bachelor’s Degree Junior Web Developer 2.0 45000
36 Male Master’s Degree Senior HR Generalist 7.0 89000
28 Male High School Junior HR Generalist 1.0 32000
33 Female Bachelor’s Degree Web Developer 5.0 70000
46 Male PhD Director of HR 15.0 150000
25 Female Bachelor’s Degree Junior Web Developer 1.0 40000
37 Female Master’s Degree Senior Human Resources Manager 9.0 105000
30 Male Master’s Degree Web Developer 4.0 65000
43 Female PhD Director of HR 14.0 140000
34 Male Bachelor’s Degree Junior Web Developer 3.0 50000
26 Female High School Junior HR Generalist 2.0 35000
41 Male Master’s Degree Senior HR Generalist 11.0 115000
29 Female Master’s Degree Web Developer 5.0 70000
35 Male Bachelor’s Degree Web Developer 6.0 80000
27 Female High School Junior HR Coordinator 1.0 30000
40 Male PhD Director of HR 13.0 135000
23 Female Bachelor’s Degree Junior Web Developer 1.0 40000
39 Male Master’s Degree Senior HR Generalist 10.0 105000
31 Male High School Junior HR Generalist 2.0 35000
44 Female PhD Senior Human Resources Manager 12.0 120000
28 Male Master’s Degree Web Developer 3.0 55000
32 Female Bachelor’s Degree Junior Web Developer 2.0 45000
45 Male Master’s Degree Director of HR 14.0 140000
26 Female Bachelor’s Degree Web Developer 3.0 55000
38 Male PhD Senior Human Resources Manager 11.0 115000
27 Female Master’s Degree Senior HR Generalist 4.0 70000
33 Male High School Junior HR Coordinator 3.0 38000
42 Female Master’s Degree Director of HR 13.0 135000
29 Male Bachelor’s Degree Junior Web Developer 2.0 45000
36 Female Master’s Degree Web Developer 7.0 85000
30 Male High School Junior HR Generalist 1.0 32000
43 Female PhD Senior Human Resources Manager 15.0 150000
34 Male Bachelor’s Degree Web Developer 4.0 65000
25 Female Master’s Degree Junior HR Generalist 1.0 32000
37 Male PhD Director of HR 12.0 120000
24 Female Bachelor’s Degree Junior Web Developer 1.0 40000
39 Male Master’s Degree Senior HR Generalist 9.0 95000
31 Male High School Junior HR Generalist 2.0 35000
44 Female PhD Director of HR 14.0 140000
28 Male Bachelor’s Degree Web Developer 3.0 55000
32 Female Master’s Degree Senior Human Resources Manager 6.0 80000
45 Male PhD Director of HR 13.0 135000
26 Female Bachelor’s Degree Junior Web Developer 2.0 45000
38 Male Master’s Degree Senior HR Generalist 8.0 95000
27 Female High School Junior HR Generalist 1.0 32000
33 Male Bachelor’s Degree Web Developer 5.0 70000
42 Female Master’s Degree Director of HR 12.0 120000
29 Male Master’s Degree Senior Human Resources Manager 4.0 70000
36 Female Master’s Degree Web Developer 7.0 85000
30 Male High School Junior HR Coordinator 2.0 33000
43 Female PhD Senior Human Resources Manager 15.0 150000
34 Male Bachelor’s Degree Junior Web Developer 3.0 50000
25 Female Master’s Degree Junior HR Generalist 1.0 32000
37 Male PhD Director of HR 11.0 115000
24 Female Bachelor’s Degree Web Developer 1.0 40000
39 Male Master’s Degree Senior HR Generalist 10.0 105000
31 Male High School Junior HR Generalist 2.0 35000
44 Female PhD Director of HR 13.0 135000
28 Male Bachelor’s Degree Web Developer 4.0 65000
32 Female Master’s Degree Senior Human Resources Manager 6.0 80000
45 Male PhD Director of HR 14.0 140000
26 Female Bachelor’s Degree Junior Web Developer 2.0 45000
38 Male Master’s Degree Senior HR Generalist 8.0 95000
27 Female High School Junior HR Generalist 1.0 32000
33 Male Bachelor’s Degree Web Developer 5.0 70000
42 Female Master’s Degree Director of HR 12.0 120000
29 Male Master’s Degree Senior Human Resources Manager 4.0 70000
36 Female Master’s Degree Web Developer 7.0 85000
30 Male High School Junior HR Coordinator 2.0 33000
43 Female PhD Senior Human Resources Manager 15.0 150000
34 Male Bachelor’s Degree Junior Web Developer 3.0 50000
25 Female Master’s Degree Junior HR Generalist 1.0 32000
37 Male PhD Director of HR 11.0 115000
24 Female Bachelor’s Degree Web Developer 1.0 40000
39 Male Master’s Degree Senior HR Generalist 10.0 105000
31 Male High School Junior HR Generalist 2.0 35000
44 Female PhD Director of HR 13.0 135000
28 Male Bachelor’s Degree Web Developer 4.0 65000
32 Female Master’s Degree Senior Human Resources Manager 6.0 80000
45 Male PhD Director of HR 14.0 140000
26 Female Bachelor’s Degree Junior Web Developer 2.0 45000
38 Male Master’s Degree Senior HR Generalist 8.0 95000
27 Female High School Junior HR Generalist 1.0 32000
33 Male Bachelor’s Degree Web Developer 5.0 70000
42 Female Master’s Degree Director of HR 12.0 120000
29 Male Master’s Degree Senior Human Resources Manager 4.0 70000
36 Female Master’s Degree Web Developer 7.0 85000
30 Male High School Junior HR Coordinator 2.0 33000
43 Female PhD Senior Human Resources Manager 15.0 150000
34 Male Bachelor’s Degree Junior Web Developer 3.0 50000
25 Female Master’s Degree Junior HR Generalist 1.0 32000
37 Male PhD Director of HR 11.0 115000
24 Female Bachelor’s Degree Web Developer 1.0 40000
39 Male Master’s Degree Senior HR Generalist 10.0 105000
31 Male High School Junior HR Generalist 2.0 35000
44 Female PhD Director of HR 13.0 135000
28 Male Bachelor’s Degree Web Developer 4.0 65000
32 Female Master’s Degree Senior Human Resources Manager 6.0 80000
45 Male PhD Director of HR 14.0 140000
26 Female Bachelor’s Degree Junior Web Developer 2.0 45000
38 Male Master’s Degree Senior HR Generalist 8.0 95000
27 Female High School Junior HR Generalist 1.0 32000
33 Male Bachelor’s Degree Web Developer 5.0 70000
42 Female Master’s Degree Director of HR 12.0 120000
29 Male Master’s Degree Senior Human Resources Manager 4.0 70000
36 Female Master’s Degree Web Developer 7.0 85000
30 Male High School Junior HR Coordinator 2.0 33000
43 Female PhD Senior Human Resources Manager 15.0 150000
34 Male Bachelor’s Degree Junior Web Developer 3.0 50000
25 Female Master’s Degree Junior HR Generalist 1.0 32000
37 Male PhD Director of HR 11.0 115000
28 Male Bachelor’s Degree Software Engineer 3.0 60000
37 Female Master’s Degree Marketing Manager 9.0 100000
43 Male PhD Data Scientist 15.0 150000
31 Female Bachelor’s Degree Human Resources Coordinator 4.0 55000
24 Male High School Junior Sales Associate 1.0 30000
29 Female Master’s Degree Software Developer 5.0 70000
35 Male Bachelor’s Degree Operations Manager 8.0 90000
26 Female Master’s Degree Marketing Coordinator 2.0 40000
42 Male PhD Data Scientist 12.0 130000
34 Female Bachelor’s Degree Human Resources Manager 6.0 75000
27 Male High School Junior Sales Associate 2.0 35000
38 Female Master’s Degree Marketing Manager 10.0 110000
30 Male Bachelor’s Degree Software Engineer 4.0 65000
45 Male PhD Data Scientist 18.0 180000
25 Female Bachelor’s Degree Junior Software Developer 1.0 35000
40 Female Master’s Degree Human Resources Manager 11.0 120000
33 Male Bachelor’s Degree Operations Manager 6.0 75000
29 Female High School Junior Sales Associate 1.0 30000
44 Male PhD Data Scientist 16.0 160000
26 Male Bachelor’s Degree Software Developer 3.0 60000
36 Female Master’s Degree Marketing Coordinator 8.0 85000
31 Male Bachelor’s Degree Operations Manager 5.0 70000
27 Female Master’s Degree Human Resources Coordinator 3.0 50000
42 Male PhD Data Scientist 13.0 140000
34 Female Bachelor’s Degree Human Resources Manager 6.0 75000
28 Male High School Junior Sales Associate 2.0 35000
39 Female Master’s Degree Marketing Manager 10.0 110000
31 Male Bachelor’s Degree Software Engineer 4.0 65000
45 Male PhD Data Scientist 18.0 180000
25 Female Bachelor’s Degree Junior Software Developer 1.0 35000
40 Female Master’s Degree Human Resources Manager 11.0 120000
33 Male Bachelor’s Degree Operations Manager 6.0 75000
29 Female High School Junior Sales Associate 1.0 30000
44 Male PhD Data Scientist 16.0 160000
26 Male Bachelor’s Degree Software Developer 3.0 60000
36 Female Master’s Degree Marketing Coordinator 8.0 85000
31 Male Bachelor’s Degree Operations Manager 5.0 70000
27 Female Master’s Degree Human Resources Coordinator 3.0 50000
42 Male PhD Data Scientist 13.0 140000
34 Female Bachelor’s Degree Human Resources Manager 6.0 75000
28 Male High School Junior Sales Associate 2.0 35000
39 Female Master’s Degree Marketing Manager 10.0 110000
31 Male Bachelor’s Degree Software Engineer 4.0 65000
45 Male PhD Data Scientist 18.0 180000
25 Female Bachelor’s Degree Junior Software Developer 1.0 35000
40 Female Master’s Degree Human Resources Manager 11.0 120000
33 Male Bachelor’s Degree Operations Manager 6.0 75000
29 Female High School Junior Sales Associate 1.0 30000
44 Male PhD Data Scientist 16.0 160000
26 Male Bachelor’s Degree Software Developer 3.0 60000
36 Female Master’s Degree Marketing Coordinator 8.0 85000
31 Male Bachelor’s Degree Operations Manager 5.0 70000
27 Female Master’s Degree Human Resources Coordinator 3.0 50000
42 Male PhD Data Scientist 13.0 140000
34 Female Bachelor’s Degree Human Resources Manager 6.0 75000
28 Male High School Junior Sales Associate 2.0 35000
39 Female Master’s Degree Marketing Manager 10.0 110000
31 Male Bachelor’s Degree Software Engineer 4.0 65000
45 Male PhD Data Scientist 18.0 180000
25 Female Bachelor’s Degree Junior Software Developer 1.0 35000
40 Female Master’s Degree Human Resources Manager 11.0 120000
33 Male Bachelor’s Degree Operations Manager 6.0 75000
29 Female High School Junior Sales Associate 1.0 30000
44 Male PhD Data Scientist 16.0 160000
26 Male Bachelor’s Degree Software Developer 3.0 60000
36 Female Master’s Degree Marketing Coordinator 8.0 85000
31 Male Bachelor’s Degree Operations Manager 5.0 70000
27 Female Master’s Degree Human Resources Coordinator 3.0 50000
42 Male PhD Data Scientist 13.0 140000
34 Female Bachelor’s Degree Human Resources Manager 6.0 75000
28 Male High School Junior Sales Associate 2.0 35000
39 Female Master’s Degree Marketing Manager 10.0 110000
31 Male Bachelor’s Degree Software Engineer 4.0 65000
45 Male PhD Data Scientist 18.0 180000
25 Female Bachelor’s Degree Junior Software Developer 1.0 35000
40 Female Master’s Degree Human Resources Manager 11.0 120000
33 Male Bachelor’s Degree Operations Manager 6.0 75000
29 Female High School Junior Sales Associate 1.0 30000
44 Male PhD Data Scientist 16.0 160000
26 Male Bachelor’s Degree Software Developer 3.0 60000
36 Female Master’s Degree Marketing Coordinator 8.0 85000
31 Male Bachelor’s Degree Operations Manager 5.0 70000
27 Female Master’s Degree Human Resources Coordinator 3.0 50000
42 Male PhD Data Scientist 13.0 140000
34 Female Bachelor’s Degree Human Resources Manager 6.0 75000
28 Male High School Junior Sales Associate 2.0 35000
39 Female Master’s Degree Marketing Manager 10.0 110000
31 Male Bachelor’s Degree Software Engineer 4.0 65000
45 Male PhD Data Scientist 18.0 180000
25 Female Bachelor’s Degree Junior Software Developer 1.0 35000
40 Female Master’s Degree Human Resources Manager 11.0 120000
33 Male Bachelor’s Degree Operations Manager 6.0 75000
29 Female High School Junior Sales Associate 1.0 30000
44 Male PhD Data Scientist 16.0 160000
26 Male Bachelor’s Degree Software Developer 3.0 60000
36 Female Master’s Degree Marketing Coordinator 8.0 85000
31 Male Bachelor’s Degree Operations Manager 5.0 70000
27 Female Master’s Degree Human Resources Coordinator 3.0 50000
42 Male PhD Data Scientist 13.0 140000
34 Female Bachelor’s Degree Human Resources Manager 6.0 75000
28 Male High School Junior Sales Associate 2.0 35000
39 Female Master’s Degree Marketing Manager 10.0 110000
31 Male Bachelor’s Degree Software Engineer 4.0 65000
45 Male PhD Data Scientist 18.0 180000
25 Female Bachelor’s Degree Junior Software Developer 1.0 35000
40 Female Master’s Degree Human Resources Manager 11.0 120000
33 Male Bachelor’s Degree Operations Manager 6.0 75000
29 Female High School Junior Sales Associate 1.0 30000
44 Male PhD Data Scientist 16.0 160000
26 Male Bachelor’s Degree Software Developer 3.0 60000
36 Female Master’s Degree Marketing Coordinator 8.0 85000
31 Male Bachelor’s Degree Operations Manager 5.0 70000
27 Female Master’s Degree Human Resources Coordinator 3.0 50000
42 Male PhD Data Scientist 13.0 140000
34 Female Bachelor’s Degree Human Resources Manager 6.0 75000
28 Male High School Junior Sales Associate 2.0 35000
39 Female Master’s Degree Marketing Manager 10.0 110000
31 Male Bachelor’s Degree Software Engineer 4.0 65000
45 Male PhD Data Scientist 18.0 180000
25 Female Bachelor’s Degree Junior Software Developer 1.0 35000
40 Female Master’s Degree Human Resources Manager 11.0 120000
33 Male Bachelor’s Degree Operations Manager 6.0 75000
29 Female High School Junior Sales Associate 1.0 30000
44 Male PhD Data Scientist 16.0 160000
26 Male Bachelor’s Degree Software Developer 3.0 60000
27 Male Bachelor’s Degree Software Engineer 3.0 60000
38 Female Master’s Degree Marketing Manager 9.0 100000
44 Male PhD Data Scientist 15.0 150000
30 Female Bachelor’s Degree Human Resources Coordinator 4.0 55000
23 Male High School Junior Sales Associate 1.0 30000
28 Female Master’s Degree Software Developer 5.0 70000
34 Male Bachelor’s Degree Operations Manager 8.0 90000
25 Female Master’s Degree Marketing Coordinator 2.0 40000
41 Male PhD Data Scientist 12.0 130000
33 Female Bachelor’s Degree Human Resources Manager 6.0 75000
26 Male High School Junior Sales Associate 2.0 35000
37 Female Master’s Degree Marketing Manager 10.0 110000
29 Male Bachelor’s Degree Software Engineer 4.0 65000
46 Male PhD Data Scientist 18.0 180000
26 Female Bachelor’s Degree Junior Software Developer 1.0 35000
39 Female Master’s Degree Human Resources Manager 11.0 120000
32 Male Bachelor’s Degree Operations Manager 6.0 75000
28 Female High School Junior Sales Associate 1.0 30000
43 Male PhD Data Scientist 16.0 160000
27 Male Bachelor’s Degree Software Developer 3.0 60000
35 Female Master’s Degree Marketing Coordinator 8.0 85000
30 Male Bachelor’s Degree Operations Manager 5.0 70000
26 Female Master’s Degree Human Resources Coordinator 3.0 50000
41 Male PhD Data Scientist 13.0 140000
33 Female Bachelor’s Degree Human Resources Manager 6.0 75000
27 Male High School Junior Sales Associate 2.0 35000
38 Female Master’s Degree Marketing Manager 10.0 110000
29 Male Bachelor’s Degree Software Engineer 4.0 65000
46 Male PhD Data Scientist 18.0 180000
26 Female Bachelor’s Degree Junior Software Developer 1.0 35000
39 Female Master’s Degree Human Resources Manager 11.0 120000
32 Male Bachelor’s Degree Operations Manager 6.0 75000
28 Female High School Junior Sales Associate 1.0 30000
43 Male PhD Data Scientist 16.0 160000
27 Male Bachelor’s Degree Software Developer 3.0 60000
35 Female Master’s Degree Marketing Coordinator 8.0 85000
30 Male Bachelor’s Degree Operations Manager 5.0 70000
26 Female Master’s Degree Human Resources Coordinator 3.0 50000
41 Male PhD Data Scientist 13.0 140000
33 Female Bachelor’s Degree Human Resources Manager 6.0 75000
27 Male High School Junior Sales Associate 2.0 35000
38 Female Master’s Degree Marketing Manager 10.0 110000
29 Male Bachelor’s Degree Software Engineer 4.0 65000
46 Male PhD Data Scientist 18.0 180000
26 Female Bachelor’s Degree Junior Software Developer 1.0 35000
39 Female Master’s Degree Human Resources Manager 11.0 120000
32 Male Bachelor’s Degree Operations Manager 6.0 75000
28 Female High School Junior Sales Associate 1.0 30000
43 Male PhD Data Scientist 16.0 160000
27 Male Bachelor’s Degree Software Developer 3.0 60000
35 Female Master’s Degree Marketing Coordinator 8.0 85000
30 Male Bachelor’s Degree Operations Manager 5.0 70000
26 Female Master’s Degree Human Resources Coordinator 3.0 50000
41 Male PhD Data Scientist 13.0 140000
33 Female Bachelor’s Degree Human Resources Manager 6.0 75000
27 Male High School Junior Sales Associate 2.0 35000
38 Female Master’s Degree Marketing Manager 10.0 110000
29 Male Bachelor’s Degree Software Engineer 4.0 65000
46 Male PhD Data Scientist 18.0 180000
26 Female Bachelor’s Degree Junior Software Developer 1.0 35000
39 Female Master’s Degree Human Resources Manager 11.0 120000
32 Male Bachelor’s Degree Operations Manager 6.0 75000
28 Female High School Junior Sales Associate 1.0 30000
43 Male PhD Data Scientist 16.0 160000
27 Male Bachelor’s Degree Software Developer 3.0 60000
35 Female Master’s Degree Marketing Coordinator 8.0 85000
30 Male Bachelor’s Degree Operations Manager 5.0 70000
26 Female Master’s Degree Human Resources Coordinator 3.0 50000
41 Male PhD Data Scientist 13.0 140000
33 Female Bachelor’s Degree Human Resources Manager 6.0 75000
27 Male High School Junior Sales Associate 2.0 35000
38 Female Master’s Degree Marketing Manager 10.0 110000
29 Male Bachelor’s Degree Software Engineer 4.0 65000
46 Male PhD Data Scientist 18.0 180000
26 Female Bachelor’s Degree Junior Software Developer 1.0 35000
39 Female Master’s Degree Human Resources Manager 11.0 120000
32 Male Bachelor’s Degree Operations Manager 6.0 75000
28 Female High School Junior Sales Associate 1.0 30000
43 Male PhD Data Scientist 16.0 160000
27 Male Bachelor’s Degree Software Developer 3.0 60000
35 Female Master’s Degree Marketing Coordinator 8.0 85000
30 Male Bachelor’s Degree Operations Manager 5.0 70000
26 Female Master’s Degree Human Resources Coordinator 3.0 50000
41 Male PhD Data Scientist 13.0 140000
33 Female Bachelor’s Degree Human Resources Manager 6.0 75000
27 Male High School Junior Sales Associate 2.0 35000
38 Female Master’s Degree Marketing Manager 10.0 110000
29 Male Bachelor’s Degree Software Engineer 4.0 65000
46 Male PhD Data Scientist 18.0 180000
26 Female Bachelor’s Degree Junior Software Developer 1.0 35000
39 Female Master’s Degree Human Resources Manager 11.0 120000
32 Male Bachelor’s Degree Operations Manager 6.0 75000
28 Female High School Junior Sales Associate 1.0 30000
43 Male PhD Data Scientist 16.0 160000
27 Male Bachelor’s Degree Software Developer 3.0 60000
35 Female Master’s Degree Marketing Coordinator 8.0 85000
30 Male Bachelor’s Degree Operations Manager 5.0 70000
26 Female Master’s Degree Human Resources Coordinator 3.0 50000
41 Male PhD Data Scientist 13.0 140000
33 Female Bachelor’s Degree Human Resources Manager 6.0 75000
27 Male High School Junior Sales Associate 2.0 35000
38 Female Master’s Degree Marketing Manager 10.0 110000
29 Male Bachelor’s Degree Software Engineer 4.0 65000
46 Male PhD Data Scientist 18.0 180000
26 Female Bachelor’s Degree Junior Software Developer 1.0 35000
39 Female Master’s Degree Human Resources Manager 11.0 120000
32 Male Bachelor’s Degree Operations Manager 6.0 75000
28 Female High School Junior Sales Associate 1.0 30000
43 Male PhD Data Scientist 16.0 160000
27 Male Bachelor’s Degree Software Developer 3.0 60000
35 Female Master’s Degree Marketing Coordinator 8.0 85000
30 Male Bachelor’s Degree Operations Manager 5.0 70000
26 Female Master’s Degree Human Resources Coordinator 3.0 50000
41 Male PhD Data Scientist 13.0 140000
33 Female Bachelor’s Degree Human Resources Manager 6.0 75000
27 Male High School Junior Sales Associate 2.0 35000
38 Female Master’s Degree Marketing Manager 10.0 110000
29 Male Bachelor’s Degree Software Engineer 4.0 65000
46 Male PhD Data Scientist 18.0 180000
26 Female Bachelor’s Degree Junior Software Developer 1.0 35000
39 Female Master’s Degree Human Resources Manager 11.0 120000
32 Male Bachelor’s Degree Operations Manager 6.0 75000
28 Female High School Junior Sales Associate 1.0 30000
43 Male PhD Data Scientist 16.0 160000
27 Male Bachelor’s Degree Software Developer 3.0 60000
24 Male Bachelor’s Degree Software Engineer 2.0 55000
32 Female Master’s Degree Marketing Manager 7.0 90000
45 Male PhD Data Scientist 16.0 160000
28 Female Bachelor’s Degree Human Resources Coordinator 4.0 60000
22 Male High School Junior Sales Associate 1.0 25000
29 Female Master’s Degree Software Developer 5.0 70000
36 Male Bachelor’s Degree Operations Manager 8.0 100000
27 Female Bachelor’s Degree Marketing Coordinator 3.0 45000
42 Male PhD Data Scientist 14.0 140000
34 Female Bachelor’s Degree Human Resources Manager 6.0 75000
25 Male High School Junior Sales Associate 2.0 30000
39 Female Master’s Degree Marketing Manager 11.0 120000
30 Male Bachelor’s Degree Software Engineer 4.0 65000
47 Male PhD Data Scientist 19.0 190000
25 Female Bachelor’s Degree Junior Software Developer 1.0 35000
40 Female Master’s Degree Human Resources Manager 12.0 130000
33 Male Bachelor’s Degree Operations Manager 7.0 85000
29 Female High School Junior Sales Associate 1.0 25000
44 Male PhD Data Scientist 15.0 150000
28 Male Bachelor’s Degree Software Developer 3.0 60000
36 Female Master’s Degree Marketing Coordinator 9.0 100000
31 Male Bachelor’s Degree Operations Manager 6.0 75000
27 Female Master’s Degree Human Resources Coordinator 3.0 50000
42 Male PhD Data Scientist 14.0 140000
34 Female Bachelor’s Degree Human Resources Manager 6.0 75000
26 Male High School Junior Sales Associate 2.0 30000
39 Female Master’s Degree Marketing Manager 11.0 120000
30 Male Bachelor’s Degree Software Engineer 4.0 65000
47 Male PhD Data Scientist 19.0 190000
25 Female Bachelor’s Degree Junior Software Developer 1.0 35000
40 Female Master’s Degree Human Resources Manager 12.0 130000
33 Male Bachelor’s Degree Operations Manager 7.0 85000
29 Female High School Junior Sales Associate 1.0 25000
44 Male PhD Data Scientist 15.0 150000
28 Male Bachelor’s Degree Software Developer 3.0 60000
36 Female Master’s Degree Marketing Coordinator 9.0 100000
31 Male Bachelor’s Degree Operations Manager 6.0 75000
27 Female Master’s Degree Human Resources Coordinator 3.0 50000
42 Male PhD Data Scientist 14.0 140000
34 Female Bachelor’s Degree Human Resources Manager 6.0 75000
26 Male High School Junior Sales Associate 2.0 30000
39 Female Master’s Degree Marketing Manager 11.0 120000
30 Male Bachelor’s Degree Software Engineer 4.0 65000
47 Male PhD Data Scientist 19.0 190000
25 Female Bachelor’s Degree Junior Software Developer 1.0 35000
40 Female Master’s Degree Human Resources Manager 12.0 130000
33 Male Bachelor’s Degree Operations Manager 7.0 85000
29 Female High School Junior Sales Associate 1.0 25000
44 Male PhD Data Scientist 15.0 150000
28 Male Bachelor’s Degree Software Developer 3.0 60000
36 Female Master’s Degree Marketing Coordinator 9.0 100000
31 Male Bachelor’s Degree Operations Manager 6.0 75000
27 Female Master’s Degree Human Resources Coordinator 3.0 50000
42 Male PhD Data Scientist 14.0 140000
34 Female Bachelor’s Degree Human Resources Manager 6.0 75000
26 Male High School Junior Sales Associate 2.0 30000
39 Female Master’s Degree Marketing Manager 11.0 120000
30 Male Bachelor’s Degree Software Engineer 4.0 65000
47 Male PhD Data Scientist 19.0 190000
25 Female Bachelor’s Degree Junior Software Developer 1.0 35000
40 Female Master’s Degree Human Resources Manager 12.0 130000
33 Male Bachelor’s Degree Operations Manager 7.0 85000
29 Female High School Junior Sales Associate 1.0 25000
44 Male PhD Data Scientist 15.0 150000
28 Male Bachelor’s Degree Software Developer 3.0 60000
36 Female Master’s Degree Marketing Coordinator 9.0 100000
31 Male Bachelor’s Degree Operations Manager 6.0 75000
27 Female Master’s Degree Human Resources Coordinator 3.0 50000
42 Male PhD Data Scientist 14.0 140000
34 Female Bachelor’s Degree Human Resources Manager 6.0 75000
26 Male High School Junior Sales Associate 2.0 30000
39 Female Master’s Degree Marketing Manager 11.0 120000
30 Male Bachelor’s Degree Software Engineer 4.0 65000
47 Male PhD Data Scientist 19.0 190000
25 Female Bachelor’s Degree Junior Software Developer 1.0 35000
40 Female Master’s Degree Human Resources Manager 12.0 130000
33 Male Bachelor’s Degree Operations Manager 7.0 85000
29 Female High School Junior Sales Associate 1.0 25000
44 Male PhD Data Scientist 15.0 150000
28 Male Bachelor’s Degree Software Developer 3.0 60000
36 Female Master’s Degree Marketing Coordinator 9.0 100000
31 Male Bachelor’s Degree Operations Manager 6.0 75000
27 Female Master’s Degree Human Resources Coordinator 3.0 50000
42 Male PhD Data Scientist 14.0 140000
34 Female Bachelor’s Degree Human Resources Manager 6.0 75000
26 Male High School Junior Sales Associate 2.0 30000
39 Female Master’s Degree Marketing Manager 11.0 120000
30 Male Bachelor’s Degree Software Engineer 4.0 65000
47 Male PhD Data Scientist 19.0 190000
25 Female Bachelor’s Degree Junior Software Developer 1.0 35000
40 Female Master’s Degree Human Resources Manager 12.0 130000
33 Male Bachelor’s Degree Operations Manager 7.0 85000
29 Female High School Junior Sales Associate 1.0 25000
44 Male PhD Data Scientist 15.0 150000
28 Male Bachelor’s Degree Software Developer 3.0 60000
36 Female Master’s Degree Marketing Coordinator 9.0 100000
31 Male Bachelor’s Degree Operations Manager 6.0 75000
27 Female Master’s Degree Human Resources Coordinator 3.0 50000
42 Male PhD Data Scientist 14.0 140000
34 Female Bachelor’s Degree Human Resources Manager 6.0 75000
26 Male High School Junior Sales Associate 2.0 30000
39 Female Master’s Degree Marketing Manager 11.0 120000
30 Male Bachelor’s Degree Software Engineer 4.0 65000
47 Male PhD Data Scientist 19.0 190000
25 Female Bachelor’s Degree Junior Software Developer 1.0 35000
40 Female Master’s Degree Human Resources Manager 12.0 130000
33 Male Bachelor’s Degree Operations Manager 7.0 85000
29 Female High School Junior Sales Associate 1.0 25000
44 Male PhD Data Scientist 15.0 150000
28 Male Bachelor’s Degree Software Developer 3.0 60000
36 Female Master’s Degree Marketing Coordinator 9.0 100000
31 Male Bachelor’s Degree Operations Manager 6.0 75000
27 Female Master’s Degree Human Resources Coordinator 3.0 50000
42 Male PhD Data Scientist 14.0 140000
34 Female Bachelor’s Degree Human Resources Manager 6.0 75000
26 Male High School Junior Sales Associate 2.0 30000
39 Female Master’s Degree Marketing Manager 11.0 120000
30 Male Bachelor’s Degree Software Engineer 4.0 65000
47 Male PhD Data Scientist 19.0 190000
25 Female Bachelor’s Degree Junior Software Developer 1.0 35000
40 Female Master’s Degree Human Resources Manager 12.0 130000
33 Male Bachelor’s Degree Operations Manager 7.0 85000
29 Female High School Junior Sales Associate 1.0 25000
44 Male PhD Data Scientist 15.0 150000
28 Male Bachelor’s Degree Software Developer 3.0 60000
31 Male Bachelor’s Degree Software Engineer 5.0 80000
27 Female Master’s Degree Marketing Manager 3.0 60000
38 Male PhD Data Scientist 12.0 130000
29 Female Bachelor’s Degree Human Resources Coordinator 2.0 45000
23 Male High School Junior Sales Associate 1.0 25000
32 Female Master’s Degree Software Developer 7.0 90000
44 Male Bachelor’s Degree Operations Manager 18.0 170000
26 Female Bachelor’s Degree Marketing Coordinator 2.0 40000
40 Male PhD Data Scientist 15.0 150000
33 Female Bachelor’s Degree Human Resources Manager 8.0 95000
24 Male High School Junior Sales Associate 1.0 25000
35 Female Master’s Degree Marketing Manager 10.0 110000
29 Male Bachelor’s Degree Software Engineer 4.0 70000
49 Male PhD Data Scientist 22.0 220000
26 Female Bachelor’s Degree Junior Software Developer 2.0 35000
41 Female Master’s Degree Human Resources Manager 13.0 140000
36 Male Bachelor’s Degree Operations Manager 9.0 110000
28 Female High School Junior Sales Associate 1.0 25000
43 Male PhD Data Scientist 16.0 160000
29 Male Bachelor’s Degree Software Developer 5.0 80000
39 Female Master’s Degree Marketing Coordinator 11.0 120000
32 Male Bachelor’s Degree Operations Manager 6.0 90000
28 Female Master’s Degree Human Resources Coordinator 2.0 45000
40 Male PhD Data Scientist 15.0 150000
33 Female Bachelor’s Degree Human Resources Manager 8.0 95000
24 Male High School Junior Sales Associate 1.0 25000
35 Female Master’s Degree Marketing Manager 10.0 110000
29 Male Bachelor’s Degree Software Engineer 4.0 70000
49 Male PhD Data Scientist 22.0 220000
26 Female Bachelor’s Degree Junior Software Developer 2.0 35000
41 Female Master’s Degree Human Resources Manager 13.0 140000
36 Male Bachelor’s Degree Operations Manager 9.0 110000
28 Female High School Junior Sales Associate 1.0 25000
43 Male PhD Data Scientist 16.0 160000
29 Male Bachelor’s Degree Software Developer 5.0 80000
39 Female Master’s Degree Marketing Coordinator 11.0 120000
32 Male Bachelor’s Degree Operations Manager 6.0 90000
28 Female Master’s Degree Human Resources Coordinator 2.0 45000
40 Male PhD Data Scientist 15.0 150000
33 Female Bachelor’s Degree Human Resources Manager 8.0 95000
24 Male High School Junior Sales Associate 1.0 25000
35 Female Master’s Degree Marketing Manager 10.0 110000
29 Male Bachelor’s Degree Software Engineer 4.0 70000
49 Male PhD Data Scientist 22.0 220000
26 Female Bachelor’s Degree Junior Software Developer 2.0 35000
41 Female Master’s Degree Human Resources Manager 13.0 140000
36 Male Bachelor’s Degree Operations Manager 9.0 110000
28 Female High School Junior Sales Associate 1.0 25000
43 Male PhD Data Scientist 16.0 160000
29 Male Bachelor’s Degree Software Developer 5.0 80000
39 Female Master’s Degree Marketing Coordinator 11.0 120000
32 Male Bachelor’s Degree Operations Manager 6.0 90000
28 Female Master’s Degree Human Resources Coordinator 2.0 45000
40 Male PhD Data Scientist 15.0 150000
33 Female Bachelor’s Degree Human Resources Manager 8.0 95000
24 Male High School Junior Sales Associate 1.0 25000
35 Female Master’s Degree Marketing Manager 10.0 110000
29 Male Bachelor’s Degree Software Engineer 4.0 70000
49 Male PhD Data Scientist 22.0 220000
26 Female Bachelor’s Degree Junior Software Developer 2.0 35000
41 Female Master’s Degree Human Resources Manager 13.0 140000
36 Male Bachelor’s Degree Operations Manager 9.0 110000
28 Female High School Junior Sales Associate 1.0 25000
43 Male PhD Data Scientist 16.0 160000
29 Male Bachelor’s Degree Software Developer 5.0 80000
39 Female Master’s Degree Marketing Coordinator 11.0 120000
32 Male Bachelor’s Degree Operations Manager 6.0 90000
28 Female Master’s Degree Human Resources Coordinator 2.0 45000
40 Male PhD Data Scientist 15.0 150000
33 Female Bachelor’s Degree Human Resources Manager 8.0 95000
24 Male High School Junior Sales Associate 1.0 25000
35 Female Master’s Degree Marketing Manager 10.0 110000
29 Male Bachelor’s Degree Software Engineer 4.0 70000
49 Male PhD Data Scientist 22.0 220000
26 Female Bachelor’s Degree Junior Software Developer 2.0 35000
41 Female Master’s Degree Human Resources Manager 13.0 140000
36 Male Bachelor’s Degree Operations Manager 9.0 110000
28 Female High School Junior Sales Associate 1.0 25000
43 Male PhD Data Scientist 16.0 160000
29 Male Bachelor’s Degree Software Developer 5.0 80000
39 Female Master’s Degree Marketing Coordinator 11.0 120000
32 Male Bachelor’s Degree Operations Manager 6.0 90000
28 Female Master’s Degree Human Resources Coordinator 2.0 45000
40 Male PhD Data Scientist 15.0 150000
33 Female Bachelor’s Degree Human Resources Manager 8.0 95000
24 Male High School Junior Sales Associate 1.0 25000
35 Female Master’s Degree Marketing Manager 10.0 110000
29 Male Bachelor’s Degree Software Engineer 4.0 70000
49 Male PhD Data Scientist 22.0 220000
26 Female Bachelor’s Degree Junior Software Developer 2.0 35000
41 Female Master’s Degree Human Resources Manager 13.0 140000
36 Male Bachelor’s Degree Operations Manager 9.0 110000
28 Female High School Junior Sales Associate 1.0 25000
43 Male PhD Data Scientist 16.0 160000
29 Male Bachelor’s Degree Software Developer 5.0 80000
39 Female Master’s Degree Marketing Coordinator 11.0 120000
32 Male Bachelor’s Degree Operations Manager 6.0 90000
28 Female Master’s Degree Human Resources Coordinator 2.0 45000
40 Male PhD Data Scientist 15.0 150000
33 Female Bachelor’s Degree Human Resources Manager 8.0 95000
24 Male High School Junior Sales Associate 1.0 25000
35 Female Master’s Degree Marketing Manager 10.0 110000
29 Male Bachelor’s Degree Software Engineer 4.0 70000
49 Male PhD Data Scientist 22.0 220000
26 Female Bachelor’s Degree Junior Software Developer 2.0 35000
41 Female Master’s Degree Human Resources Manager 13.0 140000
36 Male Bachelor’s Degree Operations Manager 9.0 110000
28 Female High School Junior Sales Associate 1.0 25000
43 Male PhD Data Scientist 16.0 160000
29 Male Bachelor’s Degree Software Developer 5.0 80000
39 Female Master’s Degree Marketing Coordinator 11.0 120000
32 Male Bachelor’s Degree Operations Manager 6.0 90000
28 Female Master’s Degree Human Resources Coordinator 2.0 45000
40 Male PhD Data Scientist 15.0 150000
33 Female Bachelor’s Degree Human Resources Manager 8.0 95000
24 Male High School Junior Sales Associate 1.0 25000
35 Female Master’s Degree Marketing Manager 10.0 110000
29 Male Bachelor’s Degree Software Engineer 4.0 70000
49 Male PhD Data Scientist 22.0 220000
26 Female Bachelor’s Degree Junior Software Developer 2.0 35000
41 Female Master’s Degree Human Resources Manager 13.0 140000
36 Male Bachelor’s Degree Operations Manager 9.0 110000
28 Female High School Junior Sales Associate 1.0 25000
43 Male PhD Data Scientist 16.0 160000
29 Male Bachelor’s Degree Software Developer 5.0 80000
34 Male Bachelor’s Degree Software Engineer 6.0 85000
31 Female Master’s Degree Marketing Manager 4.0 62000
41 Male PhD Data Scientist 13.0 138000
27 Female Bachelor’s Degree Human Resources Coordinator 2.0 47000
25 Male High School Junior Sales Associate 1.0 26000
33 Female Master’s Degree Software Developer 8.0 95000
45 Male Bachelor’s Degree Operations Manager 19.0 174000
28 Female Bachelor’s Degree Marketing Coordinator 2.0 41000
42 Male PhD Data Scientist 16.0 162000
34 Female Bachelor’s Degree Human Resources Manager 9.0 99000
23 Male High School Junior Sales Associate 1.0 26000
36 Female Master’s Degree Marketing Manager 11.0 117000
30 Male Bachelor’s Degree Software Engineer 5.0 75000
50 Male PhD Data Scientist 23.0 225000
27 Female Bachelor’s Degree Junior Software Developer 2.0 36000
43 Female Master’s Degree Human Resources Manager 14.0 146000
37 Male Bachelor’s Degree Operations Manager 10.0 113000
29 Female High School Junior Sales Associate 1.0 26000
44 Male PhD Data Scientist 17.0 168000
30 Male Bachelor’s Degree Software Developer 6.0 85000
40 Female Master’s Degree Marketing Coordinator 12.0 122000
33 Male Bachelor’s Degree Operations Manager 7.0 96000
29 Female Master’s Degree Human Resources Coordinator 3.0 49000
43 Male PhD Data Scientist 16.0 162000
34 Female Bachelor’s Degree Human Resources Manager 9.0 99000
23 Male High School Junior Sales Associate 1.0 26000
36 Female Master’s Degree Marketing Manager 11.0 117000
30 Male Bachelor’s Degree Software Engineer 5.0 75000
50 Male PhD Data Scientist 23.0 225000
27 Female Bachelor’s Degree Junior Software Developer 2.0 36000
43 Female Master’s Degree Human Resources Manager 14.0 146000
37 Male Bachelor’s Degree Operations Manager 10.0 113000
29 Female High School Junior Sales Associate 1.0 26000
44 Male PhD Data Scientist 17.0 168000
30 Male Bachelor’s Degree Software Developer 6.0 85000
40 Female Master’s Degree Marketing Coordinator 12.0 122000
33 Male Bachelor’s Degree Operations Manager 7.0 96000
29 Female Master’s Degree Human Resources Coordinator 3.0 49000
43 Male PhD Data Scientist 16.0 162000
34 Female Bachelor’s Degree Human Resources Manager 9.0 99000
23 Male High School Junior Sales Associate 1.0 26000
36 Female Master’s Degree Marketing Manager 11.0 117000
30 Male Bachelor’s Degree Software Engineer 5.0 75000
50 Male PhD Data Scientist 23.0 225000
27 Female Bachelor’s Degree Junior Software Developer 2.0 36000
43 Female Master’s Degree Human Resources Manager 14.0 146000
37 Male Bachelor’s Degree Operations Manager 10.0 113000
29 Female High School Junior Sales Associate 1.0 26000
44 Male PhD Data Scientist 17.0 168000
30 Male Bachelor’s Degree Software Developer 6.0 85000
40 Female Master’s Degree Marketing Coordinator 12.0 122000
33 Male Bachelor’s Degree Operations Manager 7.0 96000
29 Female Master’s Degree Human Resources Coordinator 3.0 49000
43 Male PhD Data Scientist 16.0 162000
34 Female Bachelor’s Degree Human Resources Manager 9.0 99000
23 Male High School Junior Sales Associate 1.0 26000
36 Female Master’s Degree Marketing Manager 11.0 117000
30 Male Bachelor’s Degree Software Engineer 5.0 75000
50 Male PhD Data Scientist 23.0 225000
27 Female Bachelor’s Degree Junior Software Developer 2.0 36000
43 Female Master’s Degree Human Resources Manager 14.0 146000
37 Male Bachelor’s Degree Operations Manager 10.0 113000
29 Female High School Junior Sales Associate 1.0 26000
44 Male PhD Data Scientist 17.0 168000
30 Male Bachelor’s Degree Software Developer 6.0 85000
40 Female Master’s Degree Marketing Coordinator 12.0 122000
33 Male Bachelor’s Degree Operations Manager 7.0 96000
29 Female Master’s Degree Human Resources Coordinator 3.0 49000
43 Male PhD Data Scientist 16.0 162000
34 Female Bachelor’s Degree Human Resources Manager 9.0 99000
23 Male High School Junior Sales Associate 1.0 26000
36 Female Master’s Degree Marketing Manager 11.0 117000
30 Male Bachelor’s Degree Software Engineer 5.0 75000
50 Male PhD Data Scientist 23.0 225000
27 Female Bachelor’s Degree Junior Software Developer 2.0 36000
43 Female Master’s Degree Human Resources Manager 14.0 146000
37 Male Bachelor’s Degree Operations Manager 10.0 113000
29 Female High School Junior Sales Associate 1.0 26000
44 Male PhD Data Scientist 17.0 168000
30 Male Bachelor’s Degree Software Developer 6.0 85000
40 Female Master’s Degree Marketing Coordinator 12.0 122000
33 Male Bachelor’s Degree Operations Manager 7.0 96000
29 Female Master’s Degree Human Resources Coordinator 3.0 49000
43 Male PhD Data Scientist 16.0 162000
34 Female Bachelor’s Degree Human Resources Manager 9.0 99000
23 Male High School Junior Sales Associate 1.0 26000
36 Female Master’s Degree Marketing Manager 11.0 117000
30 Male Bachelor’s Degree Software Engineer 5.0 75000
50 Male PhD Data Scientist 23.0 225000
27 Female Bachelor’s Degree Junior Software Developer 2.0 36000
43 Female Master’s Degree Human Resources Manager 14.0 146000
37 Male Bachelor’s Degree Operations Manager 10.0 113000
29 Female High School Junior Sales Associate 1.0 26000
44 Male PhD Data Scientist 17.0 168000
30 Male Bachelor’s Degree Software Developer 6.0 85000
40 Female Master’s Degree Marketing Coordinator 12.0 122000
33 Male Bachelor’s Degree Operations Manager 7.0 96000
29 Female Master’s Degree Human Resources Coordinator 3.0 49000
43 Male PhD Data Scientist 16.0 162000
34 Female Bachelor’s Degree Human Resources Manager 9.0 99000
23 Male High School Junior Sales Associate 1.0 26000
36 Female Master’s Degree Marketing Manager 11.0 117000
30 Male Bachelor’s Degree Software Engineer 5.0 75000
50 Male PhD Data Scientist 23.0 225000
27 Female Bachelor’s Degree Junior Software Developer 2.0 36000
43 Female Master’s Degree Human Resources Manager 14.0 146000
37 Male Bachelor’s Degree Operations Manager 10.0 113000
29 Female High School Junior Sales Associate 1.0 26000
44 Male PhD Data Scientist 17.0 168000
30 Male Bachelor’s Degree Software Developer 6.0 85000
40 Female Master’s Degree Marketing Coordinator 12.0 122000
33 Male Bachelor’s Degree Operations Manager 7.0 96000
29 Female Master’s Degree Human Resources Coordinator 3.0 49000
43 Male PhD Data Scientist 16.0 162000
34 Female Bachelor’s Degree Human Resources Manager 9.0 99000
23 Male High School Junior Sales Associate 1.0 26000
36 Female Master’s Degree Marketing Manager 11.0 117000
30 Male Bachelor’s Degree Software Engineer 5.0 75000
50 Male PhD Data Scientist 23.0 225000
27 Female Bachelor’s Degree Junior Software Developer 2.0 36000
43 Female Master’s Degree Human Resources Manager 14.0 146000
37 Male Bachelor’s Degree Operations Manager 10.0 113000
29 Female High School Junior Sales Associate 1.0 26000
44 Male PhD Data Scientist 17.0 168000
30 Male Bachelor’s Degree Software Developer 6.0 85000
32 Female Master’s Degree Software Developer 8.0 95000
46 Male PhD Data Scientist 18.0 180000
28 Female Bachelor’s Degree Marketing Coordinator 2.0 41000
24 Male High School Junior Sales Associate 1.0 26000
31 Female Master’s Degree Marketing Manager 5.0 68000
39 Male Bachelor’s Degree Operations Manager 13.0 127000
25 Female Bachelor’s Degree Human Resources Coordinator 2.0 47000
41 Male PhD Data Scientist 15.0 155000
35 Female Bachelor’s Degree Human Resources Manager 8.0 92000
26 Male High School Junior Sales Associate 1.0 26000
37 Female Master’s Degree Marketing Manager 12.0 125000
29 Male Bachelor’s Degree Software Engineer 4.0 71000
51 Male PhD Data Scientist 24.0 240000
28 Female Bachelor’s Degree Junior Software Developer 2.0 36000
44 Female Master’s Degree Human Resources Manager 15.0 152000
38 Male Bachelor’s Degree Operations Manager 11.0 119000
30 Female High School Junior Sales Associate 1.0 26000
45 Male PhD Data Scientist 19.0 190000
31 Male Bachelor’s Degree Software Developer 6.0 85000
41 Female Master’s Degree Marketing Coordinator 13.0 131000
34 Male Bachelor’s Degree Operations Manager 8.0 101000
30 Female Master’s Degree Human Resources Coordinator 3.0 49000
44 Male PhD Data Scientist 18.0 182000
35 Female Bachelor’s Degree Human Resources Manager 8.0 92000
26 Male High School Junior Sales Associate 1.0 26000
37 Female Master’s Degree Marketing Manager 12.0 125000
29 Male Bachelor’s Degree Software Engineer 4.0 71000
51 Male PhD Data Scientist 24.0 240000
28 Female Bachelor’s Degree Junior Software Developer 2.0 36000
44 Female Master’s Degree Human Resources Manager 15.0 152000
38 Male Bachelor’s Degree Operations Manager 11.0 119000
30 Female High School Junior Sales Associate 1.0 26000
45 Male PhD Data Scientist 19.0 190000
31 Male Bachelor’s Degree Software Developer 6.0 85000
41 Female Master’s Degree Marketing Coordinator 13.0 131000
34 Male Bachelor’s Degree Operations Manager 8.0 101000
30 Female Master’s Degree Human Resources Coordinator 3.0 49000
44 Male PhD Data Scientist 18.0 182000
35 Female Bachelor’s Degree Human Resources Manager 8.0 92000
26 Male High School Junior Sales Associate 1.0 26000
37 Female Master’s Degree Marketing Manager 12.0 125000
29 Male Bachelor’s Degree Software Engineer 4.0 71000
51 Male PhD Data Scientist 24.0 240000
28 Female Bachelor’s Degree Junior Software Developer 2.0 36000
44 Female Master’s Degree Human Resources Manager 15.0 152000
38 Male Bachelor’s Degree Operations Manager 11.0 119000
30 Female High School Junior Sales Associate 1.0 26000
45 Male PhD Data Scientist 19.0 190000
31 Male Bachelor’s Degree Software Developer 6.0 85000
41 Female Master’s Degree Marketing Coordinator 13.0 131000
34 Male Bachelor’s Degree Operations Manager 8.0 101000
30 Female Master’s Degree Human Resources Coordinator 3.0 49000
44 Male PhD Data Scientist 18.0 182000
35 Female Bachelor’s Degree Human Resources Manager 8.0 92000
26 Male High School Junior Sales Associate 1.0 26000
37 Female Master’s Degree Marketing Manager 12.0 125000
29 Male Bachelor’s Degree Software Engineer 4.0 71000
51 Male PhD Data Scientist 24.0 240000
28 Female Bachelor’s Degree Junior Software Developer 2.0 36000
44 Female Master’s Degree Human Resources Manager 15.0 152000
38 Male Bachelor’s Degree Operations Manager 11.0 119000
30 Female High School Junior Sales Associate 1.0 26000
45 Male PhD Data Scientist 19.0 190000
31 Male Bachelor’s Degree Software Developer 6.0 85000
41 Female Master’s Degree Marketing Coordinator 13.0 131000
34 Male Bachelor’s Degree Operations Manager 8.0 101000
30 Female Master’s Degree Human Resources Coordinator 3.0 49000
44 Male PhD Data Scientist 18.0 182000
35 Female Bachelor’s Degree Human Resources Manager 8.0 92000
26 Male High School Junior Sales Associate 1.0 26000
37 Female Master’s Degree Marketing Manager 12.0 125000
29 Male Bachelor’s Degree Software Engineer 4.0 71000
51 Male PhD Data Scientist 24.0 240000
28 Female Bachelor’s Degree Junior Software Developer 2.0 36000
44 Female Master’s Degree Human Resources Manager 15.0 152000
38 Male Bachelor’s Degree Operations Manager 11.0 119000
30 Female High School Junior Sales Associate 1.0 26000
45 Male PhD Data Scientist 19.0 190000
31 Male Bachelor’s Degree Software Developer 6.0 85000
41 Female Master’s Degree Marketing Coordinator 13.0 131000
34 Male Bachelor’s Degree Operations Manager 8.0 101000
30 Female Master’s Degree Human Resources Coordinator 3.0 49000
44 Male PhD Data Scientist 18.0 182000
35 Female Bachelor’s Degree Human Resources Manager 8.0 92000
26 Male High School Junior Sales Associate 1.0 26000
37 Female Master’s Degree Marketing Manager 12.0 125000
29 Male Bachelor’s Degree Software Engineer 4.0 71000
51 Male PhD Data Scientist 24.0 240000
28 Female Bachelor’s Degree Junior Software Developer 2.0 36000
44 Female Master’s Degree Human Resources Manager 15.0 152000
38 Male Bachelor’s Degree Operations Manager 11.0 119000
30 Female High School Junior Sales Associate 1.0 26000
45 Male PhD Data Scientist 19.0 190000
31 Male Bachelor’s Degree Software Developer 6.0 85000
41 Female Master’s Degree Marketing Coordinator 13.0 131000
34 Male Bachelor’s Degree Operations Manager 8.0 101000
30 Female Master’s Degree Human Resources Coordinator 3.0 49000
44 Male PhD Data Scientist 18.0 182000
35 Female Bachelor’s Degree Human Resources Manager 8.0 92000
26 Male High School Junior Sales Associate 1.0 26000
37 Female Master’s Degree Marketing Manager 12.0 125000
29 Male Bachelor’s Degree Software Engineer 4.0 71000
51 Male PhD Data Scientist 24.0 240000
28 Female Bachelor’s Degree Junior Software Developer 2.0 36000
44 Female Master’s Degree Human Resources Manager 15.0 152000
38 Male Bachelor’s Degree Operations Manager 11.0 119000
30 Female High School Junior Sales Associate 1.0 26000
45 Male PhD Data Scientist 19.0 190000
31 Male Bachelor’s Degree Software Developer 6.0 85000
41 Female Master’s Degree Marketing Coordinator 13.0 131000
34 Male Bachelor’s Degree Operations Manager 8.0 101000
30 Female Master’s Degree Human Resources Coordinator 3.0 49000
44 Male PhD Data Scientist 18.0 182000
35 Female Bachelor’s Degree Human Resources Manager 8.0 92000
26 Male High School Junior Sales Associate 1.0 26000
37 Female Master’s Degree Marketing Manager 12.0 125000
29 Male Bachelor’s Degree Software Engineer 4.0 71000
51 Male PhD Data Scientist 24.0 240000
28 Female Bachelor’s Degree Junior Software Developer 2.0 36000
44 Female Master’s Degree Human Resources Manager 15.0 152000
38 Male Bachelor’s Degree Operations Manager 11.0 119000
30 Female High School Junior Sales Associate 1.0 26000
45 Male PhD Data Scientist 19.0 190000
31 Male Bachelor’s Degree Software Developer 6.0 85000
41 Female Master’s Degree Marketing Coordinator 13.0 131000
27 Male Bachelor’s Degree Software Developer 3.0 62000
42 Female Master’s Degree Marketing Manager 16.0 137000
35 Male PhD Data Scientist 9.0 112000
29 Female Bachelor’s Degree Human Resources Coordinator 2.0 45000
33 Male High School Junior Sales Associate 1.0 25000
36 Female Bachelor’s Degree Operations Manager 7.0 91000
43 Male PhD Data Scientist 17.0 179000
31 Female Bachelor’s Degree Software Engineer 5.0 74000
49 Male Master’s Degree Marketing Manager 23.0 228000
28 Female Bachelor’s Degree Junior Software Developer 2.0 37000
45 Female PhD Data Scientist 19.0 193000
38 Male Bachelor’s Degree Operations Manager 11.0 119000
30 Female High School Junior Sales Associate 1.0 25000
45 Male Master’s Degree Marketing Manager 20.0 204000
27 Female Bachelor’s Degree Software Developer 3.0 61000
41 Male PhD Data Scientist 15.0 157000
35 Female Master’s Degree Human Resources Manager 8.0 92000
26 Male Bachelor’s Degree Software Engineer 1.0 52000
30 Female Bachelor’s Degree Marketing Coordinator 4.0 58000
48 Male PhD Data Scientist 22.0 219000
32 Female Master’s Degree Marketing Manager 6.0 77000
34 Male Bachelor’s Degree Operations Manager 8.0 104000
31 Female High School Junior Sales Associate 1.0 25000
45 Male Master’s Degree Marketing Manager 20.0 204000
28 Female Bachelor’s Degree Junior Software Developer 2.0 37000
44 Female PhD Data Scientist 18.0 183000
38 Male Bachelor’s Degree Operations Manager 11.0 119000
30 Female High School Junior Sales Associate 1.0 25000
45 Male Master’s Degree Marketing Manager 20.0 204000
27 Female Bachelor’s Degree Software Developer 3.0 61000
41 Male PhD Data Scientist 15.0 157000
35 Female Master’s Degree Human Resources Manager 8.0 92000
26 Male Bachelor’s Degree Software Engineer 1.0 52000
30 Female Bachelor’s Degree Marketing Coordinator 4.0 58000
48 Male PhD Data Scientist 22.0 219000
32 Female Master’s Degree Marketing Manager 6.0 77000
34 Male Bachelor’s Degree Operations Manager 8.0 104000
31 Female High School Junior Sales Associate 1.0 25000
45 Male Master’s Degree Marketing Manager 20.0 204000
28 Female Bachelor’s Degree Junior Software Developer 2.0 37000
44 Female PhD Data Scientist 18.0 183000
38 Male Bachelor’s Degree Operations Manager 11.0 119000
30 Female High School Junior Sales Associate 1.0 25000
45 Male Master’s Degree Marketing Manager 20.0 204000
27 Female Bachelor’s Degree Software Developer 3.0 61000
41 Male PhD Data Scientist 15.0 157000
35 Female Master’s Degree Human Resources Manager 8.0 92000
26 Male Bachelor’s Degree Software Engineer 1.0 52000
30 Female Bachelor’s Degree Marketing Coordinator 4.0 58000
48 Male PhD Data Scientist 22.0 219000
32 Female Master’s Degree Marketing Manager 6.0 77000
34 Male Bachelor’s Degree Operations Manager 8.0 104000
31 Female High School Junior Sales Associate 1.0 25000
45 Male Master’s Degree Marketing Manager 20.0 204000
28 Female Bachelor’s Degree Junior Software Developer 2.0 37000
44 Female PhD Data Scientist 18.0 183000
38 Male Bachelor’s Degree Operations Manager 11.0 119000
30 Female High School Junior Sales Associate 1.0 25000
45 Male Master’s Degree Marketing Manager 20.0 204000
27 Female Bachelor’s Degree Software Developer 3.0 61000
41 Male PhD Data Scientist 15.0 157000
35 Female Master’s Degree Human Resources Manager 8.0 92000
26 Male Bachelor’s Degree Software Engineer 1.0 52000
30 Female Bachelor’s Degree Marketing Coordinator 4.0 58000
48 Male PhD Data Scientist 22.0 219000
32 Female Master’s Degree Marketing Manager 6.0 77000
34 Male Bachelor’s Degree Operations Manager 8.0 104000
31 Female High School Junior Sales Associate 1.0 25000
45 Male Master’s Degree Marketing Manager 20.0 204000
28 Female Bachelor’s Degree Junior Software Developer 2.0 37000
44 Female PhD Data Scientist 18.0 183000
38 Male Bachelor’s Degree Operations Manager 11.0 119000
30 Female High School Junior Sales Associate 1.0 25000
45 Male Master’s Degree Marketing Manager 20.0 204000
27 Female Bachelor’s Degree Software Developer 3.0 61000
41 Male PhD Data Scientist 15.0 157000
35 Female Master’s Degree Human Resources Manager 8.0 92000
26 Male Bachelor’s Degree Software Engineer 1.0 52000
30 Female Bachelor’s Degree Marketing Coordinator 4.0 58000
48 Male PhD Data Scientist 22.0 219000
32 Female Master’s Degree Marketing Manager 6.0 77000
34 Male Bachelor’s Degree Operations Manager 8.0 104000
31 Female High School Junior Sales Associate 1.0 25000
45 Male Master’s Degree Marketing Manager 20.0 204000
28 Female Bachelor’s Degree Junior Software Developer 2.0 37000
44 Female PhD Data Scientist 18.0 183000
38 Male Bachelor’s Degree Operations Manager 11.0 119000
30 Female High School Junior Sales Associate 1.0 25000
45 Male Master’s Degree Marketing Manager 20.0 204000
27 Female Bachelor’s Degree Software Developer 3.0 61000
41 Male PhD Data Scientist 15.0 157000
35 Female Master’s Degree Human Resources Manager 8.0 92000
26 Male Bachelor’s Degree Software Engineer 1.0 52000
30 Female Bachelor’s Degree Marketing Coordinator 4.0 58000
48 Male PhD Data Scientist 22.0 219000
32 Female Master’s Degree Marketing Manager 6.0 77000
34 Male Bachelor’s Degree Operations Manager 8.0 104000
31 Female High School Junior Sales Associate 1.0 25000
45 Male Master’s Degree Marketing Manager 20.0 204000
28 Female Bachelor’s Degree Junior Software Developer 2.0 37000
44 Female PhD Data Scientist 18.0 183000
38 Male Bachelor’s Degree Operations Manager 11.0 119000
30 Female High School Junior Sales Associate 1.0 25000
45 Male Master’s Degree Marketing Manager 20.0 204000
27 Female Bachelor’s Degree Software Developer 3.0 61000
41 Male PhD Data Scientist 15.0 157000
35 Female Master’s Degree Human Resources Manager 8.0 92000
26 Male Bachelor’s Degree Software Engineer 1.0 52000
30 Female Bachelor’s Degree Marketing Coordinator 4.0 58000
48 Male PhD Data Scientist 22.0 219000
32 Female Master’s Degree Marketing Manager 6.0 77000
34 Male Bachelor’s Degree Operations Manager 8.0 104000
31 Female High School Junior Sales Associate 1.0 25000
45 Male Master’s Degree Marketing Manager 20.0 204000
28 Female Bachelor’s Degree Junior Software Developer 2.0 37000
44 Female PhD Data Scientist 18.0 183000
38 Male Bachelor’s Degree Operations Manager 11.0 119000
30 Female High School Junior Sales Associate 1.0 25000
45 Male Master’s Degree Marketing Manager 20.0 204000
27 Female Bachelor’s Degree Software Developer 3.0 61000
41 Male PhD Data Scientist 15.0 157000
35 Female Master’s Degree Human Resources Manager 8.0 92000
26 Male Bachelor’s Degree Software Engineer 1.0 52000
30 Female Bachelor’s Degree Marketing Coordinator 4.0 58000
48 Male PhD Data Scientist 22.0 219000
32 Female Master’s Degree Marketing Manager 6.0 77000
31 Female Master’s Degree Director of HR 6.0 95000
28 Male Bachelor’s Degree Junior Web Developer 2.0 45000
29 Female Master’s Degree Senior HR Generalist 4.0 70000
35 Male PhD Senior Human Resources Manager 10.0 110000
26 Female High School Web Developer 1.0 35000
32 Male Bachelor’s Degree Junior HR Generalist 5.0 60000
27 Female Master’s Degree Web Developer 2.0 50000
39 Male Master’s Degree Director of HR 12.0 120000
23 Female Bachelor’s Degree Junior HR Generalist 1.0 32000
30 Male Bachelor’s Degree Web Developer 4.0 65000
26 Female Bachelor’s Degree Junior HR Coordinator 1.0 35000
42 Male PhD Senior Human Resources Manager 14.0 130000
34 Female Master’s Degree Director of HR 9.0 95000
28 Male High School Juniour HR Generalist 2.0 43000
31 Female Bachelor’s Degree Junior HR Coordinator 4.0 50000
29 Male Bachelor’s Degree Web Developer 3.0 60000
35 Female Master’s Degree Senior HR Generalist 8.0 80000
26 Male Master’s Degree Junior Web Developer 2.0 48000
40 Female PhD Director of HR 13.0 125000
34 Male Bachelor’s Degree Web Developer 7.0 85000
26 Female Bachelor’s Degree Junior HR Generalist 2.0 42000
29 Male Master’s Degree Senior HR Generalist 4.0 70000
25 Female High School Juniour HR Coordinator 1.0 32000
33 Male Master’s Degree Web Developer 6.0 80000
27 Female Bachelor’s Degree Junior HR Generalist 2.0 42000
31 Male PhD Senior Human Resources Manager 7.0 90000
29 Female Master’s Degree Web Developer 4.0 65000
24 Male Bachelor’s Degree Junior Web Developer 1.0 40000
42 Female Master’s Degree Senior HR Generalist 12.0 110000
34 Male Master’s Degree Director of HR 10.0 105000
28 Female Bachelor’s Degree Junior HR Generalist 3.0 50000
33 Male PhD Director of HR 8.0 95000
29 Female Bachelor’s Degree Web Developer 3.0 60000
25 Male High School Junior HR Generalist 2.0 40000
26 Female Master’s Degree Senior HR Generalist 2.0 55000
30 Male Bachelor’s Degree Web Developer 5.0 70000
24 Female High School Juniour HR Coordinator 1.0 32000
31 Male Master’s Degree Director of HR 7.0 90000
27 Female Bachelor’s Degree Web Developer 2.0 50000
35 Male PhD Senior Human Resources Manager 10.0 110000
26 Female Bachelor’s Degree Junior HR Generalist 1.0 32000
32 Male Master’s Degree Web Developer 6.0 80000
29 Female Master’s Degree Senior HR Generalist 4.0 70000
25 Male High School Web Developer 2.0 45000
33 Female Bachelor’s Degree Junior HR Generalist 7.0 65000
27 Male Master’s Degree Web Developer 2.0 50000
28 Female Bachelor’s Degree Junior HR Coordinator 3.0 45000
34 Male PhD Director of HR 9.0 95000
30 Female Bachelor’s Degree Web Developer 4.0 65000
26 Male Bachelor’s Degree Junior HR Coordinator 2.0 38000
42 Female Master’s Degree Senior Human Resources Manager 13.0 125000
34 Male Master’s Degree Web Developer 8.0 90000
28 Female High School Juniour HR Generalist 2.0 43000
31 Male Bachelor’s Degree Junior HR Generalist 5.0 60000
29 Female Master’s Degree Web Developer 3.0 60000
35 Male PhD Senior Human Resources Manager 10.0 110000
26 Female Bachelor’s Degree Web Developer 1.0 35000
32 Male Master’s Degree Director of HR 6.0 95000
27 Female Master’s Degree Junior HR Generalist 2.0 42000
39 Male Master’s Degree Senior HR Generalist 11.0 100000
23 Female Bachelor’s Degree Junior HR Coordinator 1.0 32000
30 Male Bachelor’s Degree Web Developer 4.0 65000
26 Female Bachelor’s Degree Junior HR Generalist 2.0 42000
42 Male PhD Director of HR 14.0 130000
34 Female Master’s Degree Director of HR 9.0 95000
28 Male High School Junior Web Developer 2.0 43000
31 Female Bachelor’s Degree Junior HR Coordinator 4.0 50000
29 Male Bachelor’s Degree Web Developer 3.0 60000
35 Female Master’s Degree Senior HR Generalist 8.0 80000
26 Male Master’s Degree Junior Web Developer 2.0 48000
40 Female PhD Director of HR 13.0 125000
34 Male Bachelor’s Degree Web Developer 7.0 85000
26 Female Bachelor’s Degree Junior HR Generalist 2.0 42000
29 Male Master’s Degree Senior HR Generalist 4.0 70000
25 Female High School Junior HR Coordinator 1.0 32000
33 Male Master’s Degree Web Developer 6.0 80000
27 Female Bachelor’s Degree Junior HR Generalist 2.0 42000
31 Male PhD Senior Human Resources Manager 7.0 90000
29 Female Master’s Degree Web Developer 4.0 65000
24 Male Bachelor’s Degree Junior Web Developer 1.0 40000
42 Female Master’s Degree Senior HR Generalist 12.0 110000
34 Male Master’s Degree Director of HR 10.0 105000
28 Female Bachelor’s Degree Junior HR Generalist 3.0 50000
33 Male PhD Director of HR 8.0 95000
29 Female Bachelor’s Degree Web Developer 3.0 60000
25 Male High School Junior HR Generalist 2.0 40000
26 Female Master’s Degree Senior HR Generalist 2.0 55000
30 Male Bachelor’s Degree Web Developer 5.0 70000
24 Female High School Juniour HR Coordinator 1.0 32000
31 Male Master’s Degree Director of HR 7.0 90000
27 Female Bachelor’s Degree Web Developer 2.0 50000
35 Male PhD Senior Human Resources Manager 10.0 110000
26 Female Bachelor’s Degree Junior HR Generalist 1.0 32000
32 Male Master’s Degree Web Developer 6.0 80000
29 Female Master’s Degree Senior HR Generalist 4.0 70000
25 Male High School Web Developer 2.0 45000
33 Female Bachelor’s Degree Junior HR Generalist 7.0 65000
27 Male Master’s Degree Web Developer 2.0 50000
28 Female Bachelor’s Degree Junior HR Coordinator 3.0 45000
34 Male PhD Director of HR 9.0 95000
30 Female Bachelor’s Degree Web Developer 4.0 65000
26 Male Bachelor’s Degree Junior HR Coordinator 2.0 38000
42 Female Master’s Degree Senior Human Resources Manager 13.0 125000
34 Male Master’s Degree Web Developer 8.0 90000
28 Female High School Juniour HR Generalist 2.0 43000
31 Male Bachelor’s Degree Junior HR Generalist 5.0 60000
29 Female Master’s Degree Web Developer 3.0 60000
35 Male PhD Senior Human Resources Manager 10.0 110000
26 Female Bachelor’s Degree Web Developer 1.0 35000
32 Male Master’s Degree Director of HR 6.0 95000
27 Female Master’s Degree Junior HR Generalist 2.0 42000
39 Male Master’s Degree Senior HR Generalist 11.0 100000
23 Female Bachelor’s Degree Junior HR Coordinator 1.0 32000
30 Male Bachelor’s Degree Web Developer 4.0 65000
26 Female Bachelor’s Degree Junior HR Generalist 2.0 42000
42 Male PhD Director of HR 14.0 130000
34 Female Master’s Degree Director of HR 9.0 95000
28 Male High School Junior Web Developer 2.0 43000
31 Female Bachelor’s Degree Junior HR Coordinator 4.0 500
27 Female Bachelor’s Degree Junior Software Engineer 1.0 45000
33 Male Master’s Degree Senior Data Scientist 8.0 120000
29 Female Bachelor’s Degree Marketing Coordinator 3.0 55000
31 Male Bachelor’s Degree Junior Marketing Manager 5.0 70000
38 Female PhD Senior Research Scientist 12.0 140000
25 Male High School Junior Sales Associate 1.0 30000
32 Female Master’s Degree Senior Software Engineer 7.0 100000
27 Male Bachelor’s Degree Junior Data Analyst 2.0 50000
29 Female Bachelor’s Degree Junior Marketing Manager 3.0 55000
35 Male PhD Senior Research Scientist 10.0 130000
26 Female Bachelor’s Degree Junior Software Engineer 1.0 45000
33 Male Master’s Degree Senior Data Scientist 8.0 120000
29 Female Bachelor’s Degree Marketing Coordinator 3.0 55000
31 Male Bachelor’s Degree Junior Marketing Manager 5.0 70000
38 Female PhD Senior Research Scientist 12.0 140000
25 Male High School Junior Sales Associate 1.0 30000
32 Female Master’s Degree Senior Software Engineer 7.0 100000
27 Male Bachelor’s Degree Junior Data Analyst 2.0 50000
29 Female Bachelor’s Degree Junior Marketing Manager 3.0 55000
35 Male PhD Senior Research Scientist 10.0 130000
26 Female Bachelor’s Degree Junior Software Engineer 1.0 45000
33 Male Master’s Degree Senior Data Scientist 8.0 120000
29 Female Bachelor’s Degree Marketing Coordinator 3.0 55000
31 Male Bachelor’s Degree Junior Marketing Manager 5.0 70000
38 Female PhD Senior Research Scientist 12.0 140000
25 Male High School Junior Sales Associate 1.0 30000
32 Female Master’s Degree Senior Software Engineer 7.0 100000
27 Male Bachelor’s Degree Junior Data Analyst 2.0 50000
29 Female Bachelor’s Degree Junior Marketing Manager 3.0 55000
35 Male PhD Senior Research Scientist 10.0 130000
26 Female Bachelor’s Degree Junior Software Engineer 1.0 45000
33 Male Master’s Degree Senior Data Scientist 8.0 120000
29 Female Bachelor’s Degree Marketing Coordinator 3.0 55000
31 Male Bachelor’s Degree Junior Marketing Manager 5.0 70000
38 Female PhD Senior Research Scientist 12.0 140000
25 Male High School Junior Sales Associate 1.0 30000
32 Female Master’s Degree Senior Software Engineer 7.0 100000
27 Male Bachelor’s Degree Junior Data Analyst 2.0 50000
29 Female Bachelor’s Degree Junior Marketing Manager 3.0 55000
35 Male PhD Senior Research Scientist 10.0 130000
26 Female Bachelor’s Degree Junior Software Engineer 1.0 45000
33 Male Master’s Degree Senior Data Scientist 8.0 120000
29 Female Bachelor’s Degree Marketing Coordinator 3.0 55000
31 Male Bachelor’s Degree Junior Marketing Manager 5.0 70000
38 Female PhD Senior Research Scientist 12.0 140000
25 Male High School Junior Sales Associate 1.0 30000
32 Female Master’s Degree Senior Software Engineer 7.0 100000
27 Male Bachelor’s Degree Junior Data Analyst 2.0 50000
29 Female Bachelor’s Degree Junior Marketing Manager 3.0 55000
35 Male PhD Senior Research Scientist 10.0 130000
26 Female Bachelor’s Degree Junior Software Engineer 1.0 45000
33 Male Master’s Degree Senior Data Scientist 8.0 120000
29 Female Bachelor’s Degree Marketing Coordinator 3.0 55000
31 Male Bachelor’s Degree Junior Marketing Manager 5.0 70000
38 Female PhD Senior Research Scientist 12.0 140000
25 Male High School Junior Sales Associate 1.0 30000
32 Female Master’s Degree Senior Software Engineer 7.0 100000
27 Male Bachelor’s Degree Junior Data Analyst 2.0 50000
29 Female Bachelor’s Degree Junior Marketing Manager 3.0 55000
35 Male PhD Senior Research Scientist 10.0 130000
26 Female Bachelor’s Degree Junior Software Engineer 1.0 45000
33 Male Master’s Degree Senior Data Scientist 8.0 120000
29 Female Bachelor’s Degree Marketing Coordinator 3.0 55000
31 Male Bachelor’s Degree Junior Marketing Manager 5.0 70000
38 Female PhD Senior Research Scientist 12.0 140000
25 Male High School Junior Sales Associate 1.0 30000
32 Female Master’s Degree Senior Software Engineer 7.0 100000
27 Male Bachelor’s Degree Junior Data Analyst 2.0 50000
29 Female Bachelor’s Degree Junior Marketing Manager 3.0 55000
35 Male PhD Senior Research Scientist 10.0 130000
26 Female Bachelor’s Degree Junior Software Engineer 1.0 45000
33 Male Master’s Degree Senior Data Scientist 8.0 120000
29 Female Bachelor’s Degree Marketing Coordinator 3.0 55000
31 Male Bachelor’s Degree Junior Marketing Manager 5.0 70000
38 Female PhD Senior Research Scientist 12.0 140000
25 Male High School Junior Sales Associate 1.0 30000
32 Female Master’s Degree Senior Software Engineer 7.0 100000
27 Male Bachelor’s Degree Junior Data Analyst 2.0 50000
29 Female Bachelor’s Degree Junior Marketing Manager 3.0 55000
35 Male PhD Senior Research Scientist 10.0 130000
26 Female Bachelor’s Degree Junior Software Engineer 1.0 45000
33 Male Master’s Degree Senior Data Scientist 8.0 120000
29 Female Bachelor’s Degree Marketing Coordinator 3.0 55000
31 Male Bachelor’s Degree Junior Marketing Manager 5.0 70000
38 Female PhD Senior Research Scientist 12.0 140000
25 Male High School Junior Sales Associate 1.0 30000
32 Female Master’s Degree Senior Software Engineer 7.0 100000
27 Male Bachelor’s Degree Junior Data Analyst 2.0 50000
29 Female Bachelor’s Degree Junior Marketing Manager 3.0 55000
35 Male PhD Senior Research Scientist 10.0 130000
26 Female Bachelor’s Degree Junior Software Engineer 1.0 45000
33 Male Master’s Degree Senior Data Scientist 8.0 120000
29 Female Bachelor’s Degree Marketing Coordinator 3.0 55000
31 Male Bachelor’s Degree Junior Marketing Manager 5.0 70000
38 Female PhD Senior Research Scientist 12.0 140000
25 Male High School Junior Sales Associate 1.0 30000
32 Female Master’s Degree Senior Software Engineer 7.0 100000
27 Male Bachelor’s Degree Junior Data Analyst 2.0 50000
29 Female Bachelor’s Degree Junior Marketing Manager 3.0 55000
35 Male PhD Senior Research Scientist 10.0 130000
26 Female Bachelor’s Degree Junior Software Engineer 1.0 45000
33 Male Master’s Degree Senior Data Scientist 8.0 120000
29 Female Bachelor’s Degree Marketing Coordinator 3.0 55000
31 Male Bachelor’s Degree Junior Marketing Manager 5.0 70000
38 Female PhD Senior Research Scientist 12.0 140000
25 Male High School Junior Sales Associate 1.0 30000
32 Female Master’s Degree Senior Software Engineer 7.0 100000
27 Male Bachelor’s Degree Junior Data Analyst 2.0 50000
29 Female Bachelor’s Degree Junior Marketing Manager 3.0 55000
35 Male PhD Senior Research Scientist 10.0 130000
26 Female Bachelor’s Degree Junior Software Engineer 1.0 45000
33 Male Master’s Degree Senior Data Scientist 8.0 120000
29 Female Bachelor’s Degree Marketing Coordinator 3.0 55000
31 Male Bachelor’s Degree Junior Marketing Manager 5.0 70000
38 Female PhD Senior Research Scientist 12.0 140000
25 Male High School Junior Sales Associate 1.0 30000
32 Female Master’s Degree Senior Software Engineer 7.0 100000
27 Male Bachelor’s Degree Junior Data Analyst 2.0 50000
29 Female Bachelor’s Degree Junior Marketing Manager 3.0 55000
35 Male PhD Senior Research Scientist 10.0 130000
26 Female Bachelor’s Degree Junior Software Engineer 1.0 45000
28 Female Bachelor’s Degree Junior Software Engineer 2.0 48000
36 Male Master’s Degree Senior Data Scientist 9.0 125000
30 Female Bachelor’s Degree Marketing Coordinator 4.0 57000
32 Male Bachelor’s Degree Junior Marketing Manager 6.0 72000
39 Female PhD Senior Research Scientist 13.0 145000
26 Male High School Junior Sales Associate 2.0 31000
33 Female Master’s Degree Senior Software Engineer 8.0 105000
28 Male Bachelor’s Degree Junior Data Analyst 3.0 52000
30 Female Bachelor’s Degree Junior Marketing Manager 4.0 57000
36 Male PhD Senior Research Scientist 11.0 135000
27 Female Bachelor’s Degree Junior Software Engineer 2.0 48000
34 Male Master’s Degree Senior Data Scientist 9.0 125000
30 Female Bachelor’s Degree Marketing Coordinator 4.0 57000
32 Male Bachelor’s Degree Junior Marketing Manager 6.0 72000
39 Female PhD Senior Research Scientist 13.0 145000
26 Male High School Junior Sales Associate 2.0 31000
33 Female Master’s Degree Senior Software Engineer 8.0 105000
28 Male Bachelor’s Degree Junior Data Analyst 3.0 52000
30 Female Bachelor’s Degree Junior Marketing Manager 4.0 57000
36 Male PhD Senior Research Scientist 11.0 135000
27 Female Bachelor’s Degree Junior Software Engineer 2.0 48000
34 Male Master’s Degree Senior Data Scientist 9.0 125000
30 Female Bachelor’s Degree Marketing Coordinator 4.0 57000
32 Male Bachelor’s Degree Junior Marketing Manager 6.0 72000
39 Female PhD Senior Research Scientist 13.0 145000
26 Male High School Junior Sales Associate 2.0 31000
33 Female Master’s Degree Senior Software Engineer 8.0 105000
28 Male Bachelor’s Degree Junior Data Analyst 3.0 52000
30 Female Bachelor’s Degree Junior Marketing Manager 4.0 57000
36 Male PhD Senior Research Scientist 11.0 135000
27 Female Bachelor’s Degree Junior Software Engineer 2.0 48000
34 Male Master’s Degree Senior Data Scientist 9.0 125000
30 Female Bachelor’s Degree Marketing Coordinator 4.0 57000
32 Male Bachelor’s Degree Junior Marketing Manager 6.0 72000
39 Female PhD Senior Research Scientist 13.0 145000
26 Male High School Junior Sales Associate 2.0 31000
33 Female Master’s Degree Senior Software Engineer 8.0 105000
28 Male Bachelor’s Degree Junior Data Analyst 3.0 52000
30 Female Bachelor’s Degree Junior Marketing Manager 4.0 57000
36 Male PhD Senior Research Scientist 11.0 135000
27 Female Bachelor’s Degree Junior Software Engineer 2.0 48000
34 Male Master’s Degree Senior Data Scientist 9.0 125000
30 Female Bachelor’s Degree Marketing Coordinator 4.0 57000
32 Male Bachelor’s Degree Junior Marketing Manager 6.0 72000
39 Female PhD Senior Research Scientist 13.0 145000
26 Male High School Junior Sales Associate 2.0 31000
33 Female Master’s Degree Senior Software Engineer 8.0 105000
28 Male Bachelor’s Degree Junior Data Analyst 3.0 52000
30 Female Bachelor’s Degree Junior Marketing Manager 4.0 57000
36 Male PhD Senior Research Scientist 11.0 135000
27 Female Bachelor’s Degree Junior Software Engineer 2.0 48000
34 Male Master’s Degree Senior Data Scientist 9.0 125000
30 Female Bachelor’s Degree Marketing Coordinator 4.0 57000
32 Male Bachelor’s Degree Junior Marketing Manager 6.0 72000
39 Female PhD Senior Research Scientist 13.0 145000
26 Male High School Junior Sales Associate 2.0 31000
33 Female Master’s Degree Senior Software Engineer 8.0 105000
28 Male Bachelor’s Degree Junior Data Analyst 3.0 52000
30 Female Bachelor’s Degree Junior Marketing Manager 4.0 57000
36 Male PhD Senior Research Scientist 11.0 135000
27 Female Bachelor’s Degree Junior Software Engineer 2.0 48000
34 Male Master’s Degree Senior Data Scientist 9.0 125000
30 Female Bachelor’s Degree Marketing Coordinator 4.0 57000
32 Male Bachelor’s Degree Junior Marketing Manager 6.0 72000
39 Female PhD Senior Research Scientist 13.0 145000
26 Male High School Junior Sales Associate 2.0 31000
33 Female Master’s Degree Senior Software Engineer 8.0 105000
28 Male Bachelor’s Degree Junior Data Analyst 3.0 52000
30 Female Bachelor’s Degree Junior Marketing Manager 4.0 57000
36 Male PhD Senior Research Scientist 11.0 135000
27 Female Bachelor’s Degree Junior Software Engineer 2.0 48000
34 Male Master’s Degree Senior Data Scientist 9.0 125000
30 Female Bachelor’s Degree Marketing Coordinator 4.0 57000
32 Male Bachelor’s Degree Junior Marketing Manager 6.0 72000
39 Female PhD Senior Research Scientist 13.0 145000
26 Male High School Junior Sales Associate 2.0 31000
33 Female Master’s Degree Senior Software Engineer 8.0 105000
28 Male Bachelor’s Degree Junior Data Analyst 3.0 52000
30 Female Bachelor’s Degree Junior Marketing Manager 4.0 57000
36 Male PhD Senior Research Scientist 11.0 135000
27 Female Bachelor’s Degree Junior Software Engineer 2.0 48000
34 Male Master’s Degree Senior Data Scientist 9.0 125000
30 Female Bachelor’s Degree Marketing Coordinator 4.0 57000
32 Male Bachelor’s Degree Junior Marketing Manager 6.0 72000
39 Female PhD Senior Research Scientist 13.0 145000
26 Male High School Junior Sales Associate 2.0 31000
33 Female Master’s Degree Senior Software Engineer 8.0 105000
28 Male Bachelor’s Degree Junior Data Analyst 3.0 52000
30 Female Bachelor’s Degree Junior Marketing Manager 4.0 57000
36 Male PhD Senior Research Scientist 11.0 135000
27 Female Bachelor’s Degree Junior Software Engineer 2.0 48000
34 Male Master’s Degree Senior Data Scientist 9.0 125000
30 Female Bachelor’s Degree Marketing Coordinator 4.0 57000
32 Male Bachelor’s Degree Junior Marketing Manager 6.0 72000
39 Female PhD Senior Research Scientist 13.0 145000
26 Male High School Junior Sales Associate 2.0 31000
33 Female Master’s Degree Senior Software Engineer 8.0 105000
28 Male Bachelor’s Degree Junior Data Analyst 3.0 52000
30 Female Bachelor’s Degree Junior Marketing Manager 4.0 57000
36 Male PhD Senior Research Scientist 11.0 135000
27 Female Bachelor’s Degree Junior Software Engineer 2.0 48000
34 Male Master’s Degree Senior Data Scientist 9.0 125000
30 Female Bachelor’s Degree Marketing Coordinator 4.0 57000
32 Male Bachelor’s Degree Junior Marketing Manager 6.0 72000
39 Female PhD Senior Research Scientist 13.0 145000
26 Male High School Junior Sales Associate 2.0 31000
33 Female Master’s Degree Senior Software Engineer 8.0 105000
28 Male Bachelor’s Degree Junior Data Analyst 3.0 52000
30 Female Bachelor’s Degree Junior Marketing Manager 4.0 57000
36 Male PhD Senior Research Scientist 11.0 135000
27 Female Bachelor’s Degree Junior Software Engineer 2.0 48000
34 Male Master’s Degree Senior Data Scientist 9.0 125000
30 Female Bachelor’s Degree Marketing Coordinator 4.0 57000
32 Male Bachelor’s Degree Junior Marketing Manager 6.0 72000
39 Female PhD Senior Research Scientist 13.0 145000
26 Male High School Junior Sales Associate 2.0 31000
33 Female Master’s Degree Senior Software Engineer 8.0 105000
28 Male Bachelor’s Degree Junior Data Analyst 3.0 52000
30 Female Bachelor’s Degree Junior Marketing Manager 4.0 57000
36 Male PhD Senior Research Scientist 11.0 135000
27 Female Bachelor’s Degree Junior Software Engineer 2.0 48000
26 Male Bachelor’s Degree Senior Product Marketing Manager 5.0 85000
28 Female Master’s Degree Marketing Manager 7.0 110000
34 Male PhD Director of Marketing 12.0 170000
31 Male Bachelor’s Degree Sales Director 9.0 140000
24 Female High School Sales Associate 1.0 30000
29 Male Bachelor’s Degree Digital Marketing Manager 6.0 95000
27 Female Master’s Degree Content Marketing Manager 4.0 80000
33 Male PhD Sales Director 10.0 155000
21 Female High School Junior Sales Representative 0.0 25000
36 Male Bachelor’s Degree Sales Manager 11.0 160000
25 Female Bachelor’s Degree Marketing Manager 3.0 65000
30 Male Master’s Degree Financial Manager 7.0 120000
28 Female PhD Director of Marketing 6.0 105000
26 Male Bachelor’s Degree Senior Product Marketing Manager 5.0 85000
28 Female Master’s Degree Marketing Manager 7.0 110000
34 Male PhD Director of Marketing 12.0 170000
31 Male Bachelor’s Degree Sales Director 9.0 140000
24 Female High School Sales Associate 1.0 30000
29 Male Bachelor’s Degree Digital Marketing Manager 6.0 95000
27 Female Master’s Degree Content Marketing Manager 4.0 80000
33 Male PhD Sales Director 10.0 155000
21 Female High School Junior Sales Representative 0.0 25000
36 Male Bachelor’s Degree Sales Manager 11.0 160000
25 Female Bachelor’s Degree Marketing Manager 3.0 65000
30 Male Master’s Degree Financial Manager 7.0 120000
28 Female PhD Director of Marketing 6.0 105000
26 Male Bachelor’s Degree Senior Product Marketing Manager 5.0 85000
28 Female Master’s Degree Marketing Manager 7.0 110000
34 Male PhD Director of Marketing 12.0 170000
31 Male Bachelor’s Degree Sales Director 9.0 140000
24 Female High School Sales Associate 1.0 30000
29 Male Bachelor’s Degree Digital Marketing Manager 6.0 95000
27 Female Master’s Degree Content Marketing Manager 4.0 80000
33 Male PhD Sales Director 10.0 155000
21 Female High School Junior Sales Representative 0.0 25000
36 Male Bachelor’s Degree Sales Manager 11.0 160000
25 Female Bachelor’s Degree Marketing Manager 3.0 65000
30 Male Master’s Degree Financial Manager 7.0 120000
28 Female PhD Director of Marketing 6.0 105000
26 Male Bachelor’s Degree Senior Product Marketing Manager 5.0 85000
28 Female Master’s Degree Marketing Manager 7.0 110000
34 Male PhD Director of Marketing 12.0 170000
31 Male Bachelor’s Degree Sales Director 9.0 140000
24 Female High School Sales Associate 1.0 30000
29 Male Bachelor’s Degree Digital Marketing Manager 6.0 95000
27 Female Master’s Degree Content Marketing Manager 4.0 80000
33 Male PhD Sales Director 10.0 155000
21 Female High School Junior Sales Representative 0.0 25000
36 Male Bachelor’s Degree Sales Manager 11.0 160000
25 Female Bachelor’s Degree Marketing Manager 3.0 65000
30 Male Master’s Degree Financial Manager 7.0 120000
28 Female PhD Director of Marketing 6.0 105000
26 Male Bachelor’s Degree Senior Product Marketing Manager 5.0 85000
28 Female Master’s Degree Marketing Manager 7.0 110000
34 Male PhD Director of Marketing 12.0 170000
31 Male Bachelor’s Degree Sales Director 9.0 140000
24 Female High School Sales Associate 1.0 30000
29 Male Bachelor’s Degree Digital Marketing Manager 6.0 95000
27 Female Master’s Degree Content Marketing Manager 4.0 80000
33 Male PhD Sales Director 10.0 155000
21 Female High School Junior Sales Representative 0.0 25000
36 Male Bachelor’s Degree Sales Manager 11.0 160000
25 Female Bachelor’s Degree Marketing Manager 3.0 65000
30 Male Master’s Degree Financial Manager 7.0 120000
28 Female PhD Director of Marketing 6.0 105000
26 Male Bachelor’s Degree Senior Product Marketing Manager 5.0 85000
28 Female Master’s Degree Marketing Manager 7.0 110000
34 Male PhD Director of Marketing 12.0 170000
31 Male Bachelor’s Degree Sales Director 9.0 140000
24 Female High School Sales Associate 1.0 30000
29 Male Bachelor’s Degree Digital Marketing Manager 6.0 95000
27 Female Master’s Degree Content Marketing Manager 4.0 80000
33 Male PhD Sales Director 10.0 155000
21 Female High School Junior Sales Representative 0.0 25000
36 Male Bachelor’s Degree Sales Manager 11.0 160000
25 Female Bachelor’s Degree Marketing Manager 3.0 65000
30 Male Master’s Degree Financial Manager 7.0 120000
28 Female PhD Director of Marketing 6.0 105000
26 Male Bachelor’s Degree Senior Product Marketing Manager 5.0 85000
28 Female Master’s Degree Marketing Manager 7.0 110000
34 Male PhD Director of Marketing 12.0 170000
31 Male Bachelor’s Degree Sales Director 9.0 140000
24 Female High School Sales Associate 1.0 30000
29 Male Bachelor’s Degree Digital Marketing Manager 6.0 95000
27 Female Master’s Degree Content Marketing Manager 4.0 80000
33 Male PhD Sales Director 10.0 155000
21 Female High School Junior Sales Representative 0.0 25000
36 Male Bachelor’s Degree Sales Manager 11.0 160000
25 Female Bachelor’s Degree Marketing Manager 3.0 65000
30 Male Master’s Degree Financial Manager 7.0 120000
28 Female PhD Director of Marketing 6.0 105000
26 Male Bachelor’s Degree Senior Product Marketing Manager 5.0 85000
28 Female Master’s Degree Marketing Manager 7.0 110000
34 Male PhD Director of Marketing 12.0 170000
31 Male Bachelor’s Degree Sales Director 9.0 140000
24 Female High School Sales Associate 1.0 30000
29 Male Bachelor’s Degree Digital Marketing Manager 6.0 95000
27 Female Master’s Degree Content Marketing Manager 4.0 80000
33 Male PhD Sales Director 10.0 155000
21 Female High School Junior Sales Representative 0.0 25000
36 Male Bachelor’s Degree Sales Manager 11.0 160000
25 Female Bachelor’s Degree Marketing Manager 3.0 65000
30 Male Master’s Degree Financial Manager 7.0 120000
28 Female PhD Director of Marketing 6.0 105000
26 Male Bachelor’s Degree Senior Product Marketing Manager 5.0 85000
28 Female Master’s Degree Marketing Manager 7.0 110000
34 Male PhD Director of Marketing 12.0 170000
31 Male Bachelor’s Degree Sales Director 9.0 140000
24 Female High School Sales Associate 1.0 30000
29 Male Bachelor’s Degree Digital Marketing Manager 6.0 95000
27 Female Master’s Degree Content Marketing Manager 4.0 80000
33 Male PhD Sales Director 10.0 155000
21 Female High School Junior Sales Representative 0.0 25000
36 Male Bachelor’s Degree Sales Manager 11.0 160000
25 Female Bachelor’s Degree Marketing Manager 3.0 65000
30 Male Master’s Degree Financial Manager 7.0 120000
28 Female PhD Director of Marketing 6.0 105000
26 Male Bachelor’s Degree Senior Product Marketing Manager 5.0 85000
28 Female Master’s Degree Marketing Manager 7.0 110000
34 Male PhD Director of Marketing 12.0 170000
31 Male Bachelor’s Degree Sales Director 9.0 140000
24 Female High School Sales Associate 1.0 30000
29 Male Bachelor’s Degree Digital Marketing Manager 6.0 95000
27 Female Master’s Degree Content Marketing Manager 4.0 80000
22 Female High School Sales Associate 0.0 25000
45 Male Bachelor’s Degree Financial Manager 21.0 250000
31 Female Master’s Degree Content Marketing Manager 8.0 120000
28 Male Bachelor’s Degree Digital Marketing Manager 4.0 80000
29 Male Bachelor’s Degree Senior Product Marketing Manager 6.0 100000
35 Female PhD Director of Marketing 12.0 170000
27 Male High School Sales Representative 3.0 50000
33 Female Bachelor’s Degree Marketing Manager 9.0 140000
30 Male Master’s Degree Financial Manager 7.0 120000
25 Female Bachelor’s Degree Marketing Manager 2.0 55000
26 Male Bachelor’s Degree Senior Product Marketing Manager 5.0 85000
29 Female Master’s Degree Content Marketing Manager 4.0 80000
34 Male PhD Director of Marketing 12.0 170000
31 Male Bachelor’s Degree Sales Director 9.0 140000
24 Female High School Sales Associate 1.0 30000
29 Male Bachelor’s Degree Digital Marketing Manager 6.0 95000
27 Female Master’s Degree Content Marketing Manager 4.0 80000
33 Male PhD Sales Director 10.0 155000
21 Female High School Junior Sales Representative 0.0 25000
36 Male Bachelor’s Degree Sales Manager 11.0 160000
25 Female Bachelor’s Degree Marketing Manager 3.0 65000
30 Male Master’s Degree Financial Manager 7.0 120000
28 Female PhD Director of Marketing 6.0 105000
26 Male Bachelor’s Degree Senior Product Marketing Manager 5.0 85000
28 Female Master’s Degree Marketing Manager 7.0 110000
34 Male PhD Director of Marketing 12.0 170000
31 Male Bachelor’s Degree Sales Director 9.0 140000
24 Female High School Sales Associate 1.0 30000
29 Male Bachelor’s Degree Digital Marketing Manager 6.0 95000
27 Female Master’s Degree Content Marketing Manager 4.0 80000
33 Male PhD Sales Director 10.0 155000
21 Female High School Junior Sales Representative 0.0 25000
36 Male Bachelor’s Degree Sales Manager 11.0 160000
25 Female Bachelor’s Degree Marketing Manager 3.0 65000
30 Male Master’s Degree Financial Manager 7.0 120000
28 Female PhD Director of Marketing 6.0 105000
26 Male Bachelor’s Degree Senior Product Marketing Manager 5.0 85000
28 Female Master’s Degree Marketing Manager 7.0 110000
34 Male PhD Director of Marketing 12.0 170000
31 Male Bachelor’s Degree Sales Director 9.0 140000
24 Female High School Sales Associate 1.0 30000
29 Male Bachelor’s Degree Digital Marketing Manager 6.0 95000
27 Female Master’s Degree Content Marketing Manager 4.0 80000
33 Male PhD Sales Director 10.0 155000
21 Female High School Junior Sales Representative 0.0 25000
36 Male Bachelor’s Degree Sales Manager 11.0 160000
25 Female Bachelor’s Degree Marketing Manager 3.0 65000
30 Male Master’s Degree Financial Manager 7.0 120000
28 Female PhD Director of Marketing 6.0 105000
26 Male Bachelor’s Degree Senior Product Marketing Manager 5.0 85000
28 Female Master’s Degree Marketing Manager 7.0 110000
34 Male PhD Director of Marketing 12.0 170000
31 Male Bachelor’s Degree Sales Director 9.0 140000
24 Female High School Sales Associate 1.0 30000
29 Male Bachelor’s Degree Digital Marketing Manager 6.0 95000
27 Female Master’s Degree Content Marketing Manager 4.0 80000
33 Male PhD Sales Director 10.0 155000
21 Female High School Junior Sales Representative 0.0 25000
36 Male Bachelor’s Degree Sales Manager 11.0 160000
25 Female Bachelor’s Degree Marketing Manager 3.0 65000
30 Male Master’s Degree Financial Manager 7.0 120000
28 Female PhD Director of Marketing 6.0 105000
26 Male Bachelor’s Degree Senior Product Marketing Manager 5.0 85000
28 Female Master’s Degree Marketing Manager 7.0 110000
34 Male PhD Director of Marketing 12.0 170000
31 Male Bachelor’s Degree Sales Director 9.0 140000
24 Female High School Sales Associate 1.0 30000
29 Male Bachelor’s Degree Digital Marketing Manager 6.0 95000
27 Female Master’s Degree Content Marketing Manager 4.0 80000
33 Male PhD Sales Director 10.0 155000
21 Female High School Junior Sales Representative 0.0 25000
36 Male Bachelor’s Degree Sales Manager 11.0 160000
25 Female Bachelor’s Degree Marketing Manager 3.0 65000
30 Male Master’s Degree Financial Manager 7.0 120000
28 Female PhD Director of Marketing 6.0 105000
26 Male Bachelor’s Degree Senior Product Marketing Manager 5.0 85000
28 Female Master’s Degree Marketing Manager 7.0 110000
34 Male PhD Director of Marketing 12.0 170000
31 Male Bachelor’s Degree Sales Director 9.0 140000
24 Female High School Sales Associate 1.0 30000
29 Male Bachelor’s Degree Digital Marketing Manager 6.0 95000
27 Female Master’s Degree Content Marketing Manager 4.0 80000
33 Male PhD Sales Director 10.0 155000
21 Female High School Junior Sales Representative 0.0 25000
36 Male Bachelor’s Degree Sales Manager 11.0 160000
25 Female Bachelor’s Degree Marketing Manager 3.0 65000
30 Male Master’s Degree Financial Manager 7.0 120000
28 Female PhD Director of Marketing 6.0 105000
26 Male Bachelor’s Degree Senior Product Marketing Manager 5.0 85000
28 Female Master’s Degree Marketing Manager 7.0 110000
34 Male PhD Director of Marketing 12.0 170000
31 Male Bachelor’s Degree Sales Director 9.0 140000
24 Female High School Sales Associate 1.0 30000
29 Male Bachelor’s Degree Digital Marketing Manager 6.0 95000
27 Female Master’s Degree Content Marketing Manager 4.0 80000
33 Male PhD Sales Director 10.0 155000
21 Female High School Junior Sales Representative 0.0 25000
36 Male Bachelor’s Degree Sales Manager 11.0 160000
25 Female Bachelor’s Degree Marketing Manager 3.0 65000
30 Male Master’s Degree Financial Manager 7.0 120000
28 Female PhD Director of Marketing 6.0 105000
26 Male Bachelor’s Degree Senior Product Marketing Manager 5.0 85000
28 Female Master’s Degree Marketing Manager 7.0 110000
34 Male PhD Director of Marketing 12.0 170000
31 Male Bachelor’s Degree Sales Director 9.0 140000
24 Female High School Sales Associate 1.0 30000
29 Male Bachelor’s Degree Digital Marketing Manager 6.0 95000
27 Female Master’s Degree Content Marketing Manager 4.0 80000
33 Male PhD Sales Director 10.0 155000
21 Female High School Junior Sales Representative 0.0 25000
36 Male Bachelor’s Degree Sales Manager 11.0 160000
25 Female Bachelor’s Degree Marketing Manager 3.0 65000
30 Male Master’s Degree Financial Manager 7.0 120000
28 Female PhD Director of Marketing 6.0 105000
26 Male Bachelor’s Degree Senior Product Marketing Manager 5.0 85000
28 Female Master’s Degree Marketing Manager 7.0 110000
34 Male PhD Director of Marketing 12.0 170000
31 Male Bachelor’s Degree Sales Director 9.0 140000
24 Female High School Sales Associate 1.0 30000
29 Male Bachelor’s Degree Digital Marketing Manager 6.0 95000
27 Female Master’s Degree Content Marketing Manager 4.0 80000
33 Male PhD Sales Director 10.0 155000
21 Female High School Junior Sales Representative 0.0 25000
36 Male Bachelor’s Degree Sales Manager 11.0 160000
23 Male Bachelor’s Degree Software Engineer 1.0 60000
39 Female Master’s Degree Marketing Manager 12.0 150000
28 Male Bachelor’s Degree Financial Analyst 4.0 80000
31 Female PhD Research Scientist 8.0 120000
35 Male Bachelor’s Degree Project Manager 10.0 130000
27 Female Bachelor’s Degree Graphic Designer 2.0 50000
42 Male Master’s Degree Senior Software Engineer 18.0 180000
29 Female Bachelor’s Degree Digital Marketing Specialist 3.0 60000
33 Male Bachelor’s Degree Marketing Manager 7.0 110000
24 Female High School Sales Associate 0.0 25000
30 Male Master’s Degree Financial Analyst 6.0 100000
26 Female Bachelor’s Degree Social Media Manager 3.0 55000
32 Male PhD Data Scientist 9.0 140000
22 Female High School Receptionist 0.0 25000
37 Male Bachelor’s Degree Product Manager 12.0 150000
38 Female Master’s Degree Marketing Director 14.0 170000
25 Male Bachelor’s Degree Junior Software Engineer 1.0 55000
29 Female Bachelor’s Degree Marketing Coordinator 4.0 65000
27 Male Bachelor’s Degree Product Designer 3.0 60000
34 Female PhD Research Director 10.0 150000
26 Male Bachelor’s Degree Marketing Analyst 2.0 50000
31 Female Master’s Degree Financial Manager 7.0 120000
25 Male Bachelor’s Degree Junior Software Engineer 1.0 55000
29 Female Bachelor’s Degree Marketing Coordinator 4.0 65000
27 Male Bachelor’s Degree Product Designer 3.0 60000
34 Female PhD Research Director 10.0 150000
26 Male Bachelor’s Degree Marketing Analyst 2.0 50000
31 Female Master’s Degree Financial Manager 7.0 120000
23 Male Bachelor’s Degree Software Engineer 1.0 60000
39 Female Master’s Degree Marketing Manager 12.0 150000
28 Male Bachelor’s Degree Financial Analyst 4.0 80000
31 Female PhD Research Scientist 8.0 120000
35 Male Bachelor’s Degree Project Manager 10.0 130000
27 Female Bachelor’s Degree Graphic Designer 2.0 50000
42 Male Master’s Degree Senior Software Engineer 18.0 180000
29 Female Bachelor’s Degree Digital Marketing Specialist 3.0 60000
33 Male Bachelor’s Degree Marketing Manager 7.0 110000
24 Female High School Sales Associate 0.0 25000
30 Male Master’s Degree Financial Analyst 6.0 100000
26 Female Bachelor’s Degree Social Media Manager 3.0 55000
32 Male PhD Data Scientist 9.0 140000
22 Female High School Receptionist 0.0 25000
37 Male Bachelor’s Degree Product Manager 12.0 150000
38 Female Master’s Degree Marketing Director 14.0 170000
25 Male Bachelor’s Degree Junior Software Engineer 1.0 55000
29 Female Bachelor’s Degree Marketing Coordinator 4.0 65000
27 Male Bachelor’s Degree Product Designer 3.0 60000
34 Female PhD Research Director 10.0 150000
26 Male Bachelor’s Degree Marketing Analyst 2.0 50000
31 Female Master’s Degree Financial Manager 7.0 120000
25 Male Bachelor’s Degree Junior Software Engineer 1.0 55000
29 Female Bachelor’s Degree Marketing Coordinator 4.0 65000
27 Male Bachelor’s Degree Product Designer 3.0 60000
34 Female PhD Research Director 10.0 150000
26 Male Bachelor’s Degree Marketing Analyst 2.0 50000
31 Female Master’s Degree Financial Manager 7.0 120000
23 Male Bachelor’s Degree Software Engineer 1.0 60000
39 Female Master’s Degree Marketing Manager 12.0 150000
28 Male Bachelor’s Degree Financial Analyst 4.0 80000
31 Female PhD Research Scientist 8.0 120000
35 Male Bachelor’s Degree Project Manager 10.0 130000
27 Female Bachelor’s Degree Graphic Designer 2.0 50000
42 Male Master’s Degree Senior Software Engineer 18.0 180000
29 Female Bachelor’s Degree Digital Marketing Specialist 3.0 60000
33 Male Bachelor’s Degree Marketing Manager 7.0 110000
24 Female High School Sales Associate 0.0 25000
30 Male Master’s Degree Financial Analyst 6.0 100000
26 Female Bachelor’s Degree Social Media Manager 3.0 55000
32 Male PhD Data Scientist 9.0 140000
22 Female High School Receptionist 0.0 25000
37 Male Bachelor’s Degree Product Manager 12.0 150000
38 Female Master’s Degree Marketing Director 14.0 170000
25 Male Bachelor’s Degree Junior Software Engineer 1.0 55000
29 Female Bachelor’s Degree Marketing Coordinator 4.0 65000
27 Male Bachelor’s Degree Product Designer 3.0 60000
34 Female PhD Research Director 10.0 150000
26 Male Bachelor’s Degree Marketing Analyst 2.0 50000
31 Female Master’s Degree Financial Manager 7.0 120000
25 Male Bachelor’s Degree Junior Software Engineer 1.0 55000
29 Female Bachelor’s Degree Marketing Coordinator 4.0 65000
27 Male Bachelor’s Degree Product Designer 3.0 60000
34 Female PhD Research Director 10.0 150000
26 Male Bachelor’s Degree Marketing Analyst 2.0 50000
31 Female Master’s Degree Financial Manager 7.0 120000
23 Male Bachelor’s Degree Software Engineer 1.0 60000
39 Female Master’s Degree Marketing Manager 12.0 150000
28 Male Bachelor’s Degree Financial Analyst 4.0 80000
31 Female PhD Research Scientist 8.0 120000
35 Male Bachelor’s Degree Project Manager 10.0 130000
27 Female Bachelor’s Degree Graphic Designer 2.0 50000
42 Male Master’s Degree Senior Software Engineer 18.0 180000
29 Female Bachelor’s Degree Digital Marketing Specialist 3.0 60000
33 Male Bachelor’s Degree Marketing Manager 7.0 110000
24 Female High School Sales Associate 0.0 25000
30 Male Master’s Degree Financial Analyst 6.0 100000
26 Female Bachelor’s Degree Social Media Manager 3.0 55000
32 Male PhD Data Scientist 9.0 140000
22 Female High School Receptionist 0.0 25000
37 Male Bachelor’s Degree Product Manager 12.0 150000
38 Female Master’s Degree Marketing Director 14.0 170000
25 Male Bachelor’s Degree Junior Software Engineer 1.0 55000
29 Female Bachelor’s Degree Marketing Coordinator 4.0 65000
27 Male Bachelor’s Degree Product Designer 3.0 60000
34 Female PhD Research Director 10.0 150000
26 Male Bachelor’s Degree Marketing Analyst 2.0 50000
31 Female Master’s Degree Financial Manager 7.0 120000
25 Male Bachelor’s Degree Junior Software Engineer 1.0 55000
29 Female Bachelor’s Degree Marketing Coordinator 4.0 65000
27 Male Bachelor’s Degree Product Designer 3.0 60000
34 Female PhD Research Director 10.0 150000
26 Male Bachelor’s Degree Marketing Analyst 2.0 50000
31 Female Master’s Degree Financial Manager 7.0 120000
23 Male Bachelor’s Degree Software Engineer 1.0 60000
39 Female Master’s Degree Marketing Manager 12.0 150000
28 Male Bachelor’s Degree Financial Analyst 4.0 80000
31 Female PhD Research Scientist 8.0 120000
35 Male Bachelor’s Degree Project Manager 10.0 130000
27 Female Bachelor’s Degree Graphic Designer 2.0 50000
42 Male Master’s Degree Senior Software Engineer 18.0 180000
29 Female Bachelor’s Degree Digital Marketing Specialist 3.0 60000
33 Male Bachelor’s Degree Marketing Manager 7.0 110000
24 Female High School Sales Associate 0.0 25000
30 Male Master’s Degree Financial Analyst 6.0 100000
26 Female Bachelor’s Degree Social M NA NA
28 Male Bachelor’s Degree Software Engineer 3.0 85000
36 Female Master’s Degree Marketing Director 11.0 160000
25 Male Bachelor’s Degree Financial Analyst 1.0 55000
29 Female PhD Data Scientist 5.0 100000
33 Male Bachelor’s Degree Project Manager 8.0 120000
27 Female Bachelor’s Degree Graphic Designer 2.0 50000
43 Male Master’s Degree Senior Software Engineer 19.0 185000
30 Female Bachelor’s Degree Digital Marketing Specialist 4.0 65000
34 Male Bachelor’s Degree Marketing Manager 9.0 130000
25 Female High School Sales Associate 0.0 25000
31 Male Master’s Degree Financial Analyst 6.0 100000
27 Female Bachelor’s Degree Social Media Manager 3.0 55000
33 Male PhD Research Scientist 10.0 150000
23 Female High School Receptionist 0.0 25000
38 Male Bachelor’s Degree Product Manager 13.0 160000
39 Female Master’s Degree Marketing Manager 14.0 170000
26 Male Bachelor’s Degree Junior Software Engineer 1.0 55000
30 Female Bachelor’s Degree Marketing Coordinator 4.0 65000
28 Male Bachelor’s Degree Product Designer 3.0 60000
35 Female PhD Research Director 11.0 160000
27 Male Bachelor’s Degree Marketing Analyst 2.0 50000
32 Female Master’s Degree Financial Manager 8.0 120000
26 Male Bachelor’s Degree Junior Software Engineer 1.0 55000
30 Female Bachelor’s Degree Marketing Coordinator 4.0 65000
28 Male Bachelor’s Degree Product Designer 3.0 60000
35 Female PhD Research Director 11.0 160000
27 Male Bachelor’s Degree Marketing Analyst 2.0 50000
32 Female Master’s Degree Financial Manager 8.0 120000
28 Male Bachelor’s Degree Software Engineer 3.0 85000
36 Female Master’s Degree Marketing Director 11.0 160000
25 Male Bachelor’s Degree Financial Analyst 1.0 55000
29 Female PhD Data Scientist 5.0 100000
33 Male Bachelor’s Degree Project Manager 8.0 120000
27 Female Bachelor’s Degree Graphic Designer 2.0 50000
43 Male Master’s Degree Senior Software Engineer 19.0 185000
30 Female Bachelor’s Degree Digital Marketing Specialist 4.0 65000
34 Male Bachelor’s Degree Marketing Manager 9.0 130000
25 Female High School Sales Associate 0.0 25000
31 Male Master’s Degree Financial Analyst 6.0 100000
27 Female Bachelor’s Degree Social Media Manager 3.0 55000
33 Male PhD Research Scientist 10.0 150000
23 Female High School Receptionist 0.0 25000
38 Male Bachelor’s Degree Product Manager 13.0 160000
39 Female Master’s Degree Marketing Manager 14.0 170000
26 Male Bachelor’s Degree Junior Software Engineer 1.0 55000
30 Female Bachelor’s Degree Marketing Coordinator 4.0 65000
28 Male Bachelor’s Degree Product Designer 3.0 60000
35 Female PhD Research Director 11.0 160000
27 Male Bachelor’s Degree Marketing Analyst 2.0 50000
32 Female Master’s Degree Financial Manager 8.0 120000
26 Male Bachelor’s Degree Junior Software Engineer 1.0 55000
30 Female Bachelor’s Degree Marketing Coordinator 4.0 65000
28 Male Bachelor’s Degree Product Designer 3.0 60000
35 Female PhD Research Director 11.0 160000
27 Male Bachelor’s Degree Marketing Analyst 2.0 50000
32 Female Master’s Degree Financial Manager 8.0 120000
28 Male Bachelor’s Degree Software Engineer 3.0 85000
36 Female Master’s Degree Marketing Director 11.0 160000
25 Male Bachelor’s Degree Financial Analyst 1.0 55000
29 Female PhD Data Scientist 5.0 100000
33 Male Bachelor’s Degree Project Manager 8.0 120000
27 Female Bachelor’s Degree Graphic Designer 2.0 50000
43 Male Master’s Degree Senior Software Engineer 19.0 185000
30 Female Bachelor’s Degree Digital Marketing Specialist 4.0 65000
34 Male Bachelor’s Degree Marketing Manager 9.0 130000
25 Female High School Sales Associate 0.0 25000
31 Male Master’s Degree Financial Analyst 6.0 100000
27 Female Bachelor’s Degree Social Media Manager 3.0 55000
33 Male PhD Research Scientist 10.0 150000
23 Female High School Receptionist 0.0 25000
38 Male Bachelor’s Degree Product Manager 13.0 160000
39 Female Master’s Degree Marketing Manager 14.0 170000
26 Male Bachelor’s Degree Junior Software Engineer 1.0 55000
30 Female Bachelor’s Degree Marketing Coordinator 4.0 65000
28 Male Bachelor’s Degree Product Designer 3.0 60000
35 Female PhD Research Director 11.0 160000
27 Male Bachelor’s Degree Marketing Analyst 2.0 50000
32 Female Master’s Degree Financial Manager 8.0 120000
26 Male Bachelor’s Degree Junior Software Engineer 1.0 55000
30 Female Bachelor’s Degree Marketing Coordinator 4.0 65000
28 Male Bachelor’s Degree Product Designer 3.0 60000
35 Female PhD Research Director 11.0 160000
27 Male Bachelor’s Degree Marketing Analyst 2.0 50000
32 Female Master’s Degree Financial Manager 8.0 120000
28 Male Bachelor’s Degree Software Engineer 3.0 85000
36 Female Master’s Degree Marketing Director 11.0 160000
25 Male Bachelor’s Degree Financial Analyst 1.0 55000
29 Female PhD Data Scientist 5.0 100000
33 Male Bachelor’s Degree Project Manager 8.0 120000
27 Female Bachelor’s Degree Graphic Designer 2.0 50000
43 Male Master’s Degree Senior Software Engineer 19.0 185000
30 Female Bachelor’s Degree Digital Marketing Specialist 4.0 65000
34 Male Bachelor’s Degree Marketing Manager 9.0 130000
25 Female High School Sales Associate 0.0 25000
31 Male Master’s Degree Financial Analyst 6.0 100000
27 Female Bachelor’s Degree Social Media Manager 3.0 55000
33 Male PhD Research Scientist 10.0 150000
23 Female High School Receptionist 0.0 25000
38 Male Bachelor’s Degree Product Manager 13.0 160000
39 Female Master’s Degree Marketing Manager 14.0 170000
26 Male Bachelor’s Degree Junior Software Engineer 1.0 55000
30 Female Bachelor’s Degree Marketing Coordinator 4.0 65000
28 Male Bachelor’s Degree Product Designer 3.0 60000
35 Female PhD Research Director 11.0 160000
27 Male Bachelor’s Degree Marketing Analyst 2.0 50000
32 Female Master’s Degree Financial Manager 8.0 120000
26 Male Bachelor’s Degree Junior Software Engineer 1.0 55000
30 Female Bachelor’s Degree Marketing Coordinator 4.0 65000
28 Male Bachelor’s Degree Product Designer 3.0 60000
35 Female PhD Research Director 11.0 160000
27 Male Bachelor’s Degree Marketing Analyst 2.0 50000
32 Female Master’s Degree Financial Manager 8.0 120000
28 Male Bachelor’s Degree Software Engineer 3.0 85000
36 Female Master’s Degree Marketing Director 11.0 160000
25 Male Bachelor’s Degree Financial Analyst 1.0 55000
29 Female PhD Data Scientist 5.0 100000
33 Male Bachelor’s Degree Project Manager 8.0 120000
27 Female Bachelor’s Degree Graphic Designer 2.0 50000
43 Male Master’s Degree Senior Software Engineer 19.0 185000
30 Female Bachelor’s Degree Digital Marketing Specialist 4.0 65000
34 Male Bachelor’s Degree Marketing Manager 9.0 130000
25 Female High School Sales Associate 0.0 25000
31 Male Master’s Degree Financial Analyst 6.0 100000
27 Female Bachelor’s Degree Social Media Manager 3.0 55000
33 Male PhD Research Scientist 10.0 150000
27 Male Bachelor’s Degree Software Engineer 3.0 85000
35 Female Master’s Degree Marketing Director 11.0 160000
24 Male Bachelor’s Degree Financial Analyst 1.0 55000
28 Female PhD Data Scientist 5.0 100000
32 Male Bachelor’s Degree Project Manager 8.0 120000
26 Female Bachelor’s Degree Graphic Designer 2.0 50000
41 Male Master’s Degree Senior Software Engineer 19.0 185000
29 Female Bachelor’s Degree Digital Marketing Specialist 4.0 65000
33 Male Bachelor’s Degree Marketing Manager 9.0 130000
24 Female High School Sales Associate 0.0 25000
30 Male Master’s Degree Financial Analyst 6.0 100000
26 Female Bachelor’s Degree Social Media Manager 3.0 55000
32 Male PhD Research Scientist 10.0 150000
22 Female High School Receptionist 0.0 25000
37 Male Bachelor’s Degree Product Manager 13.0 160000
38 Female Master’s Degree Marketing Manager 14.0 170000
27 Male Bachelor’s Degree Junior Software Engineer 1.0 55000
31 Female Bachelor’s Degree Marketing Coordinator 4.0 65000
29 Male Bachelor’s Degree Product Designer 3.0 60000
34 Female PhD Research Director 11.0 160000
26 Male Bachelor’s Degree Marketing Analyst 2.0 50000
31 Female Master’s Degree Financial Manager 8.0 120000
27 Male Bachelor’s Degree Junior Software Engineer 1.0 55000
31 Female Bachelor’s Degree Marketing Coordinator 4.0 65000
29 Male Bachelor’s Degree Product Designer 3.0 60000
34 Female PhD Research Director 11.0 160000
26 Male Bachelor’s Degree Marketing Analyst 2.0 50000
31 Female Master’s Degree Financial Manager 8.0 120000
27 Male Bachelor’s Degree Software Engineer 3.0 85000
35 Female Master’s Degree Marketing Director 11.0 160000
24 Male Bachelor’s Degree Financial Analyst 1.0 55000
28 Female PhD Data Scientist 5.0 100000
32 Male Bachelor’s Degree Project Manager 8.0 120000
26 Female Bachelor’s Degree Graphic Designer 2.0 50000
41 Male Master’s Degree Senior Software Engineer 19.0 185000
29 Female Bachelor’s Degree Digital Marketing Specialist 4.0 65000
33 Male Bachelor’s Degree Marketing Manager 9.0 130000
24 Female High School Sales Associate 0.0 25000
30 Male Master’s Degree Financial Analyst 6.0 100000
26 Female Bachelor’s Degree Social Media Manager 3.0 55000
32 Male PhD Research Scientist 10.0 150000
22 Female High School Receptionist 0.0 25000
37 Male Bachelor’s Degree Product Manager 13.0 160000
38 Female Master’s Degree Marketing Manager 14.0 170000
27 Male Bachelor’s Degree Junior Software Engineer 1.0 55000
31 Female Bachelor’s Degree Marketing Coordinator 4.0 65000
29 Male Bachelor’s Degree Product Designer 3.0 60000
34 Female PhD Research Director 11.0 160000
26 Male Bachelor’s Degree Marketing Analyst 2.0 50000
31 Female Master’s Degree Financial Manager 8.0 120000
27 Male Bachelor’s Degree Junior Software Engineer 1.0 55000
31 Female Bachelor’s Degree Marketing Coordinator 4.0 65000
29 Male Bachelor’s Degree Product Designer 3.0 60000
34 Female PhD Research Director 11.0 160000
26 Male Bachelor’s Degree Marketing Analyst 2.0 50000
31 Female Master’s Degree Financial Manager 8.0 120000
27 Male Bachelor’s Degree Software Engineer 3.0 85000
35 Female Master’s Degree Marketing Director 11.0 160000
24 Male Bachelor’s Degree Financial Analyst 1.0 55000
28 Female PhD Data Scientist 5.0 100000
32 Male Bachelor’s Degree Project Manager 8.0 120000
26 Female Bachelor’s Degree Graphic Designer 2.0 50000
41 Male Master’s Degree Senior Software Engineer 19.0 185000
29 Female Bachelor’s Degree Digital Marketing Specialist 4.0 65000
33 Male Bachelor’s Degree Marketing Manager 9.0 130000
24 Female High School Sales Associate 0.0 25000
30 Male Master’s Degree Financial Analyst 6.0 100000
26 Female Bachelor’s Degree Social Media Manager 3.0 55000
32 Male PhD Research Scientist 10.0 150000
22 Female High School Receptionist 0.0 25000
37 Male Bachelor’s Degree Product Manager 13.0 160000
38 Female Master’s Degree Marketing Manager 14.0 170000
27 Male Bachelor’s Degree Junior Software Engineer 1.0 55000
31 Female Bachelor’s Degree Marketing Coordinator 4.0 65000
29 Male Bachelor’s Degree Product Designer 3.0 60000
34 Female PhD Research Director 11.0 160000
26 Male Bachelor’s Degree Marketing Analyst 2.0 50000
31 Female Master’s Degree Financial Manager 8.0 120000
27 Male Bachelor’s Degree Junior Software Engineer 1.0 55000
31 Female Bachelor’s Degree Marketing Coordinator 4.0 65000
29 Male Bachelor’s Degree Product Designer 3.0 60000
34 Female PhD Research Director 11.0 160000
26 Male Bachelor’s Degree Marketing Analyst 2.0 50000
31 Female Master’s Degree Financial Manager 8.0 120000
27 Male Bachelor’s Degree Software Engineer 3.0 85000
35 Female Master’s Degree Marketing Director 11.0 160000
24 Male Bachelor’s Degree Financial Analyst 1.0 55000
28 Female PhD Data Scientist 5.0 100000
32 Male Bachelor’s Degree Project Manager 8.0 120000
26 Female Bachelor’s Degree Graphic Designer 2.0 50000
41 Male Master’s Degree Senior Software Engineer 19.0 185000
29 Female Bachelor’s Degree Digital Marketing Specialist 4.0 65000
33 Male Bachelor’s Degree Marketing Manager 9.0 130000
24 Female High School Sales Associate 0.0 25000
30 Male Master’s Degree Financial Analyst 6.0 100000
26 Female Bachelor’s Degree Social Media Manager 3.0 55000
32 Male PhD Research Scientist 10.0 150000
22 Female High School Receptionist 0.0 25000
37 Male Bachelor’s Degree Product Manager 13.0 160000
38 Female Master’s Degree Marketing Manager 14.0 170000
27 Male Bachelor’s Degree Junior Software Engineer 1.0 55000
31 Female Bachelor’s Degree Marketing Coordinator 4.0 65000
29 Male Bachelor’s Degree Product Designer 3.0 60000
34 Female PhD Research Director 11.0 160000
26 Male Bachelor’s Degree Marketing Analyst 2.0 50000
31 Female Master’s Degree Financial Manager 8.0 120000
27 Male Bachelor’s Degree Junior Software Engineer 1.0 55000
31 Female Bachelor’s Degree Marketing Coordinator 4.0 65000
29 Male Bachelor’s Degree Product Designer 3.0 60000
34 Female PhD Research Director 11.0 160000
26 Male Bachelor’s Degree Marketing Analyst 2.0 50000
31 Female Master’s Degree Financial Manager 8.0 120000
27 Male Bachelor’s Degree Software Engineer 3.0 85000
35 Female Master’s Degree Marketing Director 11.0 160000
24 Male Bachelor’s Degree Financial Analyst 1.0 55000
28 Female PhD Data Scientist 5.0 100000
32 Male Bachelor’s Degree Project Manager 8.0 120000
26 Female Bachelor’s Degree Graphic Designer 2.0 50000
41 Male Master’s Degree Senior Software Engineer 19.0 185000
29 Female Bachelor’s Degree Digital Marketing Specialist 4.0 65000
33 Male Bachelor’s Degree Marketing Manager 9.0 130000
24 Female High School Sales Associate 0.0 25000
30 Male Master’s Degree Financial Analyst 6.0 100000
26 Female Bachelor’s Degree Social Media Man 7.0 100000
31 Male Bachelor’s Degree Software Engineer 7.0 120000
26 Female Bachelor’s Degree Graphic Designer 2.0 50000
33 Male Master’s Degree Marketing Manager 9.0 130000
29 Female High School Customer Service Representative 3.0 35000
36 Male PhD Research Scientist 13.0 160000
27 Female Bachelor’s Degree Marketing Coordinator 2.0 50000
31 Male Bachelor’s Degree Project Manager 6.0 100000
28 Female Master’s Degree Financial Analyst 4.0 80000
25 Male Bachelor’s Degree Software Engineer 1.0 60000
30 Female Bachelor’s Degree Sales Manager 5.0 90000
34 Male PhD Research Director 11.0 170000
28 Female Bachelor’s Degree Marketing Analyst 3.0 60000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
37 Male Master’s Degree Marketing Director 14.0 180000
39 Female Bachelor’s Degree Financial Manager 16.0 200000
26 Male Bachelor’s Degree Product Designer 2.0 50000
31 Female PhD Data Scientist 8.0 140000
29 Male Bachelor’s Degree Marketing Analyst 4.0 70000
33 Female Master’s Degree Marketing Manager 9.0 130000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 12.0 160000
25 Male Bachelor’s Degree Product Manager 1.0 55000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 85000
34 Male PhD Research Director 11.0 170000
28 Female Bachelor’s Degree Marketing Analyst 3.0 60000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
37 Male Master’s Degree Marketing Director 14.0 180000
39 Female Bachelor’s Degree Financial Manager 16.0 200000
26 Male Bachelor’s Degree Product Designer 2.0 50000
31 Female PhD Data Scientist 8.0 140000
29 Male Bachelor’s Degree Marketing Analyst 4.0 70000
33 Female Master’s Degree Marketing Manager 9.0 130000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 12.0 160000
25 Male Bachelor’s Degree Product Manager 1.0 55000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 85000
34 Male PhD Research Director 11.0 170000
28 Female Bachelor’s Degree Marketing Analyst 3.0 60000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
37 Male Master’s Degree Marketing Director 14.0 180000
39 Female Bachelor’s Degree Financial Manager 16.0 200000
26 Male Bachelor’s Degree Product Designer 2.0 50000
31 Female PhD Data Scientist 8.0 140000
29 Male Bachelor’s Degree Marketing Analyst 4.0 70000
33 Female Master’s Degree Marketing Manager 9.0 130000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 12.0 160000
25 Male Bachelor’s Degree Product Manager 1.0 55000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 85000
34 Male PhD Research Director 11.0 170000
28 Female Bachelor’s Degree Marketing Analyst 3.0 60000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
37 Male Master’s Degree Marketing Director 14.0 180000
39 Female Bachelor’s Degree Financial Manager 16.0 200000
26 Male Bachelor’s Degree Product Designer 2.0 50000
31 Female PhD Data Scientist 8.0 140000
29 Male Bachelor’s Degree Marketing Analyst 4.0 70000
33 Female Master’s Degree Marketing Manager 9.0 130000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 12.0 160000
25 Male Bachelor’s Degree Product Manager 1.0 55000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 85000
34 Male PhD Research Director 11.0 170000
28 Female Bachelor’s Degree Marketing Analyst 3.0 60000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
37 Male Master’s Degree Marketing Director 14.0 180000
39 Female Bachelor’s Degree Financial Manager 16.0 200000
26 Male Bachelor’s Degree Product Designer 2.0 50000
31 Female PhD Data Scientist 8.0 140000
29 Male Bachelor’s Degree Marketing Analyst 4.0 70000
33 Female Master’s Degree Marketing Manager 9.0 130000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 12.0 160000
25 Male Bachelor’s Degree Product Manager 1.0 55000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 85000
34 Male PhD Research Director 11.0 170000
28 Female Bachelor’s Degree Marketing Analyst 3.0 60000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
37 Male Master’s Degree Marketing Director 14.0 180000
39 Female Bachelor’s Degree Financial Manager 16.0 200000
26 Male Bachelor’s Degree Product Designer 2.0 50000
31 Female PhD Data Scientist 8.0 140000
29 Male Bachelor’s Degree Marketing Analyst 4.0 70000
33 Female Master’s Degree Marketing Manager 9.0 130000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 12.0 160000
25 Male Bachelor’s Degree Product Manager 1.0 55000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 85000
34 Male PhD Research Director 11.0 170000
28 Female Bachelor’s Degree Marketing Analyst 3.0 60000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
37 Male Master’s Degree Marketing Director 14.0 180000
39 Female Bachelor’s Degree Financial Manager 16.0 200000
26 Male Bachelor’s Degree Product Designer 2.0 50000
31 Female PhD Data Scientist 8.0 140000
29 Male Bachelor’s Degree Marketing Analyst 4.0 70000
33 Female Master’s Degree Marketing Manager 9.0 130000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 12.0 160000
25 Male Bachelor’s Degree Product Manager 1.0 55000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 85000
34 Male PhD Research Director 11.0 170000
28 Female Bachelor’s Degree Marketing Analyst 3.0 60000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
37 Male Master’s Degree Marketing Director 14.0 180000
39 Female Bachelor’s Degree Financial Manager 16.0 200000
26 Male Bachelor’s Degree Product Designer 2.0 50000
31 Female PhD Data Scientist 8.0 140000
29 Male Bachelor’s Degree Marketing Analyst 4.0 70000
33 Female Master’s Degree Marketing Manager 9.0 130000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 12.0 160000
25 Male Bachelor’s Degree Product Manager 1.0 55000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 85000
34 Male PhD Research Director 11.0 170000
28 Female Bachelor’s Degree Marketing Analyst 3.0 60000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
37 Male Master’s Degree Marketing Director 14.0 180000
28 Female Bachelor’s Degree Marketing Coordinator 3.0 60000
33 Male Master’s Degree Software Engineer 9.0 120000
26 Female Bachelor’s Degree Graphic Designer 1.0 45000
29 Male Bachelor’s Degree Product Manager 5.0 80000
35 Female PhD Research Scientist 11.0 150000
27 Male Bachelor’s Degree Software Engineer 2.0 65000
31 Female Bachelor’s Degree Marketing Manager 7.0 100000
28 Male Master’s Degree Financial Analyst 4.0 90000
24 Female Bachelor’s Degree Marketing Analyst 0.0 40000
30 Male Bachelor’s Degree Project Manager 6.0 110000
34 Female PhD Research Director 12.0 170000
27 Male Bachelor’s Degree Software Engineer 3.0 75000
33 Female Master’s Degree Marketing Manager 8.0 120000
29 Male Bachelor’s Degree Marketing Analyst 4.0 70000
25 Female High School Customer Service Representative 1.0 30000
36 Male PhD Research Scientist 13.0 180000
39 Female Bachelor’s Degree Financial Manager 15.0 200000
26 Male Bachelor’s Degree Product Designer 1.0 50000
31 Female PhD Data Scientist 8.0 140000
28 Male Bachelor’s Degree Marketing Analyst 3.0 65000
32 Female Bachelor’s Degree Product Manager 7.0 110000
24 Male High School Delivery Driver 0.0 28000
37 Male Master’s Degree Marketing Director 14.0 190000
39 Female Bachelor’s Degree Financial Manager 16.0 210000
26 Male Bachelor’s Degree Product Designer 2.0 55000
31 Female PhD Data Scientist 8.0 140000
29 Male Bachelor’s Degree Marketing Analyst 4.0 70000
33 Female Master’s Degree Marketing Manager 9.0 130000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 12.0 170000
25 Male Bachelor’s Degree Product Manager 1.0 60000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 90000
34 Male PhD Research Director 11.0 160000
28 Female Bachelor’s Degree Marketing Analyst 3.0 60000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
37 Male Master’s Degree Marketing Director 14.0 190000
39 Female Bachelor’s Degree Financial Manager 16.0 200000
26 Male Bachelor’s Degree Product Designer 2.0 55000
31 Female PhD Data Scientist 8.0 140000
29 Male Bachelor’s Degree Marketing Analyst 4.0 70000
33 Female Master’s Degree Marketing Manager 9.0 130000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 12.0 170000
25 Male Bachelor’s Degree Product Manager 1.0 60000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 90000
34 Male PhD Research Director 11.0 160000
28 Female Bachelor’s Degree Marketing Analyst 3.0 60000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
37 Male Master’s Degree Marketing Director 14.0 190000
39 Female Bachelor’s Degree Financial Manager 16.0 200000
26 Male Bachelor’s Degree Product Designer 2.0 55000
31 Female PhD Data Scientist 8.0 140000
29 Male Bachelor’s Degree Marketing Analyst 4.0 70000
33 Female Master’s Degree Marketing Manager 9.0 130000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 12.0 170000
25 Male Bachelor’s Degree Product Manager 1.0 60000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 90000
34 Male PhD Research Director 11.0 160000
28 Female Bachelor’s Degree Marketing Analyst 3.0 60000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
37 Male Master’s Degree Marketing Director 14.0 190000
39 Female Bachelor’s Degree Financial Manager 16.0 200000
26 Male Bachelor’s Degree Product Designer 2.0 55000
31 Female PhD Data Scientist 8.0 140000
29 Male Bachelor’s Degree Marketing Analyst 4.0 70000
33 Female Master’s Degree Marketing Manager 9.0 130000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 12.0 170000
25 Male Bachelor’s Degree Product Manager 1.0 60000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 90000
34 Male PhD Research Director 11.0 160000
28 Female Bachelor’s Degree Marketing Analyst 3.0 60000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
37 Male Master’s Degree Marketing Director 14.0 190000
39 Female Bachelor’s Degree Financial Manager 16.0 200000
26 Male Bachelor’s Degree Product Designer 2.0 55000
31 Female PhD Data Scientist 8.0 140000
29 Male Bachelor’s Degree Marketing Analyst 4.0 70000
33 Female Master’s Degree Marketing Manager 9.0 130000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 12.0 170000
25 Male Bachelor’s Degree Product Manager 1.0 60000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 90000
34 Male PhD Research Director 11.0 160000
28 Female Bachelor’s Degree Marketing Analyst 3.0 60000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
37 Male Master’s Degree Marketing Director 14.0 190000
39 Female Bachelor’s Degree Financial Manager 16.0 200000
26 Male Bachelor’s Degree Product Designer 2.0 55000
31 Female PhD Data Scientist 8.0 140000
29 Male Bachelor’s Degree Marketing Analyst 4.0 70000
33 Female Master’s Degree Marketing Manager 9.0 130000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 12.0 170000
25 Male Bachelor’s Degree Product Manager 1.0 60000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 90000
34 Male PhD Research Director 11.0 160000
28 Female Bachelor’s Degree Marketing Analyst 3.0 60000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
37 Male Master’s Degree Marketing Director 14.0 190000
39 Female Bachelor’s Degree Financial Manager 16.0 200000
26 Male Bachelor’s Degree Product Designer 2.0 55000
31 Female PhD Data Scientist 8.0 140000
29 Male Bachelor’s Degree Marketing Analyst 4.0 70000
33 Female Master’s Degree Marketing Manager 9.0 130000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 12.0 170000
25 Male Bachelor’s Degree Product Manager 1.0 60000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 90000
34 Male PhD Research Director 11.0 160000
28 Female Bachelor’s Degree Marketing Analyst 3.0 60000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
37 Male Master’s Degree Marketing Director 14.0 190000
39 Female Bachelor’s Degree Financial Manager 16.0 200000
26 Male Bachelor’s Degree Product Designer 2.0 55000
31 Female PhD Data Scientist 8.0 140000
29 Male Bachelor’s Degree Marketing Analyst 4.0 70000
33 Female Master’s Degree Marketing Manager 9.0 130000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
29 Male Bachelor’s Degree Software Engineer 3.0 75000
32 Female Master’s Degree Marketing Manager 8.0 120000
27 Male Bachelor’s Degree Product Manager 2.0 65000
30 Female PhD Data Scientist 6.0 100000
36 Male Bachelor’s Degree Financial Analyst 11.0 150000
28 Female Bachelor’s Degree Marketing Coordinator 3.0 60000
33 Male Master’s Degree Software Engineer 9.0 120000
26 Female Bachelor’s Degree Graphic Designer 1.0 45000
29 Male Bachelor’s Degree Product Manager 5.0 80000
35 Female PhD Research Scientist 11.0 150000
27 Male Bachelor’s Degree Software Engineer 2.0 65000
31 Female Bachelor’s Degree Marketing Manager 7.0 100000
28 Male Master’s Degree Financial Analyst 4.0 90000
24 Female Bachelor’s Degree Marketing Analyst 0.0 40000
30 Male Bachelor’s Degree Project Manager 6.0 110000
34 Female PhD Research Director 12.0 170000
27 Male Bachelor’s Degree Software Engineer 3.0 75000
33 Female Master’s Degree Marketing Manager 8.0 120000
29 Male Bachelor’s Degree Marketing Analyst 4.0 70000
25 Female High School Customer Service Representative 1.0 30000
36 Male PhD Research Scientist 13.0 180000
39 Female Bachelor’s Degree Financial Manager 15.0 200000
26 Male Bachelor’s Degree Product Designer 1.0 50000
31 Female PhD Data Scientist 8.0 140000
28 Male Bachelor’s Degree Marketing Analyst 3.0 65000
32 Female Bachelor’s Degree Product Manager 7.0 110000
24 Male High School Delivery Driver 0.0 28000
37 Male Master’s Degree Marketing Director 14.0 190000
39 Female Bachelor’s Degree Financial Manager 16.0 210000
26 Male Bachelor’s Degree Product Designer 2.0 55000
31 Female PhD Data Scientist 8.0 140000
29 Male Bachelor’s Degree Marketing Analyst 4.0 70000
33 Female Master’s Degree Marketing Manager 9.0 130000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 12.0 170000
25 Male Bachelor’s Degree Product Manager 1.0 60000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 90000
34 Male PhD Research Director 11.0 160000
28 Female Bachelor’s Degree Marketing Analyst 3.0 60000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
37 Male Master’s Degree Marketing Director 14.0 190000
39 Female Bachelor’s Degree Financial Manager 16.0 200000
26 Male Bachelor’s Degree Product Designer 2.0 55000
31 Female PhD Data Scientist 8.0 140000
29 Male Bachelor’s Degree Marketing Analyst 4.0 70000
33 Female Master’s Degree Marketing Manager 9.0 130000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 12.0 170000
25 Male Bachelor’s Degree Product Manager 1.0 60000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 90000
34 Male PhD Research Director 11.0 160000
28 Female Bachelor’s Degree Marketing Analyst 3.0 60000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
37 Male Master’s Degree Marketing Director 14.0 190000
39 Female Bachelor’s Degree Financial Manager 16.0 200000
26 Male Bachelor’s Degree Product Designer 2.0 55000
31 Female PhD Data Scientist 8.0 140000
29 Male Bachelor’s Degree Marketing Analyst 4.0 70000
33 Female Master’s Degree Marketing Manager 9.0 130000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 12.0 170000
25 Male Bachelor’s Degree Product Manager 1.0 60000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 90000
34 Male PhD Research Director 11.0 160000
28 Female Bachelor’s Degree Marketing Analyst 3.0 60000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
37 Male Master’s Degree Marketing Director 14.0 190000
39 Female Bachelor’s Degree Financial Manager 16.0 200000
26 Male Bachelor’s Degree Product Designer 2.0 55000
31 Female PhD Data Scientist 8.0 140000
29 Male Bachelor’s Degree Marketing Analyst 4.0 70000
33 Female Master’s Degree Marketing Manager 9.0 130000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 12.0 170000
25 Male Bachelor’s Degree Product Manager 1.0 60000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 90000
34 Male PhD Research Director 11.0 160000
28 Female Bachelor’s Degree Marketing Analyst 3.0 60000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
37 Male Master’s Degree Marketing Director 14.0 190000
39 Female Bachelor’s Degree Financial Manager 16.0 200000
26 Male Bachelor’s Degree Product Designer 2.0 55000
31 Female PhD Data Scientist 8.0 140000
29 Male Bachelor’s Degree Marketing Analyst 4.0 70000
33 Female Master’s Degree Marketing Manager 9.0 130000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 12.0 170000
25 Male Bachelor’s Degree Product Manager 1.0 60000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 90000
34 Male PhD Research Director 11.0 160000
28 Female Bachelor’s Degree Marketing Analyst 3.0 60000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
37 Male Master’s Degree Marketing Director 14.0 190000
39 Female Bachelor’s Degree Financial Manager 16.0 200000
26 Male Bachelor’s Degree Product Designer 2.0 55000
31 Female PhD Data Scientist 8.0 140000
29 Male Bachelor’s Degree Marketing Analyst 4.0 70000
33 Female Master’s Degree Marketing Manager 9.0 130000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 12.0 170000
25 Male Bachelor’s Degree Product Manager 1.0 60000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 90000
34 Male PhD Research Director 11.0 160000
28 Female Bachelor’s Degree Marketing Analyst 3.0 60000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
37 Male Master’s Degree Marketing Director 14.0 190000
39 Female Bachelor’s Degree Financial Manager 16.0 200000
26 Male Bachelor’s Degree Product Designer 2.0 55000
31 Female PhD Data Scientist 8.0 140000
29 Male Bachelor’s Degree Marketing Analyst 4.0 70000
33 Female Master’s Degree Marketing Manager 9.0 130000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 12.0 170000
25 Male Bachelor’s Degree Product Manager 1.0 60000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 90000
34 Male PhD Research Director 11.0 160000
28 Female Bachelor’s Degree Marketing Analyst 3.0 60000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
37 Male Master’s Degree Marketing Director 14.0 190000
39 Female Bachelor’s Degree Financial Manager 16.0 200000
27 Male phD Marketing Coordinator 7.0 120000
28 Female Bachelor’s Degree Marketing Coordinator 3.0 60000
33 Male Master’s Degree Software Engineer 8.0 120000
27 Female Bachelor’s Degree Product Manager 2.0 65000
30 Male PhD Data Scientist 6.0 100000
36 Female Bachelor’s Degree Financial Analyst 11.0 150000
29 Male Bachelor’s Degree Marketing Analyst 3.0 65000
32 Female Master’s Degree Software Engineer 9.0 120000
26 Male Bachelor’s Degree Graphic Designer 1.0 45000
29 Female Bachelor’s Degree Product Manager 5.0 80000
35 Male PhD Research Scientist 11.0 150000
27 Male Bachelor’s Degree Software Engineer 2.0 65000
31 Female Bachelor’s Degree Marketing Manager 7.0 100000
28 Male Master’s Degree Financial Analyst 4.0 90000
24 Female Bachelor’s Degree Marketing Analyst 0.0 40000
30 Male Bachelor’s Degree Project Manager 6.0 110000
34 Female PhD Research Director 12.0 170000
27 Male Bachelor’s Degree Software Engineer 3.0 75000
33 Female Master’s Degree Marketing Manager 8.0 120000
29 Male Bachelor’s Degree Marketing Analyst 4.0 70000
25 Female High School Customer Service Representative 1.0 30000
36 Male PhD Research Scientist 13.0 180000
39 Female Bachelor’s Degree Financial Manager 15.0 200000
26 Male Bachelor’s Degree Product Designer 1.0 50000
31 Female PhD Data Scientist 8.0 140000
28 Male Bachelor’s Degree Marketing Analyst 3.0 65000
32 Female Bachelor’s Degree Product Manager 7.0 110000
24 Male High School Delivery Driver 0.0 28000
37 Male Master’s Degree Marketing Director 14.0 190000
39 Female Bachelor’s Degree Financial Manager 16.0 210000
26 Male Bachelor’s Degree Product Designer 2.0 55000
31 Female PhD Data Scientist 8.0 140000
29 Male Bachelor’s Degree Marketing Analyst 4.0 70000
33 Female Master’s Degree Marketing Manager 9.0 130000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 12.0 170000
25 Male Bachelor’s Degree Product Manager 1.0 60000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 90000
34 Male PhD Research Director 11.0 160000
28 Female Bachelor’s Degree Marketing Analyst 3.0 60000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
37 Male Master’s Degree Marketing Director 14.0 190000
39 Female Bachelor’s Degree Financial Manager 16.0 200000
26 Male Bachelor’s Degree Product Designer 2.0 55000
31 Female PhD Data Scientist 8.0 140000
29 Male Bachelor’s Degree Marketing Analyst 4.0 70000
33 Female Master’s Degree Marketing Manager 9.0 130000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 12.0 170000
25 Male Bachelor’s Degree Product Manager 1.0 60000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 90000
34 Male PhD Research Director 11.0 160000
28 Female Bachelor’s Degree Marketing Analyst 3.0 60000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
37 Male Master’s Degree Marketing Director 14.0 190000
39 Female Bachelor’s Degree Financial Manager 16.0 200000
26 Male Bachelor’s Degree Product Designer 2.0 55000
31 Female PhD Data Scientist 8.0 140000
29 Male Bachelor’s Degree Marketing Analyst 4.0 70000
33 Female Master’s Degree Marketing Manager 9.0 130000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 12.0 170000
25 Male Bachelor’s Degree Product Manager 1.0 60000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 90000
34 Male PhD Research Director 11.0 160000
28 Female Bachelor’s Degree Marketing Analyst 3.0 60000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
37 Male Master’s Degree Marketing Director 14.0 190000
39 Female Bachelor’s Degree Financial Manager 16.0 200000
26 Male Bachelor’s Degree Product Designer 2.0 55000
31 Female PhD Data Scientist 8.0 140000
29 Male Bachelor’s Degree Marketing Analyst 4.0 70000
33 Female Master’s Degree Marketing Manager 9.0 130000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 12.0 170000
25 Male Bachelor’s Degree Product Manager 1.0 60000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 90000
34 Male PhD Research Director 11.0 160000
28 Female Bachelor’s Degree Marketing Analyst 3.0 60000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
37 Male Master’s Degree Marketing Director 14.0 190000
39 Female Bachelor’s Degree Financial Manager 16.0 200000
26 Male Bachelor’s Degree Product Designer 2.0 55000
31 Female PhD Data Scientist 8.0 140000
29 Male Bachelor’s Degree Marketing Analyst 4.0 70000
33 Female Master’s Degree Marketing Manager 9.0 130000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 12.0 170000
25 Male Bachelor’s Degree Product Manager 1.0 60000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 90000
34 Male PhD Research Director 11.0 160000
28 Female Bachelor’s Degree Marketing Analyst 3.0 60000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
37 Male Master’s Degree Marketing Director 14.0 190000
39 Female Bachelor’s Degree Financial Manager 16.0 200000
26 Male Bachelor’s Degree Product Designer 2.0 55000
31 Female PhD Data Scientist 8.0 140000
29 Male Bachelor’s Degree Marketing Analyst 4.0 70000
33 Female Master’s Degree Marketing Manager 9.0 130000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 12.0 170000
25 Male Bachelor’s Degree Product Manager 1.0 60000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 90000
34 Male PhD Research Director 11.0 160000
28 Female Bachelor’s Degree Marketing Analyst 3.0 60000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
37 Male Master’s Degree Marketing Director 14.0 190000
39 Female Bachelor’s Degree Financial Manager 16.0 200000
26 Male Bachelor’s Degree Product Designer 2.0 55000
31 Female PhD Data Scientist 8.0 140000
29 Male Bachelor’s Degree Marketing Analyst 4.0 70000
33 Female Master’s Degree Marketing Manager 9.0 130000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 12.0 170000
25 Male Bachelor’s Degree Product Manager 1.0 60000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 90000
34 Male PhD Research Director 11.0 160000
28 Female Bachelor’s Degree Marketing Analyst 3.0 60000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
37 Male Master’s Degree Marketing Director 14.0 190000
39 Female Bachelor’s Degree Financial Manager 16.0 200000
29 Female Bachelor’s Degree Marketing Coordinator 4.0 65000
34 Male Master’s Degree Software Engineer 9.0 125000
28 Female Bachelor’s Degree Product Manager 3.0 70000
31 Male PhD Data Scientist 7.0 110000
37 Female Bachelor’s Degree Financial Analyst 12.0 160000
30 Male Bachelor’s Degree Marketing Analyst 4.0 75000
33 Female Master’s Degree Software Engineer 8.0 120000
27 Male Bachelor’s Degree Graphic Designer 2.0 50000
30 Female Bachelor’s Degree Product Manager 5.0 85000
36 Male PhD Research Scientist 11.0 155000
28 Male Bachelor’s Degree Software Engineer 3.0 70000
32 Female Bachelor’s Degree Marketing Manager 8.0 115000
29 Male Master’s Degree Financial Analyst 5.0 95000
25 Female Bachelor’s Degree Marketing Analyst 0.0 40000
31 Male Bachelor’s Degree Project Manager 6.0 115000
35 Female PhD Research Director 12.0 175000
28 Male Bachelor’s Degree Software Engineer 3.0 70000
33 Female Master’s Degree Marketing Manager 9.0 135000
29 Male Bachelor’s Degree Marketing Analyst 4.0 75000
25 Female High School Customer Service Representative 1.0 30000
36 Male PhD Research Scientist 13.0 185000
40 Female Bachelor’s Degree Financial Manager 15.0 210000
27 Male Bachelor’s Degree Product Designer 1.0 45000
32 Female PhD Data Scientist 9.0 145000
28 Male Bachelor’s Degree Marketing Analyst 3.0 70000
32 Female Bachelor’s Degree Product Manager 7.0 120000
24 Male High School Delivery Driver 0.0 28000
38 Male Master’s Degree Marketing Director 14.0 195000
40 Female Bachelor’s Degree Financial Manager 16.0 215000
27 Male Bachelor’s Degree Product Designer 2.0 55000
32 Female PhD Data Scientist 9.0 145000
29 Male Bachelor’s Degree Marketing Analyst 4.0 75000
33 Female Master’s Degree Marketing Manager 9.0 135000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 13.0 185000
25 Male Bachelor’s Degree Product Manager 1.0 60000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 95000
34 Male PhD Research Director 12.0 170000
28 Female Bachelor’s Degree Marketing Analyst 3.0 65000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
38 Male Master’s Degree Marketing Director 14.0 195000
40 Female Bachelor’s Degree Financial Manager 16.0 215000
27 Male Bachelor’s Degree Product Designer 2.0 55000
32 Female PhD Data Scientist 9.0 145000
29 Male Bachelor’s Degree Marketing Analyst 4.0 75000
33 Female Master’s Degree Marketing Manager 9.0 135000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 13.0 185000
25 Male Bachelor’s Degree Product Manager 1.0 60000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 95000
34 Male PhD Research Director 12.0 170000
28 Female Bachelor’s Degree Marketing Analyst 3.0 65000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
38 Male Master’s Degree Marketing Director 14.0 195000
40 Female Bachelor’s Degree Financial Manager 16.0 215000
27 Male Bachelor’s Degree Product Designer 2.0 55000
32 Female PhD Data Scientist 9.0 145000
29 Male Bachelor’s Degree Marketing Analyst 4.0 75000
33 Female Master’s Degree Marketing Manager 9.0 135000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 13.0 185000
25 Male Bachelor’s Degree Product Manager 1.0 60000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 95000
34 Male PhD Research Director 12.0 170000
28 Female Bachelor’s Degree Marketing Analyst 3.0 65000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
38 Male Master’s Degree Marketing Director 14.0 195000
40 Female Bachelor’s Degree Financial Manager 16.0 215000
27 Male Bachelor’s Degree Product Designer 2.0 55000
32 Female PhD Data Scientist 9.0 145000
29 Male Bachelor’s Degree Marketing Analyst 4.0 75000
33 Female Master’s Degree Marketing Manager 9.0 135000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 13.0 185000
25 Male Bachelor’s Degree Product Manager 1.0 60000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 95000
34 Male PhD Research Director 12.0 170000
28 Female Bachelor’s Degree Marketing Analyst 3.0 65000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
38 Male Master’s Degree Marketing Director 14.0 195000
40 Female Bachelor’s Degree Financial Manager 16.0 215000
27 Male Bachelor’s Degree Product Designer 2.0 55000
32 Female PhD Data Scientist 9.0 145000
29 Male Bachelor’s Degree Marketing Analyst 4.0 75000
33 Female Master’s Degree Marketing Manager 9.0 135000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 13.0 185000
25 Male Bachelor’s Degree Product Manager 1.0 60000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 95000
34 Male PhD Research Director 12.0 170000
28 Female Bachelor’s Degree Marketing Analyst 3.0 65000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
38 Male Master’s Degree Marketing Director 14.0 195000
40 Female Bachelor’s Degree Financial Manager 16.0 215000
27 Male Bachelor’s Degree Product Designer 2.0 55000
32 Female PhD Data Scientist 9.0 145000
29 Male Bachelor’s Degree Marketing Analyst 4.0 75000
33 Female Master’s Degree Marketing Manager 9.0 135000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 13.0 185000
25 Male Bachelor’s Degree Product Manager 1.0 60000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 95000
34 Male PhD Research Director 12.0 170000
28 Female Bachelor’s Degree Marketing Analyst 3.0 65000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
38 Male Master’s Degree Marketing Director 14.0 195000
40 Female Bachelor’s Degree Financial Manager 16.0 215000
27 Male Bachelor’s Degree Product Designer 2.0 55000
32 Female PhD Data Scientist 9.0 145000
29 Male Bachelor’s Degree Marketing Analyst 4.0 75000
33 Female Master’s Degree Marketing Manager 9.0 135000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 13.0 185000
25 Male Bachelor’s Degree Product Manager 1.0 60000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 95000
34 Male PhD Research Director 12.0 170000
28 Female Bachelor’s Degree Marketing Analyst 3.0 65000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
38 Male Master’s Degree Marketing Director 14.0 195000
40 Female Bachelor’s Degree Financial Manager 16.0 215000
26 Female Master’s Degree Software Engineer 2.0 75000
39 Male PhD Research Scientist 14.0 185000
32 Female Bachelor’s Degree Marketing Manager 7.0 120000
28 Male Bachelor’s Degree Graphic Designer 3.0 60000
35 Female Master’s Degree Data Scientist 10.0 145000
29 Male Bachelor’s Degree Marketing Analyst 4.0 75000
33 Female Master’s Degree Product Manager 8.0 135000
27 Male Bachelor’s Degree Software Engineer 2.0 70000
36 Female PhD Research Director 12.0 175000
24 Male High School Delivery Driver 0.0 28000
38 Male Master’s Degree Marketing Director 14.0 195000
40 Female Bachelor’s Degree Financial Manager 16.0 215000
27 Male Bachelor’s Degree Product Designer 2.0 55000
32 Female PhD Data Scientist 9.0 145000
29 Male Bachelor’s Degree Marketing Analyst 4.0 75000
33 Female Master’s Degree Marketing Manager 9.0 135000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 13.0 185000
25 Male Bachelor’s Degree Product Manager 1.0 60000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 95000
34 Male PhD Research Director 12.0 170000
28 Female Bachelor’s Degree Marketing Analyst 3.0 65000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
38 Male Master’s Degree Marketing Director 14.0 195000
40 Female Bachelor’s Degree Financial Manager 16.0 215000
27 Male Bachelor’s Degree Product Designer 2.0 55000
32 Female PhD Data Scientist 9.0 145000
29 Male Bachelor’s Degree Marketing Analyst 4.0 75000
33 Female Master’s Degree Marketing Manager 9.0 135000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 13.0 185000
25 Male Bachelor’s Degree Product Manager 1.0 60000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 95000
34 Male PhD Research Director 12.0 170000
28 Female Bachelor’s Degree Marketing Analyst 3.0 65000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
38 Male Master’s Degree Marketing Director 14.0 195000
40 Female Bachelor’s Degree Financial Manager 16.0 215000
27 Male Bachelor’s Degree Product Designer 2.0 55000
32 Female PhD Data Scientist 9.0 145000
29 Male Bachelor’s Degree Marketing Analyst 4.0 75000
33 Female Master’s Degree Marketing Manager 9.0 135000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 13.0 185000
25 Male Bachelor’s Degree Product Manager 1.0 60000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 95000
34 Male PhD Research Director 12.0 170000
28 Female Bachelor’s Degree Marketing Analyst 3.0 65000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
38 Male Master’s Degree Marketing Director 14.0 195000
40 Female Bachelor’s Degree Financial Manager 16.0 215000
27 Male Bachelor’s Degree Product Designer 2.0 55000
32 Female PhD Data Scientist 9.0 145000
29 Male Bachelor’s Degree Marketing Analyst 4.0 75000
33 Female Master’s Degree Marketing Manager 9.0 135000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 13.0 185000
25 Male Bachelor’s Degree Product Manager 1.0 60000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 95000
34 Male PhD Research Director 12.0 170000
28 Female Bachelor’s Degree Marketing Analyst 3.0 65000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
38 Male Master’s Degree Marketing Director 14.0 195000
40 Female Bachelor’s Degree Financial Manager 16.0 215000
27 Male Bachelor’s Degree Product Designer 2.0 55000
32 Female PhD Data Scientist 9.0 145000
29 Male Bachelor’s Degree Marketing Analyst 4.0 75000
33 Female Master’s Degree Marketing Manager 9.0 135000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 13.0 185000
25 Male Bachelor’s Degree Product Manager 1.0 60000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 95000
34 Male PhD Research Director 12.0 170000
28 Female Bachelor’s Degree Marketing Analyst 3.0 65000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
38 Male Master’s Degree Marketing Director 14.0 195000
40 Female Bachelor’s Degree Financial Manager 16.0 215000
27 Male Bachelor’s Degree Product Designer 2.0 55000
32 Female PhD Data Scientist 9.0 145000
29 Male Bachelor’s Degree Marketing Analyst 4.0 75000
33 Female Master’s Degree Marketing Manager 9.0 135000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 13.0 185000
25 Male Bachelor’s Degree Product Manager 1.0 60000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 95000
34 Male PhD Research Director 12.0 170000
28 Female Bachelor’s Degree Marketing Analyst 3.0 65000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
38 Male Master’s Degree Marketing Director 14.0 195000
40 Female Bachelor’s Degree Financial Manager 16.0 215000
27 Male Bachelor’s Degree Product Designer 2.0 55000
32 Female PhD Data Scientist 9.0 145000
29 Male Bachelor’s Degree Marketing Analyst 4.0 75000
33 Female Master’s Degree Marketing Manager 9.0 135000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 13.0 185000
25 Male Bachelor’s Degree Product Manager 1.0 60000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 95000
34 Male PhD Research Director 12.0 170000
28 Female Bachelor’s Degree Marketing Analyst 3.0 65000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
38 Male Master’s Degree Marketing Director 14.0 195000
40 Female Bachelor’s Degree Financial Manager 16.0 215000
27 Male Bachelor’s Degree Product Designer 2.0 55000
32 Female PhD Data Scientist 9.0 145000
29 Male Bachelor’s Degree Marketing Analyst 4.0 75000
33 Female Master’s Degree Marketing Manager 9.0 135000
27 Male Bachelor’s Degree Software Engineer 3.0 80000
36 Female PhD Research Scientist 13.0 185000
25 Male Bachelor’s Degree Product Manager 1.0 60000
30 Female Bachelor’s Degree Marketing Coordinator 5.0 95000
34 Male PhD Research Director 12.0 170000
28 Female Bachelor’s Degree Marketing Analyst 3.0 65000
32 Male Bachelor’s Degree Product Manager 7.0 120000
24 Female High School Receptionist 0.0 25000
38 Male Master’s Degree Marketing Director 14.0 195000
40 Female Bachelor’s Degree Financial Manager 16.0 215000
27 Male Bachelor’s Degree Product Designer 2.0 55000
32 Female PhD Data Scientist 9.0 145000
29 Male Bachelor’s Degree Marketing Analyst 4.0 75000
29 Male Bachelor’s Degree Sales Associate 2.0 45000
45 Female Master’s Degree Sales Manager 8.0 80000
37 Male PhD Marketing Manager 7.0 90000
23 Female High School Sales Executive 1.0 35000
41 Male Bachelor’s Degree Financial Manager 12.0 120000
26 Female Bachelor’s Degree Digital Marketing Manager 4.0 60000
33 Male Master’s Degree Content Marketing Manager 5.0 70000
28 Female High School Sales Representative 3.0 40000
50 Male PhD Senior Product Marketing Manager 15.0 150000
35 Female Bachelor’s Degree Junior Sales Representative 2.0 35000
42 Male Master’s Degree Director of Marketing 13.0 130000
27 Female Bachelor’s Degree Sales Associate 1.0 35000
48 Male PhD Sales Director 18.0 180000
31 Female High School Financial Manager 4.0 60000
36 Male Bachelor’s Degree Sales Manager 6.0 75000
25 Female Master’s Degree Digital Marketing Manager 3.0 50000
39 Male PhD Marketing Manager 10.0 100000
30 Female High School Sales Executive 2.0 40000
44 Male Bachelor’s Degree Content Marketing Manager 11.0 110000
29 Female Master’s Degree Sales Representative 4.0 55000
47 Male PhD Senior Product Marketing Manager 17.0 170000
32 Female Bachelor’s Degree Junior Sales Representative 3.0 40000
38 Male Master’s Degree Director of Marketing 9.0 95000
24 Female High School Sales Associate 1.0 35000
40 Male PhD Sales Director 14.0 140000
34 Female Bachelor’s Degree Financial Manager 5.0 70000
26 Male Master’s Degree Digital Marketing Manager 3.0 50000
31 Female PhD Marketing Manager 6.0 75000
27 Male High School Sales Executive 2.0 40000
43 Female Bachelor’s Degree Content Marketing Manager 12.0 120000
28 Male Master’s Degree Sales Representative 2.0 40000
46 Female PhD Senior Product Marketing Manager 16.0 160000
33 Male Bachelor’s Degree Junior Sales Representative 4.0 55000
39 Female Master’s Degree Director of Marketing 10.0 100000
25 Male High School Sales Associate 1.0 35000
41 Female Bachelor’s Degree Sales Manager 8.0 80000
35 Male PhD Marketing Manager 7.0 90000
23 Female Bachelor’s Degree Sales Executive 1.0 35000
42 Male Master’s Degree Financial Manager 13.0 130000
26 Female Bachelor’s Degree Digital Marketing Manager 4.0 60000
32 Male Master’s Degree Content Marketing Manager 5.0 70000
27 Female High School Sales Representative 3.0 40000
50 Male PhD Senior Product Marketing Manager 15.0 150000
36 Female Bachelor’s Degree Junior Sales Representative 2.0 35000
48 Male Master’s Degree Director of Marketing 18.0 180000
31 Female High School Sales Associate 2.0 40000
29 Male Bachelor’s Degree Sales Director 6.0 75000
45 Female PhD Financial Manager 12.0 120000
25 Male Master’s Degree Digital Marketing Manager 3.0 50000
37 Female Bachelor’s Degree Marketing Manager 7.0 90000
23 Male High School Sales Executive 1.0 35000
41 Female Bachelor’s Degree Content Marketing Manager 11.0 110000
26 Male Master’s Degree Sales Representative 3.0 45000
33 Female PhD Senior Product Marketing Manager 5.0 70000
28 Male Bachelor’s Degree Junior Sales Representative 1.0 30000
42 Female Master’s Degree Director of Marketing 13.0 130000
27 Male High School Financial Manager 4.0 60000
50 Female Bachelor’s Degree Sales Manager 15.0 150000
35 Male PhD Marketing Manager 8.0 80000
24 Female Bachelor’s Degree Sales Executive 1.0 35000
46 Male Master’s Degree Content Marketing Manager 16.0 160000
29 Female High School Sales Representative 2.0 40000
47 Male PhD Senior Product Marketing Manager 17.0 170000
31 Female Bachelor’s Degree Junior Sales Representative 3.0 40000
38 Male Master’s Degree Director of Marketing 9.0 95000
25 Female High School Sales Associate 1.0 35000
39 Male Bachelor’s Degree Sales Director 10.0 100000
33 Female PhD Financial Manager 5.0 70000
27 Male Master’s Degree Digital Marketing Manager 3.0 50000
43 Female Bachelor’s Degree Marketing Manager 12.0 120000
28 Male High School Sales Executive 2.0 40000
31 Male Bachelor’s Degree Sales Associate 3.0 50000
46 Female Master’s Degree Marketing Manager 14.0 140000
27 Male High School Sales Executive 2.0 40000
38 Female Bachelor’s Degree Financial Manager 10.0 100000
24 Male PhD Digital Marketing Manager 1.0 30000
33 Female Master’s Degree Content Marketing Manager 6.0 75000
29 Male High School Sales Representative 2.0 40000
50 Female Bachelor’s Degree Sales Manager 18.0 180000
35 Male PhD Senior Product Marketing Manager 8.0 80000
23 Female Bachelor’s Degree Sales Executive 1.0 35000
41 Male Master’s Degree Director of Marketing 12.0 120000
26 Female High School Financial Manager 3.0 45000
32 Male Bachelor’s Degree Sales Director 7.0 90000
27 Female PhD Marketing Manager 4.0 55000
43 Male Master’s Degree Content Marketing Manager 16.0 160000
28 Female Bachelor’s Degree Sales Representative 2.0 40000
47 Male PhD Senior Product Marketing Manager 17.0 170000
31 Female High School Junior Sales Representative 3.0 40000
38 Male Master’s Degree Director of Marketing 9.0 95000
25 Female High School Sales Associate 1.0 35000
39 Male Bachelor’s Degree Sales Manager 11.0 110000
33 Female PhD Financial Manager 6.0 75000
27 Male Master’s Degree Digital Marketing Manager 3.0 50000
43 Female Bachelor’s Degree Marketing Manager 12.0 120000
28 Male High School Sales Executive 2.0 40000
50 Female Master’s Degree Content Marketing Manager 15.0 150000
36 Male Bachelor’s Degree Sales Representative 5.0 70000
48 Female PhD Senior Product Marketing Manager 19.0 190000
31 Male High School Junior Sales Representative 3.0 40000
29 Female Bachelor’s Degree Sales Director 6.0 75000
45 Male Master’s Degree Director of Marketing 14.0 140000
25 Female High School Sales Associate 1.0 35000
41 Male Bachelor’s Degree Financial Manager 12.0 120000
35 Female PhD Marketing Manager 8.0 80000
23 Male Bachelor’s Degree Sales Executive 1.0 35000
42 Female Master’s Degree Sales Manager 13.0 130000
26 Male High School Digital Marketing Manager 2.0 40000
32 Female Bachelor’s Degree Content Marketing Manager 7.0 90000
27 Male PhD Sales Representative 4.0 55000
50 Female Master’s Degree Senior Product Marketing Manager 18.0 180000
36 Male Bachelor’s Degree Junior Sales Representative 3.0 45000
48 Female PhD Director of Marketing 19.0 190000
31 Male High School Sales Associate 3.0 50000
29 Female Bachelor’s Degree Financial Manager 4.0 55000
45 Male Master’s Degree Marketing Manager 13.0 130000
25 Female High School Sales Executive 1.0 35000
41 Male Bachelor’s Degree Content Marketing Manager 12.0 120000
35 Female PhD Senior Product Marketing Manager 9.0 95000
23 Male Bachelor’s Degree Sales Representative 1.0 35000
42 Female Master’s Degree Digital Marketing Manager 14.0 140000
26 Male High School Sales Manager 2.0 40000
32 Female Bachelor’s Degree Director of Marketing 8.0 80000
27 Male PhD Marketing Manager 4.0 55000
50 Female Master’s Degree Content Marketing Manager 19.0 190000
36 Male Bachelor’s Degree Sales Director 6.0 75000
48 Female PhD Senior Product Marketing Manager 17.0 170000
31 Male High School Sales Associate 3.0 50000
29 Female Bachelor’s Degree Financial Manager 4.0 55000
45 Male Master’s Degree Marketing Manager 13.0 130000
25 Female High School Sales Executive 1.0 35000
41 Male Bachelor’s Degree Content Marketing Manager 12.0 120000
35 Female PhD Senior Product Marketing Manager 9.0 95000
23 Male Bachelor’s Degree Sales Representative 1.0 35000
42 Female Master’s Degree Digital Marketing Manager 14.0 140000
26 Male High School Sales Manager 2.0 40000
32 Female Bachelor’s Degree Director of Marketing 8.0 80000
27 Male PhD Marketing Manager 4.0 55000
50 Female Master’s Degree Content Marketing Manager 19.0 190000
36 Male Bachelor’s Degree Sales Director 6.0 75000
48 Female PhD Senior Product Marketing Manager 17.0 170000
31 Male High School Sales Associate 3.0 50000
29 Female Bachelor’s Degree Financial Manager 4.0 55000
45 Male Master’s Degree Marketing Manager 13.0 130000
25 Female High School Sales Executive 1.0 35000
41 Male Bachelor’s Degree Content Marketing Manager 12.0 120000
35 Female PhD Senior Product Marketing Manager 9.0 95000
23 Male Bachelor’s Degree Sales Representative 1.0 35000
42 Female Master’s Degree Digital Marketing Manager 14.0 140000
26 Male High School Sales Manager 2.0 40000
32 Female Bachelor’s Degree Director of Marketing 8.0 80000
27 Male PhD Marketing Manager 4.0 55000
50 Female Master’s Degree Content Marketing Manager 19.0 190000
36 Male Bachelor’s Degree Sales Director 6.0 75000
48 Female PhD Senior Product Marketing Manager 17.0 170000
31 Male High School Sales Associate 3.0 50000
29 Female Bachelor’s Degree Financial Manager 4.0 55000
45 Male Master’s Degree Marketing Manager 13.0 130000
25 Female High School Sales Executive 1.0 35000
41 Male Bachelor’s Degree Content Marketing Manager 12.0 120000
35 Female PhD Senior Product Marketing Manager 9.0 95000
23 Male Bachelor’s Degree Sales Representative 1.0 35000
42 Female Master’s Degree Digital Marketing Manager 14.0 140000
26 Male High School Sales Manager 2.0 40000
32 Female Bachelor’s Degree Director of Marketing 8.0 80000
27 Male PhD Marketing Manager 4.0 55000
50 Female Master’s Degree Content Marketing Manager 19.0 190000
36 Male Bachelor’s Degree Sales Director 6.0 75000
48 Female PhD Senior Product Marketing Manager 17.0 170000
31 Male High School Sales Associate 3.0 50000
29 Female Bachelor’s Degree Financial Manager 4.0 55000
45 Male Master’s Degree Marketing Manager 13.0 130000
25 Female High School Sales Executive 1.0 35000
41 Male Bachelor’s Degree Content Marketing Manager 12.0 120000
35 Female PhD Senior Product Marketing Manager 9.0 95000
23 Male Bachelor’s Degree Sales Representative 1.0 35000
42 Female Master’s Degree Digital Marketing Manager 14.0 140000
26 Male High School Sales Manager 2.0 40000
32 Female Bachelor’s Degree Director of Marketing 8.0 80000
27 Male PhD Marketing Manager 4.0 55000
50 Female Master’s Degree Content Marketing Manager 19.0 190000
36 Male Bachelor’s Degree Sales Director 6.0 75000
48 Female PhD Senior Product Marketing Manager 17.0 170000
31 Male High School Sales Associate 3.0 50000
29 Female Bachelor’s Degree Financial Manager 4.0 55000
45 Male Master’s Degree Marketing Manager 13.0 130000
25 Female High School Sales Executive 1.0 35000
41 Male Bachelor’s Degree Content Marketing Manager 12.0 120000
35 Female PhD Senior Product Marketing Manager 9.0 95000
23 Male Bachelor’s Degree Sales Representative 1.0 35000
42 Female Master’s Degree Digital Marketing Manager 14.0 140000
26 Male High School Sales Manager 2.0 40000
32 Female Bachelor’s Degree Director of Marketing 8.0 80000
27 Male PhD Marketing Manager 4.0 55000
50 Female Master’s Degree Content Marketing Manager 19.0 190000
36 Male Bachelor’s Degree Sales Director 6.0 NA
37 Male Master’s Degree Marketing Manager 11.0 110000
26 Female Bachelor’s Degree Sales Representative 2.0 40000
42 Male PhD Content Marketing Manager 15.0 150000
33 Female High School Sales Executive 4.0 55000
29 Male Bachelor’s Degree Sales Manager 5.0 70000
45 Female Master’s Degree Director of Marketing 16.0 160000
24 Male High School Sales Associate 1.0 35000
39 Female Bachelor’s Degree Financial Manager 10.0 100000
31 Male PhD Senior Product Marketing Manager 7.0 90000
27 Female Master’s Degree Digital Marketing Manager 3.0 50000
43 Male Bachelor’s Degree Content Marketing Manager 14.0 140000
28 Female High School Sales Representative 2.0 40000
50 Male PhD Marketing Manager 18.0 180000
35 Female Bachelor’s Degree Sales Executive 7.0 90000
23 Male Bachelor’s Degree Sales Manager 1.0 35000
41 Female Master’s Degree Director of Marketing 12.0 120000
26 Male High School Financial Manager 3.0 45000
32 Female Bachelor’s Degree Sales Director 8.0 80000
27 Male PhD Marketing Manager 4.0 55000
50 Female Master’s Degree Content Marketing Manager 18.0 180000
36 Male Bachelor’s Degree Sales Representative 6.0 75000
48 Female PhD Senior Product Marketing Manager 19.0 190000
31 Male High School Junior Sales Representative 3.0 40000
29 Female Bachelor’s Degree Sales Director 5.0 70000
45 Male Master’s Degree Director of Marketing 15.0 150000
25 Female High School Sales Associate 1.0 35000
41 Male Bachelor’s Degree Financial Manager 12.0 120000
35 Female PhD Marketing Manager 8.0 80000
23 Male Bachelor’s Degree Sales Executive 1.0 35000
42 Female Master’s Degree Sales Manager 13.0 130000
26 Male High School Digital Marketing Manager 2.0 40000
32 Female Bachelor’s Degree Content Marketing Manager 7.0 90000
27 Male PhD Sales Representative 4.0 55000
50 Female Master’s Degree Senior Product Marketing Manager 18.0 180000
36 Male Bachelor’s Degree Junior Sales Representative 3.0 45000
48 Female PhD Director of Marketing 19.0 190000
31 Male High School Sales Associate 3.0 50000
29 Female Bachelor’s Degree Financial Manager 4.0 55000
45 Male Master’s Degree Marketing Manager 13.0 130000
25 Female High School Sales Executive 1.0 35000
41 Male Bachelor’s Degree Content Marketing Manager 12.0 120000
35 Female PhD Senior Product Marketing Manager 9.0 95000
23 Male Bachelor’s Degree Sales Representative 1.0 35000
42 Female Master’s Degree Digital Marketing Manager 14.0 140000
26 Male High School Sales Manager 2.0 40000
32 Female Bachelor’s Degree Director of Marketing 8.0 80000
27 Male PhD Marketing Manager 4.0 55000
50 Female Master’s Degree Content Marketing Manager 19.0 190000
36 Male Bachelor’s Degree Sales Director 6.0 75000
48 Female PhD Senior Product Marketing Manager 17.0 170000
31 Male High School Sales Associate 3.0 50000
29 Female Bachelor’s Degree Financial Manager 4.0 55000
45 Male Master’s Degree Marketing Manager 13.0 130000
25 Female High School Sales Executive 1.0 35000
41 Male Bachelor’s Degree Content Marketing Manager 12.0 120000
35 Female PhD Senior Product Marketing Manager 9.0 95000
23 Male Bachelor’s Degree Sales Representative 1.0 35000
42 Female Master’s Degree Digital Marketing Manager 14.0 140000
26 Male High School Sales Manager 2.0 40000
32 Female Bachelor’s Degree Director of Marketing 8.0 80000
27 Male PhD Marketing Manager 4.0 55000
50 Female Master’s Degree Content Marketing Manager 19.0 190000
36 Male Bachelor’s Degree Sales Director 6.0 75000
48 Female PhD Senior Product Marketing Manager 17.0 170000
31 Male High School Sales Associate 3.0 50000
29 Female Bachelor’s Degree Financial Manager 4.0 55000
45 Male Master’s Degree Marketing Manager 13.0 130000
25 Female High School Sales Executive 1.0 35000
41 Male Bachelor’s Degree Content Marketing Manager 12.0 120000
35 Female PhD Senior Product Marketing Manager 9.0 95000
23 Male Bachelor’s Degree Sales Representative 1.0 35000
42 Female Master’s Degree Digital Marketing Manager 14.0 140000
26 Male High School Sales Manager 2.0 40000
32 Female Bachelor’s Degree Director of Marketing 8.0 80000
27 Male PhD Marketing Manager 4.0 55000
50 Female Master’s Degree Content Marketing Manager 19.0 190000
36 Male Bachelor’s Degree Sales Director 6.0 75000
48 Female PhD Senior Product Marketing Manager 17.0 170000
31 Male High School Sales Associate 3.0 50000
29 Female Bachelor’s Degree Financial Manager 4.0 55000
45 Male Master’s Degree Marketing Manager 13.0 130000
25 Female High School Sales Executive 1.0 35000
41 Male Bachelor’s Degree Content Marketing Manager 12.0 120000
35 Female PhD Senior Product Marketing Manager 9.0 95000
23 Male Bachelor’s Degree Sales Representative 1.0 35000
42 Female Master’s Degree Digital Marketing Manager 14.0 140000
26 Male High School Sales Manager 2.0 40000
32 Female Bachelor’s Degree Director of Marketing 8.0 80000
27 Male PhD Marketing Manager 4.0 55000
50 Female Master’s Degree Content Marketing Manager 19.0 190000
36 Male Bachelor’s Degree Sales Director 6.0 75000
48 Female PhD Senior Product Marketing Manager 17.0 170000
31 Male High School Sales Associate 3.0 50000
29 Female Bachelor’s Degree Financial Manager 4.0 55000
45 Male Master’s Degree Marketing Manager 13.0 130000
25 Female High School Sales Executive 1.0 35000
41 Male Bachelor’s Degree Content Marketing Manager 12.0 120000
35 Female PhD Senior Product Marketing Manager 9.0 95000
23 Male Bachelor’s Degree Sales Representative 1.0 35000
42 Female Master’s Degree Digital Marketing Manager 14.0 140000
26 Male High School Sales Manager 2.0 40000
32 Female Bachelor’s Degree Director of Marketing 8.0 80000
27 Male PhD Marketing Manager 4.0 55000
50 Female Master’s Degree Content Marketing Manager 19.0 190000
36 Male Bachelor’s Degree Sales Director 6.0 75000
48 Female PhD Senior Product Marketing Manager 17.0 170000
31 Male High School Sales Associate 3.0 50000
29 Female Bachelor’s Degree Financial Manager 4.0 55000
45 Male Master’s Degree Marketing Manager 13.0 130000
25 Female High School Sales Executive 1.0 35000
41 Male Bachelor’s Degree Content Marketing Manager 12.0 120000
35 Female PhD Senior Product Marketing Manager 9.0 95000
23 Male Bachelor’s Degree Sales Representative 1.0 35000
42 Female Master’s Degree Digital Marketing Manager 14.0 140000
26 Male High School Sales Manager 2.0 40000
32 Female Bachelor’s Degree Director of Marketing 8.0 80000
27 Male PhD Marketing Manager 4.0 55000
50 Female Master’s Degree Content Marketing Manager 19.0 190000
36 Male Bachelor’s Degree Sales Director 6.0 75000
48 Female PhD Senior Product Marketing Manager 17.0 170000
31 Male High School Sales Associate 3.0 50000
29 Female Bachelor’s Degree Financial Manager 4.0 55000
45 Male Master’s Degree Marketing Manager 13.0 130000
25 Female High School Sales Executive 1.0 35000
38 Male Master’s Degree Marketing Manager 12.0 120000
27 Female Bachelor’s Degree Sales Representative 3.0 45000
43 Male PhD Content Marketing Manager 16.0 160000
34 Female High School Sales Executive 5.0 70000
30 Male Bachelor’s Degree Sales Manager 6.0 75000
46 Female Master’s Degree Director of Marketing 17.0 170000
25 Male High School Sales Associate 1.0 35000
40 Female Bachelor’s Degree Financial Manager 11.0 110000
32 Male PhD Senior Product Marketing Manager 8.0 80000
28 Female Master’s Degree Digital Marketing Manager 4.0 55000
44 Male Bachelor’s Degree Content Marketing Manager 15.0 150000
29 Female High School Sales Representative 2.0 40000
51 Male PhD Marketing Manager 19.0 190000
36 Female Bachelor’s Degree Sales Executive 8.0 80000
24 Male Bachelor’s Degree Sales Manager 1.0 35000
42 Female Master’s Degree Director of Marketing 13.0 130000
27 Male High School Financial Manager 3.0 45000
33 Female Bachelor’s Degree Sales Director 7.0 90000
28 Male PhD Marketing Manager 4.0 55000
51 Female Master’s Degree Content Marketing Manager 19.0 190000
37 Male Bachelor’s Degree Sales Representative 7.0 90000
49 Female PhD Senior Product Marketing Manager 20.0 200000
32 Male High School Junior Sales Representative 3.0 40000
30 Female Bachelor’s Degree Sales Director 5.0 70000
46 Male Master’s Degree Director of Marketing 16.0 160000
26 Female High School Sales Associate 1.0 35000
42 Male Bachelor’s Degree Financial Manager 13.0 130000
36 Female PhD Marketing Manager 9.0 95000
24 Male Bachelor’s Degree Sales Executive 1.0 35000
43 Female Master’s Degree Sales Manager 14.0 140000
27 Male High School Digital Marketing Manager 2.0 40000
33 Female Bachelor’s Degree Content Marketing Manager 7.0 90000
28 Male PhD Sales Representative 4.0 55000
51 Female Master’s Degree Senior Product Marketing Manager 19.0 190000
37 Male Bachelor’s Degree Junior Sales Representative 6.0 75000
49 Female PhD Director of Marketing 20.0 200000
32 Male High School Sales Associate 3.0 50000
30 Female Bachelor’s Degree Financial Manager 4.0 55000
46 Male Master’s Degree Marketing Manager 14.0 140000
26 Female High School Sales Executive 1.0 35000
42 Male Bachelor’s Degree Content Marketing Manager 13.0 130000
36 Female PhD Senior Product Marketing Manager 10.0 100000
24 Male Bachelor’s Degree Sales Representative 1.0 35000
43 Female Master’s Degree Digital Marketing Manager 15.0 150000
27 Male High School Sales Manager 2.0 40000
33 Female Bachelor’s Degree Director of Marketing 8.0 80000
28 Male PhD Marketing Manager 4.0 55000
51 Female Master’s Degree Content Marketing Manager 19.0 190000
37 Male Bachelor’s Degree Sales Director 7.0 90000
49 Female PhD Senior Product Marketing Manager 20.0 200000
32 Male High School Junior Sales Representative 3.0 40000
30 Female Bachelor’s Degree Sales Manager 5.0 70000
46 Male Master’s Degree Director of Marketing 16.0 160000
26 Female High School Sales Associate 1.0 35000
42 Male Bachelor’s Degree Financial Manager 13.0 130000
36 Female PhD Marketing Manager 9.0 95000
24 Male Bachelor’s Degree Sales Executive 1.0 35000
43 Female Master’s Degree Sales Manager 14.0 140000
27 Male High School Digital Marketing Manager 2.0 40000
33 Female Bachelor’s Degree Content Marketing Manager 7.0 90000
28 Male PhD Sales Representative 4.0 55000
51 Female Master’s Degree Senior Product Marketing Manager 19.0 190000
37 Male Bachelor’s Degree Junior Sales Representative 6.0 75000
49 Female PhD Director of Marketing 20.0 200000
32 Male High School Sales Associate 3.0 50000
30 Female Bachelor’s Degree Financial Manager 4.0 55000
46 Male Master’s Degree Marketing Manager 14.0 140000
26 Female High School Sales Executive 1.0 35000
42 Male Bachelor’s Degree Content Marketing Manager 13.0 130000
36 Female PhD Senior Product Marketing Manager 10.0 100000
24 Male Bachelor’s Degree Sales Representative 1.0 35000
43 Female Master’s Degree Digital Marketing Manager 15.0 150000
27 Male High School Sales Manager 2.0 40000
33 Female Bachelor’s Degree Director of Marketing 8.0 80000
28 Male PhD Marketing Manager 4.0 55000
51 Female Master’s Degree Content Marketing Manager 19.0 190000
37 Male Bachelor’s Degree Sales Director 7.0 90000
49 Female PhD Senior Product Marketing Manager 20.0 200000
32 Male High School Junior Sales Representative 3.0 40000
30 Female Bachelor’s Degree Sales Manager 5.0 70000
46 Male Master’s Degree Director of Marketing 16.0 160000
26 Female High School Sales Associate 1.0 35000
42 Male Bachelor’s Degree Financial Manager 13.0 130000
36 Female PhD Marketing Manager 9.0 95000
24 Male Bachelor’s Degree Sales Executive 1.0 35000
43 Female Master’s Degree Sales Manager 14.0 140000
27 Male High School Digital Marketing Manager 2.0 40000
33 Female Bachelor’s Degree Content Marketing Manager 7.0 90000
28 Male PhD Sales Representative 4.0 55000
51 Female Master’s Degree Senior Product Marketing Manager 19.0 190000
37 Male Bachelor’s Degree Junior Sales Representative 6.0 75000
49 Female PhD Director of Marketing 20.0 200000
32 Male High School Sales Associate 3.0 50000
30 Female Bachelor’s Degree Financial Manager 4.0 55000
46 Male Master’s Degree Marketing Manager 14.0 140000
26 Female High School Sales Executive 1.0 35000
42 Male Bachelor’s Degree Content Marketing Manager 13.0 130000
36 Female PhD Senior Product Marketing Manager 10.0 100000
24 Male Bachelor’s Degree Sales Representative 1.0 35000
43 Female Master’s Degree Digital Marketing Manager 15.0 150000
27 Male High School Sales Manager 2.0 40000
33 Female Bachelor’s Degree Director of Marketing 8.0 80000
28 Male PhD Marketing Manager 4.0 55000
51 Female Master’s Degree Content Marketing Manager 19.0 190000
37 Male Bachelor’s Degree Sales Director 7.0 90000
49 Female PhD Senior Product Marketing Manager 20.0 200000
32 Male High School Junior Sales Representative 3.0 40000
30 Female Bachelor’s Degree Sales Manager 5.0 70000
46 Male Master’s Degree Director of Marketing 16.0 160000
26 Female High School Sales Associate 1.0 35000
42 Male Bachelor’s Degree Financial Manager 13.0 130000
36 Female PhD Marketing Manager 9.0 95000
24 Male Bachelor’s Degree Sales Executive 1.0 35000
43 Female Master’s Degree Sales Manager 14.0 140000
27 Male High School Digital Marketing Manager 2.0 40000
33 Female Bachelor’s Degree Content Marketing Manager 7.0 90000
28 Male PhD Sales Representative 4.0 55000
51 Female Master’s Degree Senior Product Marketing Manager 19.0 190000
37 Male Bachelor’s Degree Junior Sales Representative 6.0 75000
49 Female PhD Director of Marketing 20.0 200000
32 Male High School Sales Associate 3.0 50000
30 Female Bachelor’s Degree Financial Manager 4.0 55000
46 Male Master’s Degree Marketing Manager 14.0 140000
26 Female High School Sales Executive 1.0 35000
Salario2 = Salario %>% filter(Gender!="Other")

Salario3 <- na.omit(Salario2)

Prosseguindo, nossa base de dados também possui um dicionário (descrição dos dados) com 6 variáveis que foram inseridas em uma tabela para melhor visualização. É possível pesquisar cada uma delas de forma a faciliar sua pesquisa:

descrição = data.frame(variavel = c('Age', 'Gender', 'Education.Level', 'Job.Title', 'Years.of.Experience', 'Salary'),
                       descrição = c('Idade do funcionário', 'Gênero do funcionário', 'Nível de escolaridade', 'Profissão do funcionário', 'Anos de experiência', 'Salário' ))

library(DT)
DT::datatable(descrição, rownames = FALSE, colnames = 'Descrição dos Dados')

Realizamos gráficos do modelo boxplot e resumos por grupos para o comparação de três variáveis qualitativas (Gênero, Nível Educacional, Profissões) com a variável quantitativa (Salário).

Para complementar o nosso estudo, também utilizamos diagramas de dispersão, matriz de correlação para comparação entre as outras variáveis quantitativas (Idade, Anos de Experiência) com a variável, também quantitativa (Salário) e por fim relizamos testes de hipóteses e modelos de regressão múltipla para confimar ou descartar todas os questionamentos levantados.

Teste de Hipóteses

Nossos testes de hipóteses foram feitos para avaliar a interferência da variável Salário sobre as variáveis Gênero, Idade, Nível de Educacional, Profissão e Anos de experiência.

Esse trabalho visa investigar e entender melhor, através de análises estatísticas, a relação entre essas variáveis para as seguintes hipóteses:

• Existe ou não uma disparidade nos salários de acordo com o gênero?

• O salário está diretamente ligado à idade dos indivíduos?

• O nivel educacional é um fator determinante no que tange os salários?

• O salário é influenciado conforme o nível hierárquico ocupado?

• Os anos de experiência tem influência sobre o aumento de salário?

Em todos os testes, adotamos alpha = 0,05.

Sendo assim, a regra de decisão estabelecida foi:

Quando p-valor <= alpha, rejeita H0;

Quando p-valor > alpha, não rejeita H0.

A partir disso, para verificarmos o pressuposto da normalidade, geralmente é utilizado o teste de Shapiro Wilk, mas esse teste possui uma limitação onde só é possível analisar corretamente com até 5.000 amostras na base de dados, portando, foi realizado um teste chamado Anderson-Darling, que apresentou as seguintes hipóteses:

H0: os dados seguem uma distribuição normal.

H1: os dados não seguem uma distribuição normal.

Posteriormente, foram realizados outros testes em casa hipótese.

Houveram apenas hipóteses onde dos dados não seguiam uma distribuição normal, portanto foi feito o teste de Teste de Wilcoxon para a hipótese com apenas 2 categorias e para hipóteses com mais de 2 categorias, foi realizado o teste Kruskal- Wallis e o teste de Comparações Múltiplas de Wilcoxon.

Após verificarmos se a variável segue uma distribuição normal ou não, foram feitos os seguintes testes:

Para o cruzamento de uma variável qualitativa e outra quantitativa que não atendem ao pressuposto de normalidade, executou-se o teste de Kruskal-Wallis e o teste de Wilcoxon, adotando as hipóteses:

H0: As distribuições são idênticas para ambas as variáveis.

H1: As distribuições são diferentes para ambas as variáveis.

Por fim, para o teste de hipóteses de duas variáveis quantitativas que não são normais, foi utilizado o método de Spearman, seguindo os segmentos:

H0: rho = 0; as variáveis não são correlacionadas.

H1: rho i= 0; as variáveis têm correlação.

Análise de Resultados e Discussões

Resumo por grupos

Resumo por grupos 1 - Salários por gênero

Salario3 %>% select(Salary, Gender) %>% 
  group_by(Gender) %>%
  summarise(media=mean(Salary),
            desvio_padrao=sd(Salary)) %>%
  flextable()

Gender

media

desvio_padrao

Female

107,889.0

52,723.61

Male

121,389.9

52,092.73

Salario3 %>% select(Salary, Gender) %>% 
  group_by(Gender) %>%
  summarise(minimo=min(Salary),
            quartil1 = quantile(Salary, 0.70),
            mediana = median(Salary),
            quartil3 = quantile(Salary, 0.160),
            maximo = max(Salary)) %>%
  flextable()

Gender

minimo

quartil1

mediana

quartil3

maximo

Female

500

140,000

105,000

50,000

220,000

Male

350

160,000

120,000

60,000

250,000

Pela tabela gerada, é perceptível que há uma diferença nos ganhos de salário devido às diferenças nas médias onde o sexo masculino ganha em torno de uma média de 121 e o sexo feminino dentro de uma média de 107.

Seu desvio padrão também possui uma diferença de quase 631 nos ganhos do sexo masculino para com o feminino

Resumo por grupos 2 - Salários por nivel educacional

Salario3$Education.Level = gsub('phD','PhD',Salario3$Education.Level)

Salario3 %>% select(Salary, Education.Level) %>% 
  group_by(Education.Level) %>%
  summarise(media=mean(Salary),
            desvio_padrao=sd(Salary)) %>%
  flextable()

Education.Level

media

desvio_padrao

100,000.00

Bachelor's

124,767.66

46,697.56

Bachelor's Degree

85,174.89

38,387.39

High School

34,415.61

16,563.41

Master's

157,604.17

39,864.27

Master's Degree

125,029.07

38,735.44

PhD

165,651.46

34,339.75

Salario3 %>% select(Salary, Education.Level) %>% 
  group_by(Education.Level) %>%
  summarise(minimo=min(Salary),
            quartil1 = quantile(Salary, 0.70),
            mediana = median(Salary),
            quartil3 = quantile(Salary, 0.160),
            maximo = max(Salary)) %>%
  flextable()

Education.Level

minimo

quartil1

mediana

quartil3

maximo

100,000

100,000

100,000

100,000

100,000

Bachelor's

350

155,000

130,000

70,000

250,000

Bachelor's Degree

500

95,000

75,000

55,000

250,000

High School

25,000

35,000

30,000

25,000

165,919

Master's

40,000

185,000

177,500

105,000

200,000

Master's Degree

32,000

140,003

122,000

85,000

228,000

PhD

579

185,000

170,000

140,000

250,000

Esta tabela, por sua vez, também nos indica que há diferença de ganhos nos salários, visto que a maior média observada é encontrada no nível educacional PhD, onde ganham em torno de 165.000, enquanto o nível High School se mantém, aproximadamente, dentro de uma média de 34.000 e é, também, o nível com menor desvio padrão.

O maior desvio padrão pertence à Bachelor’s, indicando que é o nível onde os dados do conjunto são mais dispersos. Em relação aos outros níveis, eles assemelham-se em seu desvio padrão.

Resumo por grupos 3 - Salários por nivel hierárquico

table(Salario3$Job.Title)
## 
##                       Account Manager                            Accountant 
##                                     1                                     1 
##              Administrative Assistant                    Back end Developer 
##                                     2                                   242 
##                      Business Analyst          Business Development Manager 
##                                     2                                     1 
##         Business Intelligence Analyst                                   CEO 
##                                     1                                     1 
##                    Chief Data Officer              Chief Technology Officer 
##                                     1                                     1 
##             Content Marketing Manager                            Copywriter 
##                                    73                                     1 
##                     Creative Director              Customer Service Manager 
##                                     1                                     2 
##                  Customer Service Rep       Customer Service Representative 
##                                     1                                     6 
##              Customer Success Manager                  Customer Success Rep 
##                                     1                                     1 
##                          Data Analyst                      Data Entry Clerk 
##                                   363                                     1 
##                        Data Scientist                       Delivery Driver 
##                                   453                                     5 
##                             Developer              Digital Content Producer 
##                                     1                                     1 
##             Digital Marketing Manager          Digital Marketing Specialist 
##                                    52                                    15 
##                              Director      Director of Business Development 
##                                     1                                     1 
##              Director of Data Science               Director of Engineering 
##                                    57                                     2 
##                   Director of Finance                        Director of HR 
##                                     2                                    69 
##             Director of Human Capital           Director of Human Resources 
##                                     1                                     2 
##                 Director of Marketing                Director of Operations 
##                                    88                                    11 
##        Director of Product Management                     Director of Sales 
##                                     1                                     1 
##       Director of Sales and Marketing                     Event Coordinator 
##                                     1                                     2 
##                     Financial Advisor                     Financial Analyst 
##                                     1                                    39 
##                     Financial Manager                   Front end Developer 
##                                   134                                   239 
##                   Front End Developer                   Full Stack Engineer 
##                                    31                                   304 
##                      Graphic Designer                     Help Desk Analyst 
##                                    22                                     1 
##                         HR Generalist                            HR Manager 
##                                     2                                     2 
##           Human Resources Coordinator              Human Resources Director 
##                                    49                                     1 
##               Human Resources Manager                            IT Manager 
##                                   104                                     1 
##                            IT Support                 IT Support Specialist 
##                                     1                                     1 
##                Junior Account Manager                     Junior Accountant 
##                                     2                                     3 
##        Junior Advertising Coordinator               Junior Business Analyst 
##                                     1                                     8 
## Junior Business Development Associate    Junior Business Operations Analyst 
##                                     7                                     2 
##                     Junior Copywriter    Junior Customer Support Specialist 
##                                     1                                     1 
##                   Junior Data Analyst                 Junior Data Scientist 
##                                    25                                     1 
##                       Junior Designer                      Junior Developer 
##                                     1                                     1 
##              Junior Financial Advisor              Junior Financial Analyst 
##                                     1                                     7 
##                 Junior HR Coordinator                  Junior HR Generalist 
##                                    29                                    60 
##              Junior Marketing Analyst          Junior Marketing Coordinator 
##                                     3                                     6 
##              Junior Marketing Manager           Junior Marketing Specialist 
##                                    51                                     5 
##             Junior Operations Analyst         Junior Operations Coordinator 
##                                     5                                     1 
##             Junior Operations Manager                Junior Product Manager 
##                                     3                                     4 
##                Junior Project Manager                      Junior Recruiter 
##                                     5                                     1 
##             Junior Research Scientist                Junior Sales Associate 
##                                     1                                   142 
##           Junior Sales Representative           Junior Social Media Manager 
##                                    41                                     1 
##        Junior Social Media Specialist             Junior Software Developer 
##                                     1                                    58 
##              Junior Software Engineer                    Junior UX Designer 
##                                    51                                     1 
##                   Junior Web Designer                  Junior Web Developer 
##                                     1                                    42 
##                Juniour HR Coordinator                 Juniour HR Generalist 
##                                     3                                     3 
##                     Marketing Analyst                 Marketing Coordinator 
##                                   132                                   158 
##                    Marketing Director                     Marketing Manager 
##                                    64                                   255 
##                  Marketing Specialist                      Network Engineer 
##                                     1                                     1 
##                        Office Manager                    Operations Analyst 
##                                     1                                     1 
##                   Operations Director                    Operations Manager 
##                                     1                                   114 
##                    Principal Engineer                   Principal Scientist 
##                                     1                                     1 
##                      Product Designer                       Product Manager 
##                                    75                                   313 
##             Product Marketing Manager                      Project Engineer 
##                                     1                                     1 
##                       Project Manager              Public Relations Manager 
##                                    22                                     1 
##                          Receptionist                             Recruiter 
##                                    57                                     2 
##                     Research Director                    Research Scientist 
##                                    75                                    69 
##                       Sales Associate                        Sales Director 
##                                    70                                    62 
##                       Sales Executive                         Sales Manager 
##                                    38                                    56 
##              Sales Operations Manager                  Sales Representative 
##                                     1                                    38 
##              Senior Account Executive                Senior Account Manager 
##                                     1                                     1 
##                     Senior Accountant               Senior Business Analyst 
##                                     2                                    10 
##   Senior Business Development Manager                     Senior Consultant 
##                                     4                                     1 
##                   Senior Data Analyst                  Senior Data Engineer 
##                                     3                                     4 
##                 Senior Data Scientist                       Senior Engineer 
##                                    61                                     2 
##              Senior Financial Advisor              Senior Financial Analyst 
##                                     3                                     7 
##              Senior Financial Manager               Senior Graphic Designer 
##                                     5                                     1 
##                  Senior HR Generalist                     Senior HR Manager 
##                                    42                                     3 
##                  Senior HR Specialist    Senior Human Resources Coordinator 
##                                     1                                     1 
##        Senior Human Resources Manager     Senior Human Resources Specialist 
##                                    48                                     1 
##                  Senior IT Consultant             Senior IT Project Manager 
##                                     2                                     1 
##          Senior IT Support Specialist                        Senior Manager 
##                                     1                                     2 
##              Senior Marketing Analyst          Senior Marketing Coordinator 
##                                     9                                     3 
##             Senior Marketing Director              Senior Marketing Manager 
##                                     1                                     9 
##           Senior Marketing Specialist             Senior Operations Analyst 
##                                     4                                     2 
##         Senior Operations Coordinator             Senior Operations Manager 
##                                     4                                     5 
##               Senior Product Designer    Senior Product Development Manager 
##                                     5                                     1 
##                Senior Product Manager      Senior Product Marketing Manager 
##                                     6                                    69 
##            Senior Project Coordinator               Senior Project Engineer 
##                                     5                                   316 
##                Senior Project Manager      Senior Quality Assurance Analyst 
##                                     7                                     1 
##             Senior Research Scientist                     Senior Researcher 
##                                    49                                     1 
##                  Senior Sales Manager           Senior Sales Representative 
##                                     2                                     2 
##                      Senior Scientist             Senior Software Architect 
##                                     3                                     1 
##             Senior Software Developer              Senior Software Engineer 
##                                     3                                   240 
##            Senior Training Specialist                    Senior UX Designer 
##                                     1                                     3 
##                      Social Media Man                  Social Media Manager 
##                                     1                                    14 
##               Social Media Specialist                    Software Developer 
##                                     1                                   125 
##                     Software Engineer             Software Engineer Manager 
##                                   518                                   376 
##                      Software Manager              Software Project Manager 
##                                     1                                     1 
##                   Strategy Consultant                  Supply Chain Analyst 
##                                     1                                     1 
##                  Supply Chain Manager                   Technical Recruiter 
##                                     1                                     1 
##          Technical Support Specialist                      Technical Writer 
##                                     1                                     1 
##                   Training Specialist                           UX Designer 
##                                     1                                     1 
##                         UX Researcher                         VP of Finance 
##                                     1                                     1 
##                      VP of Operations                         Web Developer 
##                                     1                                    87
Salario3$profissoes = forcats::fct_lump_n(Salario3$Job.Title,n=5, other_level = "Outros")
table(Salario3$profissoes)
## 
##              Data Analyst            Data Scientist   Senior Project Engineer 
##                       363                       453                       316 
##         Software Engineer Software Engineer Manager                    Outros 
##                       518                       376                      4659
Salario3 %>% select(Salary, profissoes) %>% 
  group_by(profissoes) %>% 
  summarise(media=mean(Salary), 
            desvio_padrao=sd(Salary)) %>%
  flextable()

profissoes

media

desvio_padrao

Data Analyst

125,090.9

31,550.98

Data Scientist

166,106.0

28,228.87

Senior Project Engineer

166,225.5

36,130.08

Software Engineer

113,243.2

48,031.29

Software Engineer Manager

172,502.2

28,942.02

Outros

101,762.4

50,518.24

Salario3 %>% select(Salary, profissoes) %>% 
  group_by(profissoes) %>% 
  summarise(minimo=min(Salary), 
            quartil1 = quantile(Salary, 0.70), 
            mediana = median(Salary), 
            quartil3 = quantile(Salary, 0.160), 
            maximo= max(Salary)) %>% 
  flextable()

profissoes

minimo

quartil1

mediana

quartil3

maximo

Data Analyst

65,000

130,000

120,000

95,000

195,000

Data Scientist

75,000

182,000

168,000

140,000

240,000

Senior Project Engineer

51,831

190,000

185,000

125,000

210,000

Software Engineer

50,000

154,500

90,000

65,000

197,000

Software Engineer Manager

579

190,000

183,334

150,301

210,000

Outros

350

130,000

95,000

50,000

250,000

Após observar a tabela, podemos notar uma diferença muito superior nos níveis de salários mediante os níveis hierárquicos da empresa, ou seja, as diferentes profissões de seus funcionários já que o desvio padrão de um Engenheiro de Software é consideravelmente maior do que o de um Cientista de Dados.

Onde consta “Outros” nas profissões, é para informar que o número de funcionários das demais profissões que não aparecem na tabela é pequeno. Algumas profissões, por exemplo, só possuem um funcionário, então desta forma fica mais organizado e de forma mais clara as diferenças entre os salários e as profissões dos funcionários. O seu maior desvio padrão possui uma diferença maior diante das outras profissões, porém sua média é inferior, o que auxilia na explicação de haver muitas profissões com apenas 1 funcionário, porém nao necessariamente servindo de dado para comprovação da hipótese.

Boxplots

Boxplot 1 - Salários por gênero

boxplot(Salary ~ Gender, data = Salario3,
        col=c("#b12740"),
        main= "Boxplot 1 \n Salário x Gênero",
        ylab = "Salário", 
        xlab = "Gênero")

Nessa primeira análise do Boxplot 1 - “Salário x Gênero”, conseguimos constatar que quando comparamos o salário de um funcionário homem com o de uma funcionária mulher, há sim uma diferença significativa, seguindo principalmente pela mediana da caixa que se refere ao sexo masculino que encontra-se mais centralizada, diferentemente da caixa referente ao sexo feminino.

Vale ressaltar que o gráfico não contém a presença de outliers (os famosos “pontos fora da curva” ou “valores discrepantes”) e todos apresentam uma concentração de dados simétricos, ou seja, a mediana (linha preta) se encontra no centro das duas caixas, porém registrando que os salários dos homens pode chegar a mais de 200.000, enquanto que o das mulheres permanece dentro deste valor pra menos.

Boxplot 2 - Salários por nivel educacional

boxplot(Salary ~ Education.Level, data = Salario3,
        col=c("#b12740"),
        main= "Boxplot 2 \n Salário x Nível Educacional",
        ylab = "Salário", 
        xlab = "Nível Educacional")

Já na análise do Boxplot 2 - “Salário x Nível Educacional”, em primeiro lugar, identifica-se a existência de muitos outliers nos níveis educacionais Bachelors Degree, High School e PhD.

No caso dos outliers identificados nos níveis Bachelors Degree e High School, trata-se de uma situação em que há a existência de salários mais elevados quando comparado aos outros do mesmo nível.

Em contrapartida, os outliers observados no nível PhD, indicam que há 7 salários inferiores aos demais observados no mesmo nível.

Em relação à categoria faltante, nota-se a existência apenas da média e ausência do nível educacional e do desvio padrão. Isso significa que uma pessoa não respondeu a pesquisa.

Além disso, é possível identificarmos que os níveis educacionais que apresentaram os maiores salários foram Bachelors e PhD, atingindo valores de 250000.

Na parte inferior da tabela, o nível High School demonstra que, além do pouco desvio padrão, também é o nível educacional que registra os menores índices de salários, não atingindo sequer a marca de 50000.

Por sua vez, os níveis Masters e PhD seguem um caminho semelhante, mantendo índices de salários significativos, entre 200000 e 250000. O nível Masters Degree também possui índice alto nos salários, chegando a atingir valores acima de 200000.

Para mais, High School e PhD diferem-se dos outros níveis educacionais, pois são os únicos que apresentam uma distribuiçãoo simétrica de seus dados. Todos os outros apresentam assimetria.

Portanto, podemos constatar que o nível educacional interfere nos salários, uma vez que os menores indíces de salários se concentram na escolaridade a nível ensino médio,enquanto os maiores salários se concentram na escolaridade a nível bacharel e PhD.

Boxplot 3 - Salários por profissões

boxplot(Salary ~ profissoes, data = Salario3,
        col=c("#b12740"),
        main= "Boxplot 3 \n Salário x Profissões",
        ylab = "Salário", 
        xlab = "Profissões")

Na alálise do Boxplot 3 - “Salário x Profissões”, após fazer uma observação dos gráficos notamos que há três profissões com a presença de outliers, sendo elas: Analista de Dados, Engenheiro Senior de Projetos e Gerente Engenheiro de Software.

Sendo assim, essas profissões possuem um número tão discrepante de funcionários e seus respectivos recebimentos de salários em relação aos demais, que não aparece dentro do limite de detecção desses valores.

Conseguimos notar também que não há simetria entre os resultados, visto que nenhuma mediana encontra-se no meio das caixas

É perceptível que os salários variam bastante em diferentes cargos dos funcionários, o que auxilia na confirmação da hipótese que o nível hierárquico nas empresas tem influência nos salários.

Diagrama de dispersão e Matriz de correlação

Diagrama de dispersão e Matriz de correlação 1 - Anos de Experiência x Salários por gênero

ggplot(Salario3) +
  aes(x = Years.of.Experience, y = Salary, colour = Gender) +
  geom_point(shape = "circle", size = 1.75) +
  geom_smooth(span = 0.1) +
  scale_color_viridis_d(option = "viridis", direction = 1) +
  scale_color_manual(values=c('pink','green'))+
  theme_minimal() +
  facet_wrap(vars(Gender))

Salario3 %>% select(Years.of.Experience, Salary) %>% cor() %>% corrplot.mixed()

Após analisar o diagrama de dispersão, percebemos que a relação entre as variáveis “Anos de Experiencia” e “Salário” é linear, positiva e com grande concentração entre os pontos, sendo a maior concentração entre 0 e 20 anos de experiencia.

Isso se da pelo fato de ter poucas pessoas com mais de 20 anos de experiência no mercado de trabalho, se dividirmos essa questão por gênero, percebemos que depois de 20 anos de experiência, há mais homens com mais experiência.

Também é perceptível que, quanto mais anos de experiência, maior é o salário, e como temos mais homens com carreiras de maior nível institucional, isso explica porque homens ganham mais que as mulheres em relação a essa comparação de variáveis, principalmente depois de 20 anos de experiência no mercado de trabalho.

A corelação das variaveis é de 0.81, então é possível concluir que a correlação é forte, significando que, as variáveis “Anos de Experiência” e “Salário” tem grau de associação grande, e embasa as afirmações que fizemos no diagrama de dispersão de que quem tem mais anos de experiencia ganha mais.

Diagrama de dispersão e Matriz de correlação 2 - Idade x Salário por gênero

ggplot(Salario3) +
  aes(x = Age, y = Salary, colour = Gender) +
  geom_point(shape = "circle", size = 1.75) +
  geom_smooth(span = 0.1) +
  scale_color_viridis_d(option = "viridis", direction = 1) +
  scale_color_manual(values=c('#f00c99','#0ce8f0'))+
  theme_minimal() +
  facet_wrap(vars(Gender)) 

Salario3 %>% select(Age, Salary) %>% cor() %>% corrplot.mixed()

O diagrama de dispersão foi realizado com a relação entre as variáveis “Idade” e “Salário” baseado também nos dados da variável “Gênero”. Ficou constatado que é linear, positiva e com grande concentração entre os pontos, sendo a maior concentração entre 20 e 30 anos de idade.

É perceptível que, homens entre 30 e 40 anos tendem a receber um salário maior do que mulheres da mesma idade.

A correlação entre as variáveis é de 0.73, sendo assim, é considerado um forte paralelismo entre o valor do salário e a idade do funcionário, como visto na projeção apresentada no ” Diagrama de dispersão Idade X Salário por Gênero”.

Teste de Hipóteses

Teste de Hipóteses 1 - Salário x Gênero

#Teste de hipóteses salário x gênero
modelo1 = aov(Salary~Gender, data = Salario3)
residuos1 = residuals(modelo1)
residuos1
##             1             2             3             4             5 
##  -31389.87092  -42888.99867   28610.12908  -47888.99867   78610.12908 
##             6             7             8             9            10 
##  -66389.87092   12111.00133  -41389.87092  -62888.99867  -11389.87092 
##            11            12            13            14            15 
##  -46389.87092   32111.00133  -56389.87092   22111.00133  -81389.87092 
##            16            17            18            19            20 
##    3610.12908  -17888.99867   -6389.87092  -72888.99867   58610.12908 
##            21            22            23            24            25 
##  -27888.99867   68610.12908  -71389.87092  -47888.99867   18610.12908 
##            26            27            28            29            30 
##  -62888.99867    2111.00133  -81389.87092   32111.00133  -31389.87092 
##            31            32            33            34            35 
##  128610.12908  -52888.99867  -46389.87092  -42888.99867   48610.12908 
##            36            37            38            39            40 
##  -76389.87092  -47888.99867   -6389.87092  -67888.99867   38610.12908 
##            41            42            43            44            45 
##  -27888.99867   68610.12908  -61389.87092  -62888.99867    8610.12908 
##            46            47            48            49            50 
##  -67888.99867  -46389.87092   72111.00133   -1389.87092  -86389.87092 
##            51            52            53            54            55 
##   22111.00133  -36389.87092  -47888.99867   78610.12908  -57888.99867 
##            56            57            58            59            60 
##  -26389.87092  -42888.99867   18610.12908  -52888.99867  -16389.87092 
##            61            62            63            64            65 
##   62111.00133  -71389.87092  -27888.99867   58610.12908  -86389.87092 
##            66            67            68            69            70 
##  -17888.99867   -1389.87092  -62888.99867  -31389.87092   42111.00133 
##            71            72            73            74            75 
##  -56389.87092  -37888.99867   68610.12908  -81389.87092   12111.00133 
##            76            77            78            79            80 
##  -26389.87092   52111.00133  -21389.87092   72111.00133  -52888.99867 
##            81            82            83            84            85 
##  -51389.87092  -27888.99867  -91389.87092  128610.12908  -67888.99867 
##            86            87            88            89            90 
##  -12888.99867  -76389.87092  -27888.99867   13610.12908  -52888.99867 
##            91            92            93            94            95 
##   -1389.87092  -67888.99867  -16389.87092   62111.00133  -46389.87092 
##            96            97            98            99           100 
##  -42888.99867   38610.12908  -86389.87092  -17888.99867  -11389.87092 
##           101           102           103           104           105 
##  -62888.99867  -26389.87092   42111.00133  -71389.87092  -27888.99867 
##           106           107           108           109           110 
##   98610.12908  -57888.99867  -61389.87092   -7888.99867  -81389.87092 
##           111           112           113           114           115 
##    2111.00133  -26389.87092   22111.00133  -31389.87092  -72888.99867 
##           116           117           118           119           120 
##  -26389.87092  -42888.99867   48610.12908  -62888.99867   -1389.87092 
##           121           122           123           124           125 
##   -7888.99867   58610.12908  -57888.99867  -41389.87092   32111.00133 
##           126           127           128           129           130 
##  -81389.87092  -12888.99867  -11389.87092  -57888.99867  -16389.87092 
##           131           132           133           134           135 
##   52111.00133  -76389.87092   -7888.99867   38610.12908  -86389.87092 
##           136           137           138           139           140 
##  -52888.99867   18610.12908  -57888.99867  -61389.87092   12111.00133 
##           141           142           143           144           145 
##  -81389.87092    2111.00133  -71389.87092   13610.12908  -67888.99867 
##           146           147           148           149           150 
##  -31389.87092   42111.00133  -61389.87092  -27888.99867   53610.12908 
##           151           152           153           154           155 
##  -62888.99867   -1389.87092   32111.00133  -86389.87092  -12888.99867 
##           156           157           158           159           160 
##  -11389.87092  -57888.99867   -6389.87092   77111.00133  -81389.87092 
##           161           162           163           164           165 
##  -17888.99867   53610.12908  -62888.99867  -41389.87092   12111.00133 
##           166           167           168           169           170 
##  -86389.87092    2111.00133   28610.12908  -57888.99867  -16389.87092 
##           171           172           174           175           176 
##   72111.00133  -81389.87092   18610.12908  -62888.99867  -36389.87092 
##           177           178           179           180           181 
##   32111.00133  -71389.87092  -27888.99867   48610.12908  -67888.99867 
##           182           183           184           185           186 
##  -16389.87092   37111.00133  -81389.87092  -22888.99867    8610.12908 
##           187           188           189           190           191 
##  -12888.99867  -21389.87092   72111.00133  -86389.87092  -12888.99867 
##           192           193           194           195           196 
##   48610.12908  -62888.99867  -26389.87092   12111.00133  -81389.87092 
##           197           198           199           200           201 
##  -17888.99867   33610.12908  -52888.99867  -11389.87092   72111.00133 
##           202           203           204           205           206 
##  -76389.87092    8610.12908  -62888.99867  -31389.87092   52111.00133 
##           207           208           209           210           211 
##  -71389.87092   12111.00133   48610.12908  -67888.99867  -11389.87092 
##           212           213           214           215           216 
##   42111.00133  -81389.87092  -22888.99867    8610.12908   -7888.99867 
##           217           218           219           220           221 
##  -26389.87092   72111.00133  -86389.87092   -7888.99867   48610.12908 
##           222           223           224           225           226 
##  -62888.99867  -21389.87092   32111.00133  -81389.87092   -2888.99867 
##           227           228           229           230           231 
##   38610.12908  -37888.99867   -1389.87092   82111.00133  -76389.87092 
##           232           233           234           235           236 
##   -1389.87092  -57888.99867  -36389.87092   32111.00133  -76389.87092 
##           237           238           239           240           241 
##   -7888.99867   18610.12908  -37888.99867   -1389.87092   52111.00133 
##           242           243           244           245           246 
##  -81389.87092   12111.00133   28610.12908  -37888.99867  -26389.87092 
##           247           248           249           250           251 
##   72111.00133  -71389.87092  -12888.99867   48610.12908  -67888.99867 
##           252           253           254           255           256 
##  -11389.87092   42111.00133  -81389.87092  -22888.99867    8610.12908 
##           257           258           259           260           262 
##   -7888.99867  -26389.87092   72111.00133 -121039.87092   12111.00133 
##           263           264           265           266           267 
##   38610.12908  -57888.99867  -11389.87092  -67888.99867  -26389.87092 
##           268           269           270           271           272 
##   32111.00133  -61389.87092    2111.00133   28610.12908  -47888.99867 
##           273           274           275           276           277 
##  -31389.87092   72111.00133  -81389.87092   12111.00133   38610.12908 
##           278           279           280           281           282 
##  -37888.99867  -26389.87092   72111.00133  -71389.87092  -12888.99867 
##           283           284           285           286           287 
##   48610.12908  -72888.99867  -21389.87092   42111.00133  -61389.87092 
##           288           289           290           291           292 
##  -22888.99867    8610.12908  -56389.87092    2111.00133   58610.12908 
##           293           294           295           296           297 
##  -67888.99867  -31389.87092   32111.00133  -61389.87092   22111.00133 
##           298           299           300           301           302 
##   38610.12908  -67888.99867  -21389.87092   72111.00133  -66389.87092 
##           303           304           305           306           307 
##   12111.00133   28610.12908  -37888.99867  -26389.87092   72111.00133 
##           308           309           310           311           312 
##  -71389.87092   12111.00133   48610.12908  -72888.99867  -21389.87092 
##           313           314           315           316           317 
##   42111.00133  -61389.87092  -22888.99867    8610.12908  -27888.99867 
##           318           319           320           321           322 
##  -26389.87092  -67888.99867   -1389.87092   52111.00133  -56389.87092 
##           323           324           325           326           327 
##   22111.00133   58610.12908  -67888.99867  -21389.87092   42111.00133 
##           328           329           330           331           332 
##  -66389.87092    2111.00133   58610.12908  -57888.99867    8610.12908 
##           333           334           335           336           337 
##   52111.00133  -61389.87092  -12888.99867   48610.12908  -67888.99867 
##           338           339           340           341           342 
##  -31389.87092   42111.00133  -51389.87092  -17888.99867   48610.12908 
##           343           344           345           346           347 
##  -57888.99867   28610.12908   52111.00133  -61389.87092  -22888.99867 
##           348           349           350           351           352 
##   58610.12908  -72888.99867  -11389.87092   52111.00133  -66389.87092 
##           353           354           355           356           357 
##    2111.00133   58610.12908  -57888.99867    8610.12908   52111.00133 
##           358           359           360           361           362 
##  -61389.87092  -12888.99867   48610.12908  -67888.99867  -31389.87092 
##           363           364           365           366           367 
##   42111.00133  -51389.87092  -17888.99867   48610.12908  -57888.99867 
##           368           369           370           371           372 
##   28610.12908   52111.00133  -61389.87092  -22888.99867   48610.12908 
##           373           374           375           376           377 
##  -67888.99867  -31389.87092   42111.00133   38610.12908   17111.00133 
##           378           379           380           381           382 
##   -1389.87092    2111.00133   58610.12908   32111.00133   48610.12908 
##           383           384           385           386           387 
##   -7888.99867   68610.12908   47111.00133    8610.12908   37111.00133 
##           388           389           390           391           392 
##   -6389.87092   32111.00133   63610.12908   -7888.99867   68610.12908 
##           393           394           395           396           397 
##   47111.00133    8610.12908   37111.00133    3610.12908   12111.00133 
##           398           399           400           401           402 
##  -11389.87092   72111.00133   18610.12908   48610.12908   -7888.99867 
##           403           404           405           406           407 
##   68610.12908   47111.00133    8610.12908   37111.00133   -6389.87092 
##           408           409           410           411           412 
##   32111.00133   63610.12908   -7888.99867   68610.12908   47111.00133 
##           413           414           415           416           417 
##    8610.12908   37111.00133    3610.12908   12111.00133  -11389.87092 
##           418           419           420           421           422 
##   72111.00133   18610.12908   48610.12908   -7888.99867   68610.12908 
##           423           424           425           426           427 
##   47111.00133    8610.12908   37111.00133   -6389.87092   32111.00133 
##           428           429           430           431           432 
##   63610.12908   -7888.99867   68610.12908   47111.00133    8610.12908 
##           433           434           435           436           437 
##   37111.00133    3610.12908   12111.00133  -11389.87092   72111.00133 
##           438           439           440           441           442 
##   18610.12908   48610.12908   -7888.99867   68610.12908   47111.00133 
##           443           444           445           446           447 
##    8610.12908   37111.00133   -6389.87092   32111.00133   63610.12908 
##           448           449           450           451           452 
##   -7888.99867   68610.12908   47111.00133    8610.12908   37111.00133 
##           453           454           455           456           457 
##   -6389.87092   32111.00133   63610.12908   -7888.99867   68610.12908 
##           458           459           460           461           462 
##   47111.00133    8610.12908   37111.00133    3610.12908   12111.00133 
##           463           464           465           466           467 
##  -11389.87092   72111.00133   18610.12908   48610.12908   -7888.99867 
##           468           469           470           471           472 
##   68610.12908   47111.00133    8610.12908   37111.00133   -6389.87092 
##           473           474           475           476           477 
##   32111.00133   63610.12908   -7888.99867   68610.12908   47111.00133 
##           478           479           480           481           482 
##    8610.12908   37111.00133   -6389.87092   32111.00133   63610.12908 
##           483           484           485           486           487 
##   -7888.99867   68610.12908   47111.00133    8610.12908   37111.00133 
##           488           489           490           491           492 
##   -6389.87092   32111.00133   63610.12908   -7888.99867   68610.12908 
##           493           494           495           496           497 
##   47111.00133    8610.12908   37111.00133   -6389.87092   32111.00133 
##           498           499           500           501           502 
##   63610.12908   -7888.99867   68610.12908   47111.00133    8610.12908 
##           503           504           505           506           507 
##   37111.00133   -6389.87092   32111.00133   63610.12908    8610.12908 
##           508           509           510           511           512 
##   72111.00133   68610.12908   42111.00133  -31389.87092   87111.00133 
##           513           514           515           516           517 
##   38610.12908   90111.00133  -11389.87092   77111.00133   18610.12908 
##           518           519           520           521           522 
##   88111.00133  -26389.87092   85111.00133   53610.12908   52111.00133 
##           523           524           525           526           527 
##    8610.12908   72111.00133   38610.12908   90111.00133  -31389.87092 
##           528           529           530           531           532 
##   77111.00133   18610.12908   88111.00133  -11389.87092   72111.00133 
##           533           534           535           536           537 
##   68610.12908   42111.00133   73610.12908   52111.00133   76610.12908 
##           538           539           540           541           542 
##   22111.00133   63610.12908   32111.00133   74610.12908    2111.00133 
##           543           544           545           546           547 
##   68610.12908   72111.00133   38610.12908   90111.00133  -31389.87092 
##           548           549           550           551           552 
##   87111.00133   38610.12908   42111.00133    8610.12908   72111.00133 
##           553           554           555           556           557 
##   68610.12908   90111.00133  -11389.87092   77111.00133   18610.12908 
##           558           559           560           561           562 
##   88111.00133   73610.12908   52111.00133    8610.12908   72111.00133 
##           563           564           565           566           567 
##   68610.12908   90111.00133  -31389.87092   18610.12908    2111.00133 
##           568           569           570           571           572 
##   77111.00133   73610.12908   52111.00133    8610.12908   72111.00133 
##           573           574           575           576           577 
##   68610.12908   90111.00133  -31389.87092   18610.12908    2111.00133 
##           578           579           580           581           582 
##   77111.00133   73610.12908   52111.00133    8610.12908   72111.00133 
##           583           584           585           586           587 
##   68610.12908   90111.00133  -31389.87092   18610.12908    2111.00133 
##           588           589           590           591           592 
##   77111.00133   73610.12908   52111.00133    8610.12908   72111.00133 
##           593           594           595           596           597 
##   68610.12908   90111.00133  -31389.87092   18610.12908    3610.12908 
##           598           599           600           601           602 
##   67111.00133   68610.12908   42111.00133  -26389.87092   73610.12908 
##           603           604           605           606           607 
##   38610.12908   90111.00133    8610.12908   77111.00133   18610.12908 
##           608           609           610           611           612 
##   88111.00133  -31389.87092   85111.00133   48610.12908   52111.00133 
##           613           614           615           616           617 
##   13610.12908   72111.00133   38610.12908   90111.00133  -31389.87092 
##           618           619           620           621           622 
##   77111.00133   18610.12908   88111.00133   -6389.87092   72111.00133 
##           623           624           625           626           627 
##   68610.12908   42111.00133   73610.12908   52111.00133   76610.12908 
##           628           629           630           631           632 
##   22111.00133   63610.12908   32111.00133   74610.12908    2111.00133 
##           633           634           635           636           637 
##   68610.12908   72111.00133   38610.12908   90111.00133  -31389.87092 
##           638           639           640           641           642 
##   87111.00133   38610.12908   42111.00133    8610.12908   72111.00133 
##           643           644           645           646           647 
##   68610.12908   90111.00133  -11389.87092   77111.00133   18610.12908 
##           648           649           650           651           652 
##   88111.00133   73610.12908   52111.00133    8610.12908   72111.00133 
##           653           654           655           656           657 
##   68610.12908   90111.00133  -31389.87092   18610.12908    2111.00133 
##           658           659           660           661           662 
##   77111.00133   73610.12908   52111.00133    8610.12908   72111.00133 
##           663           664           665           666           667 
##   68610.12908   90111.00133  -31389.87092   18610.12908    2111.00133 
##           668           669           670           671           672 
##   77111.00133   73610.12908   52111.00133    8610.12908   72111.00133 
##           673           674           675           676           677 
##   68610.12908   90111.00133  -31389.87092   18610.12908  -31389.87092 
##           678           679           680           681           682 
##   42111.00133   68610.12908   17111.00133  -11389.87092   58610.12908 
##           683           684           685           686           687 
##   38610.12908   87111.00133    8610.12908   62111.00133   18610.12908 
##           688           689           690           691           692 
##   88111.00133  -29389.87092   87111.00133   48610.12908   52111.00133 
##           693           694           695           696           697 
##   13610.12908   72111.00133   43610.12908   90111.00133  -26389.87092 
##           698           699           700           701           702 
##   77111.00133   18610.12908   88111.00133   -6389.87092   72111.00133 
##           703           704           705           706           707 
##   68610.12908   42111.00133   73610.12908   52111.00133   76610.12908 
##           708           709           710           711           712 
##   22111.00133   63610.12908   32111.00133   74610.12908    2111.00133 
##           713           714           715           716           717 
##   68610.12908   72111.00133   38610.12908   90111.00133  -31389.87092 
##           718           719           720           721           722 
##   87111.00133   38610.12908   42111.00133    8610.12908   72111.00133 
##           723           724           725           726           727 
##   68610.12908   90111.00133  -11389.87092   77111.00133   18610.12908 
##           728           729           730           731           732 
##   88111.00133   73610.12908   52111.00133    8610.12908   72111.00133 
##           733           734           735           736           737 
##   68610.12908   90111.00133  -31389.87092   18610.12908    2111.00133 
##           738           739           740           741           742 
##   77111.00133   73610.12908   52111.00133    8610.12908   72111.00133 
##           743           744           745           746           747 
##   68610.12908   90111.00133  -31389.87092   18610.12908    2111.00133 
##           748           749           750           751           752 
##   77111.00133   73610.12908   52111.00133    8610.12908   72111.00133 
##           753           754           755           756           757 
##   68610.12908   90111.00133  -31389.87092   18610.12908    2111.00133 
##           758           759           760           761           762 
##   77111.00133   73610.12908   52111.00133    8610.12908   72111.00133 
##           763           764           765           766           767 
##   68610.12908   90111.00133  -31389.87092   18610.12908    2111.00133 
##           768           769           770           771           772 
##   77111.00133   73610.12908   52111.00133    8610.12908   72111.00133 
##           773           774           775           776           777 
##   68610.12908   90111.00133  -31389.87092   18610.12908    2111.00133 
##           778           779           780           781           782 
##   77111.00133   73610.12908   52111.00133    8610.12908   72111.00133 
##           783           784           785           786           787 
##   68610.12908   90111.00133  -31389.87092   18610.12908    2111.00133 
##           788           789           790           791           792 
##   77111.00133   73610.12908   52111.00133    8610.12908   72111.00133 
##           793           794           795           796           797 
##   68610.12908   90111.00133  -31389.87092   18610.12908    2111.00133 
##           798           799           800           801           802 
##   77111.00133   73610.12908   52111.00133    8610.12908   72111.00133 
##           803           804           805           806           807 
##   68610.12908   90111.00133  -31389.87092   18610.12908    2111.00133 
##           808           809           810           811           812 
##   77111.00133   73610.12908   52111.00133   13610.12908   68610.12908 
##           813           814           815           816           817 
##   72111.00133   38610.12908  -26389.87092   88111.00133   18610.12908 
##           818           819           820           821           822 
##    8610.12908   77111.00133   73610.12908   52111.00133   22111.00133 
##           823           824           825           826           827 
##   63610.12908   42111.00133  -31389.87092   76610.12908   -6389.87092 
##           828           829           830           831           832 
##   43610.12908    8610.12908   72111.00133   68610.12908   90111.00133 
##           833           834           835           836           837 
##   18610.12908   72111.00133   38610.12908  -29389.87092   52111.00133 
##           838           839           840           841           842 
##    8610.12908   68610.12908   90111.00133  -11389.87092   77111.00133 
##           843           844           845           846           847 
##   18610.12908   88111.00133   73610.12908   52111.00133    8610.12908 
##           848           849           850           851           852 
##   72111.00133   68610.12908   90111.00133  -31389.87092   18610.12908 
##           853           854           855           856           857 
##    2111.00133   77111.00133   73610.12908   52111.00133    8610.12908 
##           858           859           860           861           862 
##   72111.00133   68610.12908   90111.00133  -31389.87092   18610.12908 
##           863           864           865           866           867 
##    2111.00133   77111.00133   73610.12908   52111.00133    8610.12908 
##           868           869           870           871           872 
##   72111.00133   68610.12908   90111.00133  -31389.87092   18610.12908 
##           873           874           875           876           877 
##    2111.00133   77111.00133   73610.12908   52111.00133    8610.12908 
##           878           879           880           881           882 
##   72111.00133   68610.12908   90111.00133  -31389.87092   18610.12908 
##           883           884           885           886           887 
##    2111.00133   77111.00133   73610.12908   52111.00133    8610.12908 
##           888           889           890           891           892 
##   72111.00133   68610.12908   90111.00133  -31389.87092   18610.12908 
##           893           894           895           896           897 
##    2111.00133   77111.00133   73610.12908   52111.00133    8610.12908 
##           898           899           900           901           902 
##   72111.00133   68610.12908   90111.00133  -31389.87092   18610.12908 
##           903           904           905           906           907 
##    2111.00133   77111.00133   73610.12908   52111.00133    8610.12908 
##           908           909           910           911           912 
##   72111.00133   68610.12908   90111.00133  -31389.87092   18610.12908 
##           913           914           915           916           917 
##    2111.00133   77111.00133   73610.12908   52111.00133    8610.12908 
##           918           919           920           921           922 
##   72111.00133   68610.12908   90111.00133  -31389.87092   18610.12908 
##           923           924           925           926           927 
##    2111.00133   77111.00133   73610.12908   52111.00133    8610.12908 
##           928           929           930           931           932 
##   72111.00133   68610.12908   90111.00133  -31389.87092   18610.12908 
##           933           934           935           936           937 
##    2111.00133   77111.00133   73610.12908   52111.00133    8610.12908 
##           938           939           940           941           942 
##   72111.00133   68610.12908   90111.00133  -31389.87092   18610.12908 
##           943           944           945           946           947 
##    2111.00133   77111.00133   13610.12908   72111.00133   73610.12908 
##           948           949           950           951           952 
##   57111.00133   76610.12908   42111.00133   40610.12908   53610.12908 
##           953           954           955           956           957 
##   89111.00133   20610.12908   74111.00133   63610.12908   62111.00133 
##           958           959           960           961           962 
##   38610.12908   58610.12908   42111.00133   18610.12908  -21389.87092 
##           963           964           965           966           967 
##   82111.00133   38610.12908   -1389.87092   62111.00133   68610.12908 
##           968           969           970           971           972 
##   42111.00133   12111.00133   48610.12908   22111.00133  -26389.87092 
##           973           974           975           976           977 
##   73610.12908  -21389.87092   28610.12908   -1389.87092   42111.00133 
##           978           979           980           981           982 
##   58610.12908   87111.00133   38610.12908   62111.00133   18610.12908 
##           983           984           985           986           987 
##  -26389.87092   42111.00133   -1389.87092   58610.12908   87111.00133 
##           988           989           990           991           992 
##  -21389.87092   62111.00133   38610.12908   82111.00133   68610.12908 
##           993           994           995           996           997 
##   42111.00133   -1389.87092   42111.00133   58610.12908   87111.00133 
##           998           999          1000          1001          1002 
##  -26389.87092   38610.12908   -7888.99867   62111.00133   68610.12908 
##          1003          1004          1005          1006          1007 
##   42111.00133   -1389.87092   42111.00133   58610.12908   87111.00133 
##          1008          1009          1010          1011          1012 
##  -26389.87092   38610.12908   -7888.99867   62111.00133   68610.12908 
##          1013          1014          1015          1016          1017 
##   42111.00133   -1389.87092   42111.00133   58610.12908   87111.00133 
##          1018          1019          1020          1021          1022 
##  -26389.87092   38610.12908   -7888.99867   62111.00133   68610.12908 
##          1023          1024          1025          1026          1027 
##   42111.00133   -1389.87092   42111.00133   58610.12908   87111.00133 
##          1028          1029          1030          1031          1032 
##  -26389.87092   38610.12908   -7888.99867   62111.00133   68610.12908 
##          1033          1034          1035          1036          1037 
##   42111.00133   -1389.87092   42111.00133   58610.12908   87111.00133 
##          1038          1039          1040          1041          1042 
##  -26389.87092   38610.12908   -7888.99867   62111.00133   68610.12908 
##          1043          1044          1045          1046          1047 
##   42111.00133   -1389.87092   42111.00133   58610.12908   87111.00133 
##          1048          1049          1050          1051          1052 
##  -26389.87092   38610.12908   -7888.99867   62111.00133   68610.12908 
##          1053          1054          1055          1056          1057 
##   42111.00133   -1389.87092   42111.00133   58610.12908   87111.00133 
##          1058          1059          1060          1061          1062 
##  -26389.87092   38610.12908   -7888.99867   62111.00133   68610.12908 
##          1063          1064          1065          1066          1067 
##   42111.00133   -1389.87092   42111.00133   58610.12908   87111.00133 
##          1068          1069          1070          1071          1072 
##  -26389.87092   38610.12908   -7888.99867   62111.00133   68610.12908 
##          1073          1074          1075          1076          1077 
##   42111.00133   -1389.87092   42111.00133   58610.12908   87111.00133 
##          1078          1079          1080          1081          1082 
##  -26389.87092   38610.12908   -7888.99867   62111.00133   68610.12908 
##          1083          1084          1085          1086          1087 
##   42111.00133   -1389.87092   42111.00133   58610.12908   87111.00133 
##          1088          1089          1090          1091          1092 
##  -26389.87092   38610.12908   -7888.99867   62111.00133   58610.12908 
##          1093          1094          1095          1096          1097 
##   12111.00133   73610.12908   38610.12908   -7888.99867   68610.12908 
##          1098          1099          1100          1101          1102 
##   48610.12908   77111.00133    8610.12908   82111.00133   28610.12908 
##          1103          1104          1105          1106          1107 
##   42111.00133   73610.12908  -11389.87092   72111.00133   63610.12908 
##          1108          1109          1110          1111          1112 
##   22111.00133   68610.12908   47111.00133   73610.12908  -17888.99867 
##          1113          1114          1115          1116          1117 
##   63610.12908   12111.00133   58610.12908   -7888.99867   73610.12908 
##          1118          1119          1120          1121          1122 
##   38610.12908   17111.00133   48610.12908   77111.00133    8610.12908 
##          1123          1124          1125          1126          1127 
##   82111.00133   28610.12908   42111.00133   73610.12908  -11389.87092 
##          1128          1129          1130          1131          1132 
##   72111.00133   63610.12908   22111.00133   68610.12908   47111.00133 
##          1133          1134          1135          1136          1137 
##   73610.12908  -17888.99867   63610.12908   12111.00133   58610.12908 
##          1138          1139          1140          1141          1142 
##   -7888.99867   73610.12908   38610.12908   17111.00133   48610.12908 
##          1143          1144          1145          1146          1147 
##   77111.00133    8610.12908   82111.00133   28610.12908   42111.00133 
##          1148          1149          1150          1151          1152 
##   73610.12908  -11389.87092   72111.00133   63610.12908   22111.00133 
##          1153          1154          1155          1156          1157 
##   68610.12908   47111.00133   73610.12908  -17888.99867   63610.12908 
##          1158          1159          1160          1161          1162 
##   12111.00133   58610.12908   -7888.99867   73610.12908   38610.12908 
##          1163          1164          1165          1166          1167 
##   17111.00133   48610.12908   77111.00133    8610.12908   82111.00133 
##          1168          1169          1170          1171          1172 
##   28610.12908   42111.00133   73610.12908  -11389.87092   72111.00133 
##          1173          1174          1175          1176          1177 
##   63610.12908   22111.00133   68610.12908   47111.00133   73610.12908 
##          1178          1179          1180          1181          1182 
##  -17888.99867   63610.12908   12111.00133   58610.12908   -7888.99867 
##          1183          1184          1185          1186          1187 
##   73610.12908   38610.12908   17111.00133   48610.12908   77111.00133 
##          1188          1189          1190          1191          1192 
##    8610.12908   82111.00133   28610.12908   42111.00133   73610.12908 
##          1193          1194          1195          1196          1197 
##  -11389.87092   72111.00133   63610.12908   22111.00133   68610.12908 
##          1198          1199          1200          1201          1202 
##   47111.00133   73610.12908  -17888.99867   63610.12908   53610.12908 
##          1203          1204          1205          1206          1207 
##   68610.12908    2111.00133   73610.12908   -7888.99867  -61389.87092 
##          1208          1209          1210          1211          1212 
##   33610.12908   67111.00133   72111.00133  -26389.87092   78610.12908 
##          1213          1214          1215          1216          1217 
##   43610.12908   23610.12908   73610.12908  -32888.99867  -17888.99867 
##          1218          1219          1220          1221          1222 
##   47111.00133   -6389.87092   62111.00133   82111.00133   -6389.87092 
##          1223          1224          1225          1226          1227 
##   58610.12908   73610.12908   18610.12908   78610.12908  -37888.99867 
##          1228          1229          1230          1231          1232 
##   62111.00133   77111.00133   32111.00133   63610.12908   63610.12908 
##          1233          1234          1235          1236          1237 
##   58610.12908   53610.12908  -51389.87092  -47888.99867   78610.12908 
##          1238          1239          1240          1241          1242 
##   48610.12908   57111.00133  -66389.87092   68610.12908  -17888.99867 
##          1243          1244          1245          1246          1247 
##   -2888.99867    8610.12908   77111.00133  -47888.99867   73610.12908 
##          1248          1249          1250          1251          1252 
##  -61389.87092   28610.12908   72111.00133   62111.00133    3610.12908 
##          1253          1254          1255          1256          1257 
##   63610.12908  -31389.87092  -41389.87092  -22888.99867   68610.12908 
##          1258          1259          1260          1261          1262 
##   52111.00133   78610.12908   73610.12908   73610.12908   82111.00133 
##          1263          1264          1265          1266          1267 
##  -12888.99867  -66389.87092   63610.12908   12111.00133   73610.12908 
##          1268          1269          1270          1271          1272 
##   53610.12908  -32888.99867   78610.12908   52111.00133   53610.12908 
##          1273          1274          1275          1276          1277 
##  -51389.87092   58610.12908  -47888.99867   68610.12908   -1389.87092 
##          1278          1279          1280          1281          1282 
##   78610.12908   63610.12908   82111.00133   73610.12908   62111.00133 
##          1283          1284          1285          1286          1287 
##  -66389.87092    8610.12908   58610.12908   63610.12908  -66389.87092 
##          1288          1289          1290          1291          1292 
##   23610.12908   62111.00133   73610.12908   47111.00133    3610.12908 
##          1293          1294          1295          1296          1297 
##   72111.00133  -26389.87092   62111.00133   -7888.99867   53610.12908 
##          1298          1299          1300          1301          1302 
##  -41389.87092   73610.12908   33610.12908    3610.12908    2111.00133 
##          1303          1304          1305          1306          1307 
##   22111.00133   68610.12908   78610.12908   78610.12908   28610.12908 
##          1308          1309          1310          1311          1312 
##   18610.12908   87111.00133   73610.12908  -52888.99867   63610.12908 
##          1313          1314          1315          1316          1317 
##   12111.00133   82111.00133   22111.00133   82111.00133    8610.12908 
##          1318          1319          1320          1321          1322 
##   18610.12908  -51389.87092   48610.12908   68610.12908  -41389.87092 
##          1323          1324          1325          1326          1327 
##   58610.12908  -37888.99867   63610.12908  -52888.99867   32111.00133 
##          1328          1329          1330          1331          1332 
##   62111.00133    8610.12908   58610.12908  -26389.87092  -37888.99867 
##          1333          1334          1335          1336          1337 
##   43610.12908   63610.12908   18610.12908  -61389.87092  -27888.99867 
##          1338          1339          1340          1341          1342 
##   28610.12908   77111.00133  -51389.87092  -17888.99867   48610.12908 
##          1343          1344          1345          1346          1347 
##   48610.12908   68610.12908  -37888.99867   63610.12908   48610.12908 
##          1348          1349          1350          1351          1352 
##   -7888.99867   33610.12908   62111.00133   73610.12908   63610.12908 
##          1353          1354          1355          1356          1357 
##  -51389.87092   68610.12908   18610.12908  -61389.87092   68610.12908 
##          1358          1359          1360          1361          1362 
##   58610.12908    8610.12908   48610.12908   43610.12908   63610.12908 
##          1363          1364          1365          1366          1367 
##    8610.12908  -61389.87092   62111.00133   18610.12908    2111.00133 
##          1368          1369          1370          1371          1372 
##  -51389.87092   23610.12908   68610.12908   78610.12908  -41389.87092 
##          1373          1374          1375          1376          1377 
##  -26389.87092   -7888.99867   73610.12908   63610.12908   33610.12908 
##          1378          1379          1380          1381          1382 
##   73610.12908    3610.12908   73610.12908   18610.12908   48610.12908 
##          1383          1384          1385          1386          1387 
##   48610.12908   28610.12908  -47888.99867  -51389.87092   48610.12908 
##          1388          1389          1390          1391          1392 
##  -52888.99867  -27888.99867   63610.12908   18610.12908   58610.12908 
##          1393          1394          1395          1396          1397 
##  -37888.99867   63610.12908   68610.12908   22111.00133    2111.00133 
##          1398          1399          1400          1401          1402 
##   58610.12908   23610.12908   48610.12908   43610.12908   18610.12908 
##          1403          1404          1405          1406          1407 
##   73610.12908   33610.12908   68610.12908   73610.12908    8610.12908 
##          1408          1409          1410          1411          1412 
##  -22888.99867   78610.12908   18610.12908  -56389.87092   68610.12908 
##          1413          1414          1415          1416          1417 
##   -1389.87092  -41389.87092  -17888.99867   68610.12908   78610.12908 
##          1418          1419          1420          1421          1422 
##   68610.12908    2111.00133   58610.12908  -42888.99867   63610.12908 
##          1423          1424          1425          1426          1427 
##  -52888.99867    8610.12908   68610.12908   12111.00133   47111.00133 
##          1428          1429          1430          1431          1432 
##   68610.12908   -7888.99867   28610.12908   62111.00133  -41389.87092 
##          1433          1434          1435          1436          1437 
##   33610.12908   73610.12908   63610.12908  -51389.87092   68610.12908 
##          1438          1439          1440          1441          1442 
##   18610.12908  -66389.87092   68610.12908   58610.12908    8610.12908 
##          1443          1444          1445          1446          1447 
##   48610.12908   43610.12908   63610.12908    8610.12908  -61389.87092 
##          1448          1449          1450          1451          1452 
##   62111.00133   18610.12908    2111.00133  -51389.87092   23610.12908 
##          1453          1454          1455          1456          1457 
##   68610.12908   78610.12908  -41389.87092  -26389.87092   -7888.99867 
##          1458          1459          1460          1461          1462 
##   73610.12908   63610.12908   33610.12908   73610.12908    3610.12908 
##          1463          1464          1465          1466          1467 
##   73610.12908   18610.12908   48610.12908   48610.12908   28610.12908 
##          1468          1469          1470          1471          1472 
##  -47888.99867  -51389.87092   48610.12908  -52888.99867  -27888.99867 
##          1473          1474          1475          1476          1477 
##   63610.12908   18610.12908   58610.12908  -37888.99867   63610.12908 
##          1478          1479          1480          1481          1482 
##   68610.12908    3610.12908   38610.12908   18610.12908   73610.12908 
##          1483          1484          1485          1486          1487 
##  -51389.87092  -51389.87092   48610.12908   63610.12908   73610.12908 
##          1488          1489          1490          1491          1492 
##    8610.12908   33610.12908   63610.12908  -41389.87092   73610.12908 
##          1493          1494          1495          1496          1497 
##   13610.12908  -66389.87092   68610.12908  -37888.99867   63610.12908 
##          1498          1499          1500          1501          1502 
##   48610.12908   28610.12908   73610.12908  -51389.87092   73610.12908 
##          1503          1504          1505          1506          1507 
##    3610.12908   63610.12908  -37888.99867   33610.12908  -41389.87092 
##          1508          1509          1510          1511          1512 
##   63610.12908   68610.12908   48610.12908   73610.12908   28610.12908 
##          1513          1514          1515          1516          1517 
##  -51389.87092  -37888.99867   63610.12908   13610.12908  -41389.87092 
##          1518          1519          1520          1521          1522 
##   73610.12908   33610.12908   48610.12908   63610.12908  -51389.87092 
##          1523          1524          1525          1526          1527 
##   68610.12908    3610.12908   73610.12908   28610.12908  -51389.87092 
##          1528          1529          1530          1531          1532 
##  -37888.99867  -26389.87092   62111.00133  -46389.87092  102111.00133 
##          1533          1534          1535          1536          1537 
##   13610.12908   38610.12908  -66389.87092   68610.12908   57111.00133 
##          1538          1539          1540          1541          1542 
##  -27888.99867   -1389.87092   63610.12908   63610.12908   68610.12908 
##          1543          1544          1545          1546          1547 
##   18610.12908    8610.12908  -37888.99867   48610.12908    3610.12908 
##          1548          1549          1550          1551          1552 
##   33610.12908  -51389.87092   73610.12908   18610.12908    8610.12908 
##          1553          1554          1555          1556          1557 
##   47111.00133   68610.12908  -51389.87092  -41389.87092   63610.12908 
##          1558          1559          1560          1561          1562 
##   -7888.99867   63610.12908   68610.12908   13610.12908   52111.00133 
##          1563          1564          1565          1566          1567 
##  -66389.87092  -41389.87092   48610.12908  -52888.99867  -27888.99867 
##          1568          1569          1570          1571          1572 
##   63610.12908   18610.12908   58610.12908  -37888.99867   63610.12908 
##          1573          1574          1575          1576          1577 
##   68610.12908    3610.12908   38610.12908   18610.12908   73610.12908 
##          1578          1579          1580          1581          1582 
##  -51389.87092  -51389.87092   48610.12908   63610.12908   73610.12908 
##          1583          1584          1585          1586          1587 
##    8610.12908   33610.12908   63610.12908  -41389.87092   73610.12908 
##          1588          1589          1590          1591          1592 
##   13610.12908  -66389.87092   68610.12908  -37888.99867   63610.12908 
##          1593          1594          1595          1596          1597 
##   48610.12908   28610.12908   73610.12908  -51389.87092   73610.12908 
##          1598          1599          1600          1601          1602 
##    3610.12908   63610.12908   73610.12908  -41389.87092   48610.12908 
##          1603          1604          1605          1606          1607 
##   33610.12908   63610.12908  -51389.87092   18610.12908   73610.12908 
##          1608          1609          1610          1611          1612 
##   18610.12908  -37888.99867   63610.12908   68610.12908   13610.12908 
##          1613          1614          1615          1616          1617 
##   52111.00133  -66389.87092  -41389.87092   63610.12908   -7888.99867 
##          1618          1619          1620          1621          1622 
##   63610.12908   68610.12908    3610.12908   38610.12908   18610.12908 
##          1623          1624          1625          1626          1627 
##   73610.12908  -51389.87092  -51389.87092   48610.12908   63610.12908 
##          1628          1629          1630          1631          1632 
##   73610.12908    8610.12908   33610.12908   63610.12908  -41389.87092 
##          1633          1634          1635          1636          1637 
##   73610.12908   13610.12908  -66389.87092   68610.12908  -37888.99867 
##          1638          1639          1640          1641          1642 
##   63610.12908   48610.12908   28610.12908   73610.12908  -51389.87092 
##          1643          1644          1645          1646          1647 
##   73610.12908    3610.12908   63610.12908   73610.12908  -41389.87092 
##          1648          1649          1650          1651          1652 
##   48610.12908   33610.12908   -1389.87092  -17888.99867   72111.00133 
##          1653          1654          1655          1656          1657 
##    8610.12908   48610.12908  -51389.87092   88610.12908  -52888.99867 
##          1658          1659          1660          1661          1662 
##   68610.12908   57111.00133  -16389.87092   52111.00133  -11389.87092 
##          1663          1664          1665          1666          1667 
##   73610.12908  -36389.87092   58610.12908  -52888.99867   63610.12908 
##          1668          1669          1670          1671          1672 
##   18610.12908  -17888.99867   52111.00133   23610.12908   63610.12908 
##          1673          1674          1675          1676          1677 
##  -16389.87092  -11389.87092   88610.12908  -52888.99867   68610.12908 
##          1678          1679          1680          1681          1682 
##   57111.00133  -16389.87092   52111.00133  -11389.87092   73610.12908 
##          1683          1684          1685          1686          1687 
##  -36389.87092   58610.12908  -52888.99867   63610.12908   18610.12908 
##          1688          1689          1690          1691          1692 
##  -17888.99867   52111.00133   23610.12908   63610.12908  -16389.87092 
##          1693          1694          1695          1696          1697 
##  -11389.87092   88610.12908  -52888.99867   68610.12908   57111.00133 
##          1698          1699          1700          1701          1702 
##  -16389.87092   52111.00133  -11389.87092   73610.12908  -36389.87092 
##          1703          1704          1705          1706          1707 
##   58610.12908  -52888.99867   63610.12908   18610.12908  -17888.99867 
##          1708          1709          1710          1711          1712 
##   52111.00133   23610.12908   63610.12908  -16389.87092  -11389.87092 
##          1713          1714          1715          1716          1717 
##   88610.12908  -52888.99867   68610.12908   57111.00133  -16389.87092 
##          1718          1719          1720          1721          1722 
##   52111.00133  -11389.87092   73610.12908  -36389.87092   58610.12908 
##          1723          1724          1725          1726          1727 
##  -52888.99867   63610.12908   18610.12908  -17888.99867   52111.00133 
##          1728          1729          1730          1731          1732 
##   23610.12908   63610.12908  -16389.87092  -11389.87092   88610.12908 
##          1733          1734          1735          1736          1737 
##  -52888.99867   68610.12908   57111.00133  -16389.87092   52111.00133 
##          1738          1739          1740          1741          1742 
##  -11389.87092   73610.12908  -36389.87092   58610.12908  -52888.99867 
##          1743          1744          1745          1746          1747 
##   63610.12908   18610.12908  -17888.99867   52111.00133   23610.12908 
##          1748          1749          1750          1751          1752 
##   63610.12908  -16389.87092  -11389.87092   88610.12908  -52888.99867 
##          1753          1754          1755          1756          1757 
##   68610.12908   57111.00133  -16389.87092   52111.00133  -11389.87092 
##          1758          1759          1760          1761          1762 
##   73610.12908  -36389.87092   58610.12908  -52888.99867   63610.12908 
##          1763          1764          1765          1766          1767 
##   18610.12908  -17888.99867   52111.00133   23610.12908   63610.12908 
##          1768          1769          1770          1771          1772 
##  -16389.87092  -11389.87092   88610.12908   -6389.87092   62111.00133 
##          1773          1774          1775          1776          1777 
##  -27888.99867   78610.12908   22111.00133   33610.12908  -16389.87092 
##          1778          1779          1780          1781          1782 
##   82111.00133   18610.12908   63610.12908   37111.00133  -17888.99867 
##          1783          1784          1785          1786          1787 
##   73610.12908  -26389.87092   48610.12908    7111.00133   63610.12908 
##          1788          1789          1790          1791          1792 
##  -42888.99867   52111.00133  -21389.87092   58610.12908  -52888.99867 
##          1793          1794          1795          1796          1797 
##   68610.12908   -6389.87092   87111.00133   28610.12908    7111.00133 
##          1798          1799          1800          1801          1802 
##   63610.12908  -42888.99867   52111.00133  -21389.87092   58610.12908 
##          1803          1804          1805          1806          1807 
##  -52888.99867   68610.12908   -6389.87092   87111.00133   28610.12908 
##          1808          1809          1810          1811          1812 
##    7111.00133   63610.12908  -42888.99867   52111.00133  -21389.87092 
##          1813          1814          1815          1816          1817 
##   58610.12908  -52888.99867   68610.12908   -6389.87092   87111.00133 
##          1818          1819          1820          1821          1822 
##   28610.12908    7111.00133   63610.12908  -42888.99867   52111.00133 
##          1823          1824          1825          1826          1827 
##  -21389.87092   58610.12908  -52888.99867   68610.12908   -6389.87092 
##          1828          1829          1830          1831          1832 
##   87111.00133   28610.12908    7111.00133   63610.12908  -42888.99867 
##          1833          1834          1835          1836          1837 
##   52111.00133  -21389.87092   58610.12908  -52888.99867   68610.12908 
##          1838          1839          1840          1841          1842 
##   -6389.87092   87111.00133   28610.12908    7111.00133   63610.12908 
##          1843          1844          1845          1846          1847 
##  -42888.99867   52111.00133  -21389.87092   58610.12908  -52888.99867 
##          1848          1849          1850          1851          1852 
##   68610.12908   -6389.87092   87111.00133   28610.12908    7111.00133 
##          1853          1854          1855          1856          1857 
##   63610.12908  -42888.99867   52111.00133  -21389.87092   58610.12908 
##          1858          1859          1860          1861          1862 
##  -52888.99867   68610.12908   -6389.87092   87111.00133   28610.12908 
##          1863          1864          1865          1866          1867 
##    7111.00133   63610.12908  -42888.99867   52111.00133  -21389.87092 
##          1868          1869          1870          1871          1872 
##   58610.12908  -52888.99867   68610.12908   -6389.87092   87111.00133 
##          1873          1874          1875          1876          1877 
##   28610.12908    7111.00133   63610.12908  -42888.99867   52111.00133 
##          1878          1879          1880          1881          1882 
##  -21389.87092   58610.12908  -52888.99867   68610.12908   -6389.87092 
##          1883          1884          1885          1886          1887 
##   87111.00133   28610.12908    7111.00133   63610.12908  -42888.99867 
##          1888          1889          1890          1891          1892 
##   52111.00133  -21389.87092   58610.12908 -107338.99867  -31389.87092 
##          1893          1894          1895          1896          1897 
##   52111.00133  -27888.99867   73610.12908    7111.00133   28610.12908 
##          1898          1899          1900          1901          1902 
##  -56389.87092   82111.00133   18610.12908   63610.12908   22111.00133 
##          1903          1904          1905          1906          1907 
##   -2888.99867   78610.12908  -21389.87092   48610.12908    7111.00133 
##          1908          1909          1910          1911          1912 
##   63610.12908  -17888.99867   52111.00133  -41389.87092   73610.12908 
##          1913          1914          1915          1916          1917 
##    7111.00133   13610.12908  -56389.87092   82111.00133   18610.12908 
##          1918          1919          1920          1921          1922 
##   63610.12908   22111.00133   -2888.99867   78610.12908  -21389.87092 
##          1923          1924          1925          1926          1927 
##   48610.12908    7111.00133   63610.12908  -17888.99867   52111.00133 
##          1928          1929          1930          1931          1932 
##  -41389.87092   73610.12908    7111.00133   13610.12908  -56389.87092 
##          1933          1934          1935          1936          1937 
##   82111.00133   18610.12908   63610.12908   22111.00133   -2888.99867 
##          1938          1939          1940          1941          1942 
##   78610.12908  -21389.87092   48610.12908    7111.00133   63610.12908 
##          1943          1944          1945          1946          1947 
##  -17888.99867   52111.00133  -41389.87092   73610.12908    7111.00133 
##          1948          1949          1950          1951          1952 
##   13610.12908  -56389.87092   82111.00133   18610.12908   63610.12908 
##          1953          1954          1955          1956          1957 
##   22111.00133   -2888.99867   78610.12908  -21389.87092   48610.12908 
##          1958          1959          1960          1961          1962 
##    7111.00133   63610.12908  -17888.99867   52111.00133  -41389.87092 
##          1963          1964          1965          1966          1967 
##   73610.12908    7111.00133   13610.12908  -56389.87092   82111.00133 
##          1968          1969          1970          1971          1972 
##   18610.12908   63610.12908   22111.00133   -2888.99867   78610.12908 
##          1973          1974          1975          1976          1977 
##  -21389.87092   48610.12908    7111.00133   63610.12908  -17888.99867 
##          1978          1979          1980          1981          1982 
##   52111.00133  -41389.87092   73610.12908    7111.00133   13610.12908 
##          1983          1984          1985          1986          1987 
##  -56389.87092   82111.00133   18610.12908   63610.12908   22111.00133 
##          1988          1989          1990          1991          1992 
##   -2888.99867   78610.12908  -21389.87092   48610.12908    7111.00133 
##          1993          1994          1995          1996          1997 
##   63610.12908  -17888.99867   52111.00133  -41389.87092   73610.12908 
##          1998          1999          2000          2001          2002 
##    7111.00133   13610.12908  -56389.87092   82111.00133   18610.12908 
##          2003          2004          2005          2006          2007 
##   63610.12908   22111.00133   -2888.99867   78610.12908  -21389.87092 
##          2008          2009          2010          2011          2012 
##   48610.12908    7111.00133   63610.12908  -17888.99867  -21389.87092 
##          2013          2014          2015          2016          2017 
##    2111.00133   28610.12908  -41389.87092   73610.12908    7111.00133 
##          2018          2019          2020          2021          2022 
##   13610.12908  -56389.87092   82111.00133   18610.12908   63610.12908 
##          2023          2024          2025          2026          2027 
##   22111.00133   -2888.99867   78610.12908  -21389.87092   48610.12908 
##          2028          2029          2030          2031          2032 
##    7111.00133   63610.12908  -17888.99867   52111.00133  -41389.87092 
##          2033          2034          2035          2036          2037 
##   73610.12908    7111.00133   13610.12908  -56389.87092   82111.00133 
##          2038          2039          2040          2041          2042 
##   18610.12908   63610.12908   22111.00133   -2888.99867   78610.12908 
##          2043          2044          2045          2046          2047 
##  -21389.87092   48610.12908    7111.00133   63610.12908  -17888.99867 
##          2048          2049          2050          2051          2052 
##   52111.00133  -41389.87092   73610.12908    7111.00133   13610.12908 
##          2053          2054          2055          2056          2057 
##  -56389.87092   82111.00133   18610.12908   63610.12908   22111.00133 
##          2058          2059          2060          2061          2062 
##   -2888.99867   78610.12908  -21389.87092   48610.12908    7111.00133 
##          2063          2064          2065          2066          2067 
##   63610.12908  -17888.99867   52111.00133  -41389.87092   73610.12908 
##          2068          2069          2070          2071          2072 
##    7111.00133   13610.12908  -56389.87092   82111.00133   18610.12908 
##          2073          2074          2075          2076          2077 
##   63610.12908   22111.00133   -2888.99867   78610.12908  -21389.87092 
##          2078          2079          2080          2081          2082 
##   48610.12908    7111.00133   63610.12908  -17888.99867   52111.00133 
##          2083          2084          2085          2086          2087 
##  -41389.87092   73610.12908    7111.00133   13610.12908  -56389.87092 
##          2088          2089          2090          2091          2092 
##   82111.00133   18610.12908   63610.12908   22111.00133   -2888.99867 
##          2093          2094          2095          2096          2097 
##   78610.12908  -21389.87092   48610.12908    7111.00133   63610.12908 
##          2098          2099          2100          2101          2102 
##  -17888.99867   52111.00133  -41389.87092   73610.12908    7111.00133 
##          2103          2104          2105          2106          2107 
##   13610.12908  -56389.87092   82111.00133   18610.12908   63610.12908 
##          2108          2109          2110          2111          2112 
##   22111.00133   -2888.99867   78610.12908  -21389.87092   48610.12908 
##          2113          2114          2115          2116          2117 
##    7111.00133   63610.12908  -17888.99867   52111.00133  -41389.87092 
##          2118          2119          2120          2121          2122 
##   73610.12908    7111.00133   13610.12908  -56389.87092   82111.00133 
##          2123          2124          2125          2126          2127 
##   18610.12908   63610.12908   22111.00133   -2888.99867   78610.12908 
##          2128          2129          2130          2131          2132 
##  -21389.87092   48610.12908    7111.00133   63610.12908  -17888.99867 
##          2133          2134          2135          2136          2137 
##    8610.12908  -41389.87092   58610.12908   32111.00133   38610.12908 
##          2138          2139          2140          2141          2142 
##  -52888.99867   82111.00133   -1389.87092   78610.12908   -7888.99867 
##          2143          2144          2145          2146          2147 
##   28610.12908   62111.00133  -56389.87092  102111.00133  -31389.87092 
##          2148          2149          2150          2151          2152 
##   58610.12908    2111.00133   28610.12908  -41389.87092   73610.12908 
##          2153          2154          2155          2156          2157 
##    7111.00133   13610.12908  -56389.87092   82111.00133   18610.12908 
##          2158          2159          2160          2161          2162 
##   63610.12908   22111.00133   -2888.99867   78610.12908  -21389.87092 
##          2163          2164          2165          2166          2167 
##   48610.12908    7111.00133   63610.12908  -17888.99867   52111.00133 
##          2168          2169          2170          2171          2172 
##  -41389.87092   73610.12908    7111.00133   13610.12908  -56389.87092 
##          2173          2174          2175          2176          2177 
##   82111.00133   18610.12908   63610.12908   22111.00133   -2888.99867 
##          2178          2179          2180          2181          2182 
##   78610.12908  -21389.87092   48610.12908    7111.00133   63610.12908 
##          2183          2184          2185          2186          2187 
##  -17888.99867   52111.00133  -41389.87092   73610.12908    7111.00133 
##          2188          2189          2190          2191          2192 
##   13610.12908  -56389.87092   82111.00133   18610.12908   77111.00133 
##          2193          2194          2195          2196          2197 
##    8610.12908  -16389.87092   88610.12908  -26389.87092   62111.00133 
##          2198          2199          2200          2201          2202 
##  -56389.87092   82111.00133   -1389.87092   78610.12908   -7888.99867 
##          2203          2204          2205          2206          2207 
##   28610.12908   62111.00133  -56389.87092  102111.00133  -31389.87092 
##          2208          2209          2210          2211          2212 
##   58610.12908    2111.00133   28610.12908  -41389.87092   73610.12908 
##          2213          2214          2215          2216          2217 
##    7111.00133   13610.12908  -56389.87092   82111.00133   18610.12908 
##          2218          2219          2220          2221          2222 
##   63610.12908   22111.00133   -2888.99867   78610.12908  -21389.87092 
##          2223          2224          2225          2226          2227 
##   48610.12908    7111.00133   63610.12908  -17888.99867   52111.00133 
##          2228          2229          2230          2231          2232 
##  -41389.87092   73610.12908    7111.00133   13610.12908  -56389.87092 
##          2233          2234          2235          2236          2237 
##   82111.00133   18610.12908   63610.12908   22111.00133   -2888.99867 
##          2238          2239          2240          2241          2242 
##   78610.12908  -21389.87092   48610.12908    7111.00133   63610.12908 
##          2243          2244          2245          2246          2247 
##  -17888.99867   52111.00133  -41389.87092   73610.12908    7111.00133 
##          2248          2249          2250          2251          2252 
##   13610.12908  -56389.87092   82111.00133   18610.12908  -46389.87092 
##          2253          2254          2255          2256          2257 
##  -12888.99867  -71389.87092   58610.12908  -42888.99867   -1389.87092 
##          2258          2259          2260          2261          2262 
##  -47888.99867   28610.12908  -51389.87092  112111.00133  -21389.87092 
##          2263          2264          2265          2266          2267 
##  -52888.99867   48610.12908  -17888.99867  -41389.87092   58610.12908 
##          2268          2269          2270          2271          2272 
##  -61389.87092   12111.00133  -37888.99867   88610.12908   18610.12908 
##          2273          2274          2275          2276          2277 
##  -57888.99867  -11389.87092  -47888.99867   38610.12908  -46389.87092 
##          2278          2279          2280          2281          2282 
##   92111.00133  -21389.87092  -52888.99867   48610.12908  -17888.99867 
##          2283          2284          2285          2286          2287 
##  -41389.87092   58610.12908  -61389.87092   12111.00133  -37888.99867 
##          2288          2289          2290          2291          2292 
##   88610.12908   18610.12908  -57888.99867  -11389.87092  -47888.99867 
##          2293          2294          2295          2296          2297 
##   38610.12908  -46389.87092   92111.00133  -21389.87092  -52888.99867 
##          2298          2299          2300          2301          2302 
##   48610.12908  -17888.99867  -41389.87092   58610.12908  -61389.87092 
##          2303          2304          2305          2306          2307 
##   12111.00133  -37888.99867   88610.12908   18610.12908  -57888.99867 
##          2308          2309          2310          2311          2312 
##  -11389.87092  -47888.99867   38610.12908  -46389.87092   92111.00133 
##          2313          2314          2315          2316          2317 
##  -21389.87092  -52888.99867   48610.12908  -17888.99867  -41389.87092 
##          2318          2319          2320          2321          2322 
##   58610.12908  -61389.87092   12111.00133  -37888.99867   88610.12908 
##          2323          2324          2325          2326          2327 
##   18610.12908  -57888.99867  -11389.87092  -47888.99867   38610.12908 
##          2328          2329          2330          2331          2332 
##  -46389.87092   92111.00133  -21389.87092  -52888.99867   48610.12908 
##          2333          2334          2335          2336          2337 
##  -17888.99867  -41389.87092   58610.12908  -61389.87092   12111.00133 
##          2338          2339          2340          2341          2342 
##  -37888.99867   88610.12908   18610.12908  -57888.99867  -11389.87092 
##          2343          2344          2345          2346          2347 
##  -47888.99867   38610.12908  -46389.87092   92111.00133  -21389.87092 
##          2348          2349          2350          2351          2352 
##  -52888.99867   48610.12908  -17888.99867  -41389.87092   58610.12908 
##          2353          2354          2355          2356          2357 
##  -61389.87092   12111.00133  -37888.99867   88610.12908   18610.12908 
##          2358          2359          2360          2361          2362 
##  -57888.99867  -11389.87092  -47888.99867   38610.12908  -46389.87092 
##          2363          2364          2365          2366          2367 
##   92111.00133  -21389.87092  -52888.99867   48610.12908  -17888.99867 
##          2368          2369          2370          2371          2372 
##  -41389.87092   58610.12908  -61389.87092   12111.00133  -37888.99867 
##          2373          2374          2375          2376          2377 
##   88610.12908   18610.12908  -57888.99867   14596.00133   47769.12908 
##          2378          2379          2380          2381          2382 
##   65691.12908  -29534.99867  -31140.87092   24831.00133   40178.12908 
##          2383          2384          2385          2386          2387 
##    5956.12908   12288.00133  -20057.87092   13561.00133   58486.00133 
##          2388          2389          2390          2391          2392 
##   63729.12908   41328.00133   45122.12908   79074.00133  -46317.87092 
##          2393          2394          2395          2396          2397 
##   55509.00133  -17442.87092   71291.00133   54576.12908   68614.12908 
##          2398          2399          2400          2401          2402 
##   44150.00133  -44647.87092   83901.00133   31509.00133  -25544.87092 
##          2403          2404          2405          2406          2407 
##   39586.12908   18864.00133   18427.12908   60324.12908    6887.00133 
##          2408          2409          2410          2411          2412 
##  -15664.87092  -55157.99867  -14897.87092  -33993.99867   -1553.87092 
##          2413          2414          2415          2416          2417 
##   -8141.99867   46897.12908    8031.00133    6688.12908  -56623.99867 
##          2418          2419          2420          2421          2422 
##   44529.12908   80762.00133  -65851.87092   72574.12908   -3186.99867 
##          2423          2424          2425          2426          2427 
##   51565.12908   30143.00133  -38706.87092   34024.12908   46318.00133 
##          2428          2429          2430          2431          2432 
##  -13494.87092   40557.00133  -18530.87092   30773.00133   60309.12908 
##          2433          2434          2435          2436          2437 
##   80343.00133  -56056.99867   67094.12908   30397.00133   59742.12908 
##          2438          2439          2440          2441          2442 
##  -33950.99867   -2165.87092   -6702.99867   20970.12908   43426.00133 
##          2443          2444          2445          2446          2447 
##   59631.12908   26752.00133   52461.12908   57469.12908   -9320.99867 
##          2448          2449          2450          2451          2452 
##  -16728.87092   26969.00133  -26887.87092   14596.00133   47769.12908 
##          2453          2454          2455          2456          2457 
##   65691.12908  -29534.99867  -31140.87092   24831.00133   40178.12908 
##          2458          2459          2460          2461          2462 
##    5956.12908   12288.00133  -20057.87092   13561.00133   58486.00133 
##          2463          2464          2465          2466          2467 
##   63729.12908   41328.00133   45122.12908   79074.00133  -46317.87092 
##          2468          2469          2470          2471          2472 
##   55509.00133  -17442.87092   71291.00133   54576.12908   68614.12908 
##          2473          2474          2475          2476          2477 
##   44150.00133  -44647.87092   83901.00133   31509.00133  -25544.87092 
##          2478          2479          2480          2481          2482 
##   39586.12908   18864.00133   18427.12908   60324.12908    6887.00133 
##          2483          2484          2485          2486          2487 
##  -15664.87092  -55157.99867  -14897.87092  -33993.99867   -1553.87092 
##          2488          2489          2490          2491          2492 
##   -8141.99867   46897.12908    8031.00133    6688.12908  -56623.99867 
##          2493          2494          2495          2496          2497 
##   44529.12908   80762.00133  -65851.87092   72574.12908   -3186.99867 
##          2498          2499          2500          2501          2502 
##   51565.12908   30143.00133  -38706.87092   34024.12908   46318.00133 
##          2503          2504          2505          2506          2507 
##  -13494.87092   40557.00133  -18530.87092   30773.00133   60309.12908 
##          2508          2509          2510          2511          2512 
##   80343.00133  -56056.99867   67094.12908   30397.00133   59742.12908 
##          2513          2514          2515          2516          2517 
##  -33950.99867   -2165.87092   -6702.99867   20970.12908   43426.00133 
##          2518          2519          2520          2521          2522 
##   59631.12908   26752.00133   52461.12908   57469.12908   -9320.99867 
##          2523          2524          2525          2526          2527 
##  -16728.87092   26969.00133  -26887.87092   17705.12908   -1610.99867 
##          2528          2529          2530          2531          2532 
##  -30937.87092   60415.00133    5203.12908   30813.12908   75249.00133 
##          2533          2534          2535          2536          2537 
##    8885.12908   70525.12908  -45081.99867   52915.12908   25437.00133 
##          2538          2539          2540          2541          2542 
##  -45733.87092   48055.00133   16385.12908  -56057.99867   60847.12908 
##          2543          2544          2545          2546          2547 
##   44012.00133  -21337.87092   45817.12908    4550.00133   86325.00133 
##          2548          2549          2550          2551          2552 
##  -36982.87092   31524.00133   21694.12908   84455.00133  -15257.87092 
##          2553          2554          2555          2556          2557 
##   63426.12908   42359.00133   49605.12908  -33354.87092   11530.00133 
##          2558          2559          2560          2561          2562 
##   52192.12908   66547.00133  -49690.87092   55669.00133   45438.12908 
##          2563          2564          2565          2566          2567 
##   36607.00133   72356.12908   14692.00133  -41622.87092   69288.00133 
##          2568          2569          2570          2571          2572 
##  -31546.87092    5674.00133    7322.12908   53732.00133      64.12908 
##          2573          2574          2575          2576          2577 
##   58597.12908  -35239.99867  -68777.87092   76117.00133   10570.12908 
##          2578          2579          2580          2581          2582 
##   -5423.99867   28358.12908   63147.00133   24961.12908   64072.12908 
##          2583          2584          2585          2586          2587 
##    -170.99867  -30445.87092   -7463.99867  -57488.87092   60512.12908 
##          2588          2589          2590          2591          2592 
##   28644.00133   14895.12908   83929.00133   55253.12908  -37866.99867 
##          2593          2594          2595          2596          2597 
##  -22026.87092   45055.00133    1996.12908   47516.12908   75131.00133 
##          2598          2599          2600          2601          2602 
##  -73491.87092   27964.00133   27808.12908  -14727.87092   65220.12908 
##          2603          2604          2605          2606          2607 
##  -17893.99867  -35564.87092   35925.00133   53336.12908   42645.00133 
##          2608          2609          2610          2611          2612 
##  -52657.87092   66561.12908   29447.00133   69769.12908   -5020.99867 
##          2613          2614          2615          2616          2617 
##   32891.12908   -9854.87092      17.00133   22495.12908   73069.00133 
##          2618          2619          2620          2621          2622 
##  -12782.87092   56894.12908  -31919.99867   22315.12908   89465.00133 
##          2623          2624          2625          2626          2627 
##   52934.12908   15892.00133   20345.12908   65730.12908  -46793.99867 
##          2628          2629          2630          2631          2632 
##   57655.12908   22466.00133  -18107.87092   49983.00133   -4075.87092 
##          2633          2634          2635          2636          2637 
##   64931.12908   21797.00133  -52778.87092   70024.00133  -52917.87092 
##          2638          2639          2640          2641          2642 
##    5176.00133    3701.12908   65036.00133    5526.12908   62027.12908 
##          2643          2644          2645          2646          2647 
##  -30990.99867 -120810.87092  -42888.99867   -1389.87092  -17888.99867 
##          2648          2649          2650          2651          2652 
##   68610.12908   32111.00133  -46389.87092   52111.00133    8610.12908 
##          2653          2654          2655          2656          2657 
##  -47888.99867   98610.12908  -27888.99867    8610.12908  -42888.99867 
##          2658          2659          2660          2661          2662 
##   48610.12908    2111.00133  -71389.87092   88610.12908   -7888.99867 
##          2663          2664          2665          2666          2667 
##  -71389.87092   38610.12908  -37888.99867   68610.12908   32111.00133 
##          2668          2669          2670          2671          2672 
##  -76389.87092   12111.00133  -61389.87092   42111.00133  -51389.87092 
##          2673          2674          2675          2676          2677 
##   92111.00133  -21389.87092  -52888.99867   48610.12908  -17888.99867 
##          2678          2679          2680          2681          2682 
##  -41389.87092   58610.12908  -61389.87092   12111.00133  -37888.99867 
##          2683          2684          2685          2686          2687 
##   88610.12908   18610.12908  -57888.99867  -11389.87092  -47888.99867 
##          2688          2689          2690          2691          2692 
##   38610.12908  -46389.87092   92111.00133  -21389.87092  -52888.99867 
##          2693          2694          2695          2696          2697 
##   48610.12908  -17888.99867  -41389.87092   58610.12908  -61389.87092 
##          2698          2699          2700          2701          2702 
##   12111.00133  -37888.99867   88610.12908   18610.12908  -57888.99867 
##          2703          2704          2705          2706          2707 
##  -11389.87092  -47888.99867   38610.12908  -46389.87092   92111.00133 
##          2708          2709          2710          2711          2712 
##  -21389.87092  -52888.99867   48610.12908  -17888.99867  -41389.87092 
##          2713          2714          2715          2716          2717 
##   58610.12908  -61389.87092   12111.00133  -37888.99867   88610.12908 
##          2718          2719          2720          2721          2722 
##   18610.12908  -57888.99867  -11389.87092  -47888.99867   38610.12908 
##          2723          2724          2725          2726          2727 
##  -46389.87092   92111.00133  -21389.87092  -52888.99867   48610.12908 
##          2728          2729          2730          2731          2732 
##  -17888.99867  -41389.87092   58610.12908  -61389.87092   12111.00133 
##          2733          2734          2735          2736          2737 
##  -37888.99867   88610.12908   18610.12908  -57888.99867  -11389.87092 
##          2738          2739          2740          2741          2742 
##  -47888.99867   38610.12908  -46389.87092   92111.00133  -21389.87092 
##          2743          2744          2745          2746          2747 
##  -52888.99867   48610.12908  -17888.99867  -41389.87092   58610.12908 
##          2748          2749          2750          2751          2752 
##  -61389.87092   12111.00133  -37888.99867   88610.12908   18610.12908 
##          2753          2754          2755          2756          2757 
##  -57888.99867  -11389.87092  -47888.99867   38610.12908  -46389.87092 
##          2758          2759          2760          2761          2762 
##   92111.00133  -21389.87092  -52888.99867   48610.12908  -17888.99867 
##          2763          2764          2765          2766          2767 
##  -41389.87092   58610.12908  -61389.87092   12111.00133  -37888.99867 
##          2768          2769          2770          2771          2772 
##   88610.12908   -4309.99867   42390.12908   16488.12908  -15450.99867 
##          2773          2774          2775          2776          2777 
##  -37208.87092   66932.00133    5130.12908   30778.12908   82654.00133 
##          2778          2779          2780          2781          2782 
##   10157.12908   70902.12908  -55081.99867   53548.12908   16182.00133 
##          2783          2784          2785          2786          2787 
##  -47749.87092   48597.00133   17469.12908  -55057.99867   61002.12908 
##          2788          2789          2790          2791          2792 
##   43189.00133  -20710.87092   46534.12908    5445.00133   86889.00133 
##          2793          2794          2795          2796          2797 
##  -43783.87092   32121.00133   21031.12908   84867.00133  -14703.87092 
##          2798          2799          2800          2801          2802 
##   65404.12908   42840.00133   50262.12908  -32837.87092   12029.00133 
##          2803          2804          2805          2806          2807 
##   53595.12908   66447.00133  -49000.87092   56089.00133   45568.12908 
##          2808          2809          2810          2811          2812 
##   37163.00133   73880.12908   15081.00133  -41142.87092   69973.00133 
##          2813          2814          2815          2816          2817 
##  -30327.87092    6401.00133    7609.12908   54565.00133     964.12908 
##          2818          2819          2820          2821          2822 
##   58366.12908  -34670.99867  -68777.87092   76591.00133   11052.12908 
##          2823          2824          2825          2826          2827 
##   -5060.99867   28911.12908   63579.00133   25936.12908   64592.12908 
##          2828          2829          2830          2831          2832 
##     378.00133  -29992.87092   -7021.99867  -57207.87092   61116.12908 
##          2833          2834          2835          2836          2837 
##   29097.00133   15272.12908   83621.00133   55957.12908  -37491.99867 
##          2838          2839          2840          2841          2842 
##   24685.12908   47906.00133   11248.12908   70795.00133  -15171.87092 
##          2843          2844          2845          2846          2847 
##   69849.12908  -42048.99867  -68610.87092   77149.00133   15059.12908 
##          2848          2849          2850          2851          2852 
##    2818.00133   30280.12908   59126.00133   25118.12908   69206.12908 
##          2853          2854          2855          2856          2857 
##   -3510.99867  -51173.87092   -6155.99867  -65454.87092   58977.12908 
##          2858          2859          2860          2861          2862 
##   27707.00133   14672.12908   83378.00133   55957.12908  -37491.99867 
##          2863          2864          2865          2866          2867 
##   24685.12908   47906.00133   11248.12908   70795.00133  -15171.87092 
##          2868          2869          2870          2871          2872 
##   69849.12908  -42048.99867  -68610.87092   77149.00133   15059.12908 
##          2873          2874          2875          2876          2877 
##    2818.00133   30280.12908   59126.00133   25118.12908   69206.12908 
##          2878          2879          2880          2881          2882 
##   -3510.99867  -51173.87092   -6155.99867  -65454.87092   58977.12908 
##          2883          2884          2885          2886          2887 
##   27707.00133   14672.12908   83378.00133   55957.12908   -4309.99867 
##          2888          2889          2890          2891          2892 
##   42390.12908   16488.12908  -15450.99867  -37208.87092   66932.00133 
##          2893          2894          2895          2896          2897 
##    5130.12908   30778.12908   82654.00133   10157.12908   70902.12908 
##          2898          2899          2900          2901          2902 
##  -55081.99867   53548.12908   16182.00133  -47749.87092   48597.00133 
##          2903          2904          2905          2906          2907 
##   17469.12908  -55057.99867   61002.12908   43189.00133  -20710.87092 
##          2908          2909          2910          2911          2912 
##   46534.12908    5445.00133   86889.00133  -43783.87092   32121.00133 
##          2913          2914          2915          2916          2917 
##   21031.12908   84867.00133  -14703.87092   65404.12908   42840.00133 
##          2918          2919          2920          2921          2922 
##   50262.12908  -32837.87092   12029.00133   53595.12908   66447.00133 
##          2923          2924          2925          2926          2927 
##  -49000.87092   56089.00133   45568.12908   37163.00133   73880.12908 
##          2928          2929          2930          2931          2932 
##   15081.00133  -41142.87092   69973.00133  -30327.87092    6401.00133 
##          2933          2934          2935          2936          2937 
##    7609.12908   54565.00133     964.12908   58366.12908  -34670.99867 
##          2938          2939          2940          2941          2942 
##  -68777.87092   76591.00133   11052.12908   -5060.99867   28911.12908 
##          2943          2944          2945          2946          2947 
##   63579.00133   25936.12908   64592.12908     378.00133  -29992.87092 
##          2948          2949          2950          2951          2952 
##   -7021.99867  -57207.87092   61116.12908   29097.00133   15272.12908 
##          2953          2954          2955          2956          2957 
##   83621.00133   55957.12908  -37491.99867   24685.12908   47906.00133 
##          2958          2959          2960          2961          2962 
##   11248.12908   70795.00133  -15171.87092   69849.12908  -42048.99867 
##          2963          2964          2965          2966          2967 
##  -68610.87092   77149.00133   15059.12908    2818.00133   30280.12908 
##          2968          2969          2970          2971          2972 
##   59126.00133   25118.12908   69206.12908   -3510.99867  -51173.87092 
##          2973          2974          2975          2976          2977 
##   -6155.99867  -65454.87092   58977.12908   27707.00133   14672.12908 
##          2978          2979          2980          2981          2982 
##   83378.00133   55957.12908  -37491.99867   24685.12908   47906.00133 
##          2983          2984          2985          2986          2987 
##   11248.12908   70795.00133  -15171.87092   69849.12908  -42048.99867 
##          2988          2989          2990          2991          2992 
##  -68610.87092   77149.00133   15059.12908    2818.00133   30280.12908 
##          2993          2994          2995          2996          2997 
##   59126.00133   25118.12908   69206.12908   -3510.99867  -51173.87092 
##          2998          2999          3000          3001          3002 
##   -6155.99867  -65454.87092   58977.12908   27707.00133   14672.12908 
##          3003          3004          3005          3006          3007 
##   83378.00133   55957.12908   -4309.99867   42390.12908   16488.12908 
##          3008          3009          3010          3011          3012 
##  -15450.99867  -37208.87092   66932.00133    5130.12908   30778.12908 
##          3013          3014          3015          3016          3017 
##   82654.00133   10157.12908   70902.12908  -55081.99867   53548.12908 
##          3018          3019          3020          3021          3022 
##   16182.00133  -47749.87092   48597.00133   17469.12908  -55057.99867 
##          3023          3024          3025          3026          3027 
##   61002.12908   43189.00133  -20710.87092   46534.12908    5445.00133 
##          3028          3029          3030          3031          3032 
##   86889.00133  -43783.87092   32121.00133   21031.12908   84867.00133 
##          3033          3034          3035          3036          3037 
##  -14703.87092   65404.12908   42840.00133   50262.12908  -32837.87092 
##          3038          3039          3040          3041          3042 
##   12029.00133   53595.12908   66447.00133  -49000.87092   56089.00133 
##          3043          3044          3045          3046          3047 
##   45568.12908   37163.00133   73880.12908   15081.00133  -41142.87092 
##          3048          3049          3050          3051          3052 
##   69973.00133  -30327.87092    6401.00133    7609.12908   54565.00133 
##          3053          3054          3055          3056          3057 
##     964.12908   58366.12908  -34670.99867  -68777.87092   77149.00133 
##          3058          3059          3060          3061          3062 
##   11052.12908   -5060.99867   28911.12908   63579.00133   25936.12908 
##          3063          3064          3065          3066          3067 
##   64592.12908     378.00133  -29992.87092   -7021.99867  -57207.87092 
##          3068          3069          3070          3071          3072 
##   61116.12908   29097.00133   15272.12908   83621.00133   55957.12908 
##          3073          3074          3075          3076          3077 
##  -24944.99867   66898.12908   33201.00133   31336.12908   16252.00133 
##          3078          3079          3080          3081          3082 
##  -53833.87092   74879.00133   27337.12908  -15985.99867   26318.12908 
##          3083          3084          3085          3086          3087 
##   55320.00133   -1101.87092   48836.12908   27090.00133   16099.12908 
##          3088          3089          3090          3091          3092 
##  -24311.99867   -3485.87092   26593.00133   63270.12908   -7737.99867 
##          3093          3094          3095          3096          3097 
##  -32711.87092   73396.00133   33600.12908     315.00133   54294.12908 
##          3098          3099          3100          3101          3102 
##  -30122.99867   70821.12908   36758.00133   40841.12908   13231.00133 
##          3103          3104          3105          3106          3107 
##  -41737.87092   69113.00133  -33805.87092   23971.00133   60623.12908 
##          3108          3109          3110          3111          3112 
##     910.00133   13988.12908   75641.00133   29511.12908  -25191.99867 
##          3113          3114          3115          3116          3117 
##   73248.12908   22467.00133   31170.12908   13543.00133  -57600.87092 
##          3118          3119          3120          3121          3122 
##   75801.00133   29920.12908   -7530.99867   27047.12908   60802.00133 
##          3124          3125          3126          3127          3128 
##  -71389.87092   -7888.99867  -61389.87092  -17888.99867  -51389.87092 
##          3129          3130          3131          3132          3133 
##   48610.12908   22111.00133  -71389.87092   12111.00133  -41389.87092 
##          3134          3135          3136          3137          3138 
##   92111.00133  -21389.87092  -52888.99867   48610.12908  -17888.99867 
##          3139          3140          3141          3142          3143 
##  -41389.87092   58610.12908  -61389.87092   12111.00133  -37888.99867 
##          3144          3145          3146          3147          3148 
##   88610.12908   18610.12908  -57888.99867  -11389.87092  -47888.99867 
##          3149          3150          3151          3152          3153 
##   38610.12908  -46389.87092   92111.00133  -21389.87092  -52888.99867 
##          3154          3155          3156          3157          3158 
##   48610.12908  -17888.99867  -41389.87092   58610.12908  -61389.87092 
##          3159          3160          3161          3162          3163 
##   12111.00133  -37888.99867   88610.12908   18610.12908  -57888.99867 
##          3164          3165          3166          3167          3168 
##  -11389.87092  -47888.99867   38610.12908  -46389.87092   92111.00133 
##          3169          3170          3171          3172          3173 
##  -21389.87092  -52888.99867   48610.12908  -17888.99867  -41389.87092 
##          3174          3175          3176          3177          3178 
##   58610.12908  -61389.87092   12111.00133  -37888.99867   88610.12908 
##          3179          3180          3181          3182          3183 
##   18610.12908  -57888.99867  -11389.87092  -47888.99867   38610.12908 
##          3184          3185          3186          3187          3188 
##  -46389.87092   92111.00133  -21389.87092  -52888.99867   48610.12908 
##          3189          3190          3191          3192          3193 
##  -17888.99867  -41389.87092   58610.12908  -61389.87092   12111.00133 
##          3194          3195          3196          3197          3198 
##  -37888.99867   88610.12908   18610.12908  -57888.99867  -11389.87092 
##          3199          3200          3201          3202          3203 
##  -47888.99867   38610.12908  -46389.87092   92111.00133  -21389.87092 
##          3204          3205          3206          3207          3208 
##  -52888.99867   48610.12908  -17888.99867  -41389.87092   58610.12908 
##          3209          3210          3211          3212          3213 
##  -61389.87092   12111.00133  -37888.99867   88610.12908   18610.12908 
##          3214          3215          3216          3217          3218 
##  -57888.99867  -11389.87092  -47888.99867   38610.12908  -46389.87092 
##          3219          3220          3221          3222          3223 
##   92111.00133  -21389.87092  -52888.99867   48610.12908  -17888.99867 
##          3224          3225          3226          3227          3228 
##  -41389.87092   58610.12908  -61389.87092   12111.00133  -37888.99867 
##          3229          3230          3231          3232          3233 
##   88610.12908   18610.12908  -57888.99867  -11389.87092  -47888.99867 
##          3234          3235          3236          3237          3238 
##   38610.12908  -46389.87092   92111.00133  -21389.87092  -52888.99867 
##          3239          3240          3241          3242          3243 
##   48610.12908  -17888.99867  -41389.87092   58610.12908  -61389.87092 
##          3244          3245          3246          3247          3248 
##   12111.00133  -37888.99867   88610.12908   18610.12908  -27888.99867 
##          3249          3250          3251          3252          3253 
##  -51389.87092   58610.12908  -61389.87092   12111.00133  -37888.99867 
##          3254          3255          3256          3257          3258 
##   88610.12908   18610.12908  -57888.99867  -11389.87092  -47888.99867 
##          3259          3260          3261          3262          3263 
##   38610.12908  -46389.87092   92111.00133  -21389.87092  -52888.99867 
##          3264          3265          3266          3267          3268 
##   48610.12908  -17888.99867  -41389.87092   58610.12908  -61389.87092 
##          3269          3270          3271          3272          3273 
##   12111.00133  -37888.99867   88610.12908   18610.12908  -57888.99867 
##          3274          3275          3276          3277          3278 
##  -11389.87092  -47888.99867   38610.12908  -46389.87092   92111.00133 
##          3279          3280          3281          3282          3283 
##  -21389.87092  -52888.99867   48610.12908  -17888.99867  -41389.87092 
##          3284          3285          3286          3287          3288 
##   58610.12908  -61389.87092   12111.00133  -37888.99867   88610.12908 
##          3289          3290          3291          3292          3293 
##   18610.12908  -57888.99867  -11389.87092  -47888.99867   38610.12908 
##          3294          3295          3296          3297          3298 
##  -46389.87092   92111.00133  -21389.87092  -52888.99867   48610.12908 
##          3299          3300          3301          3302          3303 
##  -17888.99867  -41389.87092   58610.12908  -61389.87092   12111.00133 
##          3304          3305          3306          3307          3308 
##  -37888.99867   88610.12908   18610.12908  -57888.99867  -11389.87092 
##          3309          3310          3311          3312          3313 
##  -47888.99867   38610.12908  -46389.87092   92111.00133  -21389.87092 
##          3314          3315          3316          3317          3318 
##  -52888.99867   48610.12908  -17888.99867  -41389.87092   58610.12908 
##          3319          3320          3321          3322          3323 
##  -61389.87092   12111.00133  -37888.99867   88610.12908   18610.12908 
##          3324          3325          3326          3327          3328 
##  -57888.99867  -11389.87092  -47888.99867   38610.12908  -46389.87092 
##          3329          3330          3331          3332          3333 
##   92111.00133  -21389.87092  -52888.99867   48610.12908  -17888.99867 
##          3334          3335          3336          3337          3338 
##  -41389.87092   58610.12908  -61389.87092   12111.00133  -37888.99867 
##          3339          3340          3341          3342          3343 
##   88610.12908   18610.12908  -57888.99867  -11389.87092  -47888.99867 
##          3344          3345          3346          3347          3348 
##   38610.12908  -46389.87092   92111.00133  -21389.87092  -52888.99867 
##          3349          3350          3351          3352          3353 
##   48610.12908  -17888.99867  -41389.87092   58610.12908  -61389.87092 
##          3354          3355          3356          3357          3358 
##   12111.00133  -37888.99867   88610.12908   18610.12908  -57888.99867 
##          3359          3360          3361          3362          3363 
##  -11389.87092  -47888.99867   38610.12908  -46389.87092   92111.00133 
##          3364          3365          3366          3367          3368 
##  -21389.87092  -52888.99867   48610.12908  -17888.99867  -41389.87092 
##          3369          3370          3371          3372          3373 
##   58610.12908  -61389.87092   12111.00133  -41389.87092  -47888.99867 
##          3374          3375          3376          3377          3378 
##  -71389.87092   52111.00133   -1389.87092  -67888.99867  -21389.87092 
##          3379          3380          3381          3382          3383 
##  -32888.99867   18610.12908  -57888.99867  -11389.87092  -62888.99867 
##          3384          3385          3386          3387          3388 
##  -66389.87092   22111.00133  -71389.87092  -27888.99867  -76389.87092 
##          3389          3390          3391          3392          3393 
##  -75888.99867   -1389.87092  -42888.99867  -26389.87092  -27888.99867 
##          3394          3395          3396          3397          3398 
##  -69888.99867  -11389.87092  -62888.99867  -32389.87092  -89389.87092 
##          3399          3400          3401          3402          3403 
##  -37888.99867   28610.12908  -67888.99867   -2888.99867  -56389.87092 
##          3404          3405          3406          3407          3408 
##   32111.00133  -71389.87092  -72888.99867   -6389.87092  -37888.99867 
##          3409          3410          3411          3412          3413 
##  -41389.87092  -77888.99867   13610.12908  -67888.99867  -16389.87092 
##          3414          3415          3416          3417          3418 
##  -86389.87092   12111.00133  -66389.87092  -62888.99867   18610.12908 
##          3419          3420          3421          3422          3423 
##  -52888.99867   -6389.87092  -37888.99867  -83389.87092   27111.00133 
##          3424          3425          3426          3427          3428 
##  -76389.87092  -22888.99867  -89389.87092   42111.00133  -56389.87092 
##          3429          3430          3431          3432          3433 
##  -75888.99867   -1389.87092  -67888.99867  -26389.87092  -86389.87092 
##          3434          3435          3436          3437          3438 
##   32111.00133  -66389.87092  -27888.99867   13610.12908  -62888.99867 
##          3439          3440          3441          3442          3443 
##  -26389.87092  -75888.99867  -51389.87092   12111.00133  -51389.87092 
##          3444          3445          3446          3447          3448 
##  -22888.99867  -88389.87092   42111.00133  -71389.87092  -75888.99867 
##          3449          3450          3451          3452          3453 
##   -6389.87092  -67888.99867  -16389.87092  -86389.87092   27111.00133 
##          3454          3455          3456          3457          3458 
##  -56389.87092  -27888.99867   18610.12908  -62888.99867  -26389.87092 
##          3459          3460          3461          3462          3463 
##  -75888.99867  -51389.87092   12111.00133  -51389.87092  -22888.99867 
##          3464          3465          3466          3467          3468 
##  -88389.87092   42111.00133  -71389.87092  -75888.99867   -6389.87092 
##          3469          3470          3471          3472          3473 
##  -67888.99867  -16389.87092  -86389.87092   27111.00133  -56389.87092 
##          3474          3475          3476          3477          3478 
##  -27888.99867   18610.12908  -62888.99867  -26389.87092  -75888.99867 
##          3479          3480          3481          3482          3483 
##  -51389.87092   12111.00133  -51389.87092  -22888.99867  -88389.87092 
##          3484          3485          3486          3487          3488 
##   42111.00133  -71389.87092  -75888.99867   -6389.87092  -67888.99867 
##          3489          3490          3491          3492          3493 
##  -16389.87092  -86389.87092   27111.00133  -56389.87092  -27888.99867 
##          3494          3495          3496          3497          3498 
##   18610.12908  -62888.99867  -26389.87092  -75888.99867  -51389.87092 
##          3499          3500          3501          3502          3503 
##   12111.00133  -51389.87092  -22888.99867  -88389.87092   42111.00133 
##          3504          3505          3506          3507          3508 
##  -71389.87092  -75888.99867   -6389.87092  -76389.87092  -75888.99867 
##          3509          3510          3511          3512          3513 
##   -1389.87092  -42888.99867  -26389.87092  -27888.99867  -69888.99867 
##          3514          3515          3516          3517          3518 
##  -11389.87092  -62888.99867  -32389.87092  -89389.87092  -37888.99867 
##          3519          3520          3521          3522          3523 
##   28610.12908  -67888.99867   -2888.99867  -56389.87092   32111.00133 
##          3524          3525          3526          3527          3528 
##  -71389.87092  -72888.99867   -6389.87092  -37888.99867  -41389.87092 
##          3529          3530          3531          3532          3533 
##  -77888.99867   13610.12908  -67888.99867  -16389.87092  -86389.87092 
##          3534          3535          3536          3537          3538 
##   12111.00133  -66389.87092  -62888.99867   18610.12908  -52888.99867 
##          3539          3540          3541          3542          3543 
##   -6389.87092  -37888.99867  -83389.87092   27111.00133  -76389.87092 
##          3544          3545          3546          3547          3548 
##  -22888.99867  -89389.87092   42111.00133  -56389.87092  -75888.99867 
##          3549          3550          3551          3552          3553 
##   -1389.87092  -67888.99867  -26389.87092  -86389.87092   32111.00133 
##          3554          3555          3556          3557          3558 
##  -66389.87092  -27888.99867   13610.12908  -62888.99867  -26389.87092 
##          3559          3560          3561          3562          3563 
##  -75888.99867  -51389.87092   12111.00133  -51389.87092  -22888.99867 
##          3564          3565          3566          3567          3568 
##  -88389.87092   42111.00133  -71389.87092  -75888.99867   -6389.87092 
##          3569          3570          3571          3572          3573 
##  -67888.99867  -16389.87092  -86389.87092   27111.00133  -56389.87092 
##          3574          3575          3576          3577          3578 
##  -27888.99867   18610.12908  -62888.99867  -26389.87092  -75888.99867 
##          3579          3580          3581          3582          3583 
##  -51389.87092   12111.00133  -51389.87092  -22888.99867  -88389.87092 
##          3584          3585          3586          3587          3588 
##   42111.00133  -71389.87092  -75888.99867   -6389.87092  -67888.99867 
##          3589          3590          3591          3592          3593 
##  -16389.87092  -86389.87092   27111.00133  -56389.87092  -27888.99867 
##          3594          3595          3596          3597          3598 
##   18610.12908  -62888.99867  -26389.87092  -75888.99867  -51389.87092 
##          3599          3600          3601          3602          3603 
##   12111.00133  -51389.87092  -22888.99867  -88389.87092   42111.00133 
##          3604          3605          3606          3607          3608 
##  -71389.87092  -75888.99867   -6389.87092  -67888.99867  -16389.87092 
##          3609          3610          3611          3612          3613 
##  -86389.87092   27111.00133  -56389.87092  -27888.99867   18610.12908 
##          3614          3615          3616          3617          3618 
##  -62888.99867  -26389.87092  -75888.99867  -51389.87092   12111.00133 
##          3619          3620          3621          3622          3623 
##  -51389.87092  -22888.99867  -88389.87092   42111.00133  -71389.87092 
##          3624          3625          3626          3627          3628 
##  -75888.99867   -6389.87092  -61389.87092   -7888.99867   28610.12908 
##          3629          3630          3631          3632          3633 
##  -52888.99867  -91389.87092  -37888.99867  -31389.87092  -67888.99867 
##          3634          3635          3636          3637          3638 
##    8610.12908  -32888.99867  -86389.87092    2111.00133  -56389.87092 
##          3639          3640          3641          3642          3643 
##   58610.12908  -72888.99867   12111.00133  -46389.87092  -77888.99867 
##          3644          3645          3646          3647          3648 
##   38610.12908  -61389.87092  -22888.99867  -51389.87092  -57888.99867 
##          3649          3650          3651          3652          3653 
##   18610.12908  -32888.99867  -86389.87092    2111.00133  -56389.87092 
##          3654          3655          3656          3657          3658 
##   58610.12908  -72888.99867   12111.00133  -46389.87092  -77888.99867 
##          3659          3660          3661          3662          3663 
##   38610.12908  -61389.87092  -22888.99867  -51389.87092  -57888.99867 
##          3664          3665          3666          3667          3668 
##   18610.12908  -32888.99867  -86389.87092    2111.00133  -56389.87092 
##          3669          3670          3671          3672          3673 
##   58610.12908  -72888.99867   12111.00133  -46389.87092  -77888.99867 
##          3674          3675          3676          3677          3678 
##   38610.12908  -61389.87092  -22888.99867  -51389.87092  -57888.99867 
##          3679          3680          3681          3682          3683 
##   18610.12908  -32888.99867  -86389.87092    2111.00133  -56389.87092 
##          3684          3685          3686          3687          3688 
##   58610.12908  -72888.99867   12111.00133  -46389.87092  -77888.99867 
##          3689          3690          3691          3692          3693 
##   38610.12908  -61389.87092  -22888.99867  -51389.87092  -57888.99867 
##          3694          3695          3696          3697          3698 
##   18610.12908  -32888.99867  -86389.87092    2111.00133  -56389.87092 
##          3699          3700          3701          3702          3703 
##   58610.12908  -72888.99867   12111.00133  -46389.87092  -77888.99867 
##          3704          3705          3706          3707          3708 
##   38610.12908  -61389.87092  -22888.99867  -51389.87092  -57888.99867 
##          3709          3710          3711          3712          3713 
##   18610.12908  -32888.99867  -86389.87092    2111.00133  -56389.87092 
##          3714          3715          3716          3717          3718 
##   58610.12908  -72888.99867   12111.00133  -46389.87092  -77888.99867 
##          3719          3720          3721          3722          3723 
##   38610.12908  -61389.87092  -22888.99867  -51389.87092  -57888.99867 
##          3724          3725          3726          3727          3728 
##   18610.12908  -32888.99867  -86389.87092    2111.00133  -56389.87092 
##          3729          3730          3731          3732          3733 
##   58610.12908  -72888.99867   12111.00133  -46389.87092  -77888.99867 
##          3734          3735          3736          3737          3738 
##   38610.12908  -61389.87092  -22888.99867  -51389.87092  -57888.99867 
##          3739          3740          3741          3742          3743 
##   18610.12908  -32888.99867  -86389.87092    2111.00133  -56389.87092 
##          3744          3745          3746          3747          3748 
##   58610.12908  -72888.99867   12111.00133  -46389.87092  -77888.99867 
##          3749          3750          3751          3752          3753 
##   38610.12908  -61389.87092  -61389.87092   -7888.99867   28610.12908 
##          3754          3755          3756          3757          3758 
##  -52888.99867  -91389.87092  -37888.99867  -31389.87092  -67888.99867 
##          3759          3760          3761          3762          3763 
##    8610.12908  -32888.99867  -86389.87092    2111.00133  -56389.87092 
##          3764          3765          3766          3767          3768 
##   58610.12908  -72888.99867   12111.00133  -46389.87092  -77888.99867 
##          3769          3770          3771          3772          3773 
##   38610.12908  -61389.87092  -22888.99867  -51389.87092  -57888.99867 
##          3774          3775          3776          3777          3778 
##   18610.12908  -32888.99867  -86389.87092    2111.00133  -56389.87092 
##          3779          3780          3781          3782          3783 
##   58610.12908  -72888.99867   12111.00133  -46389.87092  -77888.99867 
##          3784          3785          3786          3787          3788 
##   38610.12908  -61389.87092  -22888.99867  -51389.87092  -57888.99867 
##          3789          3790          3791          3792          3793 
##   18610.12908  -32888.99867  -86389.87092    2111.00133  -56389.87092 
##          3794          3795          3796          3797          3798 
##   58610.12908  -72888.99867   12111.00133  -46389.87092  -77888.99867 
##          3799          3800          3801          3802          3803 
##   38610.12908  -61389.87092  -22888.99867  -51389.87092  -57888.99867 
##          3804          3805          3806          3807          3808 
##   18610.12908  -32888.99867  -86389.87092    2111.00133  -56389.87092 
##          3809          3810          3811          3812          3813 
##   58610.12908  -72888.99867   12111.00133  -46389.87092  -77888.99867 
##          3814          3815          3816          3817          3818 
##   38610.12908  -61389.87092  -22888.99867  -51389.87092  -57888.99867 
##          3819          3820          3821          3822          3823 
##   18610.12908  -32888.99867  -86389.87092    2111.00133  -56389.87092 
##          3824          3825          3826          3827          3828 
##   58610.12908  -72888.99867   12111.00133  -46389.87092  -77888.99867 
##          3829          3830          3831          3832          3833 
##   38610.12908  -61389.87092  -22888.99867  -51389.87092  -57888.99867 
##          3834          3835          3836          3837          3838 
##   18610.12908  -32888.99867  -86389.87092    2111.00133  -56389.87092 
##          3839          3840          3841          3842          3843 
##   58610.12908  -72888.99867   12111.00133  -46389.87092  -77888.99867 
##          3844          3845          3846          3847          3848 
##   38610.12908  -61389.87092  -22888.99867  -51389.87092  -57888.99867 
##          3849          3850          3851          3852          3853 
##   18610.12908  -32888.99867  -86389.87092    2111.00133  -56389.87092 
##          3854          3855          3856          3857          3858 
##   58610.12908  -72888.99867   12111.00133  -46389.87092  -77888.99867 
##          3859          3860          3861          3862          3863 
##   38610.12908  -61389.87092  -22888.99867  -51389.87092  -57888.99867 
##          3864          3865          3866          3867          3868 
##   18610.12908  -32888.99867  -86389.87092    2111.00133  -56389.87092 
##          3869          3870          3871          3872          3873 
##   58610.12908  -72888.99867   12111.00133  -46389.87092  -77888.99867 
##          3874          3875          3876          3877          3878 
##   38610.12908  -61389.87092  -66389.87092  -17888.99867   38610.12908 
##          3879          3880          3881          3882          3883 
##  -47888.99867  -96389.87092  -37888.99867  -21389.87092  -62888.99867 
##          3884          3885          3886          3887          3888 
##   18610.12908  -32888.99867  -91389.87092   12111.00133  -56389.87092 
##          3889          3890          3891          3892          3893 
##   68610.12908  -72888.99867   22111.00133  -36389.87092  -82888.99867 
##          3894          3895          3896          3897          3898 
##   28610.12908  -61389.87092   -7888.99867  -46389.87092  -57888.99867 
##          3899          3900          3901          3902          3903 
##   18610.12908  -32888.99867  -91389.87092   12111.00133  -56389.87092 
##          3904          3905          3906          3907          3908 
##   68610.12908  -72888.99867   22111.00133  -36389.87092  -82888.99867 
##          3909          3910          3911          3912          3913 
##   28610.12908  -61389.87092   -7888.99867  -46389.87092  -57888.99867 
##          3914          3915          3916          3917          3918 
##   18610.12908  -32888.99867  -91389.87092   12111.00133  -56389.87092 
##          3919          3920          3921          3922          3923 
##   68610.12908  -72888.99867   22111.00133  -36389.87092  -82888.99867 
##          3924          3925          3926          3927          3928 
##   28610.12908  -61389.87092   -7888.99867  -46389.87092  -57888.99867 
##          3929          3930          3931          3932          3933 
##   18610.12908  -32888.99867  -91389.87092   12111.00133  -56389.87092 
##          3934          3935          3936          3937          3938 
##   68610.12908  -72888.99867   22111.00133  -36389.87092  -82888.99867 
##          3939          3940          3941          3942          3943 
##   28610.12908  -61389.87092   -7888.99867  -46389.87092  -57888.99867 
##          3944          3945          3946          3947          3948 
##   18610.12908  -32888.99867  -91389.87092   12111.00133  -56389.87092 
##          3949          3950          3951          3952          3953 
##   68610.12908  -72888.99867   22111.00133  -36389.87092  -82888.99867 
##          3954          3955          3956          3957          3958 
##   28610.12908  -61389.87092   -7888.99867  -46389.87092  -57888.99867 
##          3959          3960          3961          3962          3963 
##   18610.12908  -32888.99867  -91389.87092   12111.00133  -56389.87092 
##          3964          3965          3966          3967          3968 
##   68610.12908  -72888.99867   22111.00133  -36389.87092  -82888.99867 
##          3969          3970          3971          3972          3973 
##   28610.12908  -61389.87092   -7888.99867  -46389.87092  -57888.99867 
##          3974          3975          3976          3977          3978 
##   18610.12908  -32888.99867  -91389.87092   12111.00133  -56389.87092 
##          3979          3980          3981          3982          3983 
##   68610.12908  -72888.99867   22111.00133  -36389.87092  -82888.99867 
##          3984          3985          3986          3987          3988 
##   28610.12908  -61389.87092   -7888.99867  -46389.87092  -57888.99867 
##          3989          3990          3991          3992          3993 
##   18610.12908  -32888.99867  -91389.87092   12111.00133  -56389.87092 
##          3994          3995          3996          3997          3998 
##   68610.12908  -72888.99867   22111.00133  -36389.87092  -82888.99867 
##          3999          4000          4001          4002          4003 
##   28610.12908  -61389.87092  -41389.87092  -47888.99867    8610.12908 
##          4004          4005          4006          4007          4008 
##  -62888.99867  -96389.87092  -17888.99867   48610.12908  -67888.99867 
##          4009          4010          4011          4012          4013 
##   28610.12908  -12888.99867  -96389.87092    2111.00133  -51389.87092 
##          4014          4015          4016          4017          4018 
##   98610.12908  -72888.99867   32111.00133  -11389.87092  -82888.99867 
##          4019          4020          4021          4022          4023 
##   38610.12908  -41389.87092   12111.00133  -31389.87092  -62888.99867 
##          4024          4025          4026          4027          4028 
##   28610.12908  -12888.99867  -96389.87092    2111.00133  -51389.87092 
##          4029          4030          4031          4032          4033 
##   98610.12908  -72888.99867   32111.00133  -11389.87092  -82888.99867 
##          4034          4035          4036          4037          4038 
##   38610.12908  -41389.87092   12111.00133  -31389.87092  -62888.99867 
##          4039          4040          4041          4042          4043 
##   28610.12908  -12888.99867  -96389.87092    2111.00133  -51389.87092 
##          4044          4045          4046          4047          4048 
##   98610.12908  -72888.99867   32111.00133  -11389.87092  -82888.99867 
##          4049          4050          4051          4052          4053 
##   38610.12908  -41389.87092   12111.00133  -31389.87092  -62888.99867 
##          4054          4055          4056          4057          4058 
##   28610.12908  -12888.99867  -96389.87092    2111.00133  -51389.87092 
##          4059          4060          4061          4062          4063 
##   98610.12908  -72888.99867   32111.00133  -11389.87092  -82888.99867 
##          4064          4065          4066          4067          4068 
##   38610.12908  -41389.87092   12111.00133  -31389.87092  -62888.99867 
##          4069          4070          4071          4072          4073 
##   28610.12908  -12888.99867  -96389.87092    2111.00133  -51389.87092 
##          4074          4075          4076          4077          4078 
##   98610.12908  -72888.99867   32111.00133  -11389.87092  -82888.99867 
##          4079          4080          4081          4082          4083 
##   38610.12908  -41389.87092   12111.00133  -31389.87092  -62888.99867 
##          4084          4085          4086          4087          4088 
##   28610.12908  -12888.99867  -96389.87092    2111.00133  -51389.87092 
##          4089          4090          4091          4092          4093 
##   98610.12908  -72888.99867   32111.00133  -11389.87092  -82888.99867 
##          4094          4095          4096          4097          4098 
##   38610.12908  -41389.87092   12111.00133  -31389.87092  -62888.99867 
##          4099          4100          4101          4102          4103 
##   28610.12908  -12888.99867  -96389.87092    2111.00133  -51389.87092 
##          4104          4105          4106          4107          4108 
##   98610.12908  -72888.99867   32111.00133  -11389.87092  -82888.99867 
##          4109          4110          4111          4112          4113 
##   38610.12908  -41389.87092   12111.00133  -31389.87092  -62888.99867 
##          4114          4115          4116          4117          4118 
##   28610.12908  -12888.99867  -96389.87092    2111.00133  -51389.87092 
##          4119          4120          4121          4122          4123 
##   98610.12908  -72888.99867   32111.00133  -11389.87092  -82888.99867 
##          4124          4125          4126          4127          4128 
##   38610.12908  -41389.87092  -36389.87092  -45888.99867   16610.12908 
##          4129          4130          4131          4132          4133 
##  -60888.99867  -95389.87092  -12888.99867   52610.12908  -66888.99867 
##          4134          4135          4136          4137          4138 
##   40610.12908   -8888.99867  -95389.87092    9111.00133  -46389.87092 
##          4139          4140          4141          4142          4143 
##  103610.12908  -71888.99867   38111.00133   -8389.87092  -81888.99867 
##          4144          4145          4146          4147          4148 
##   46610.12908  -36389.87092   14111.00133  -25389.87092  -58888.99867 
##          4149          4150          4151          4152          4153 
##   40610.12908   -8888.99867  -95389.87092    9111.00133  -46389.87092 
##          4154          4155          4156          4157          4158 
##  103610.12908  -71888.99867   38111.00133   -8389.87092  -81888.99867 
##          4159          4160          4161          4162          4163 
##   46610.12908  -36389.87092   14111.00133  -25389.87092  -58888.99867 
##          4164          4165          4166          4167          4168 
##   40610.12908   -8888.99867  -95389.87092    9111.00133  -46389.87092 
##          4169          4170          4171          4172          4173 
##  103610.12908  -71888.99867   38111.00133   -8389.87092  -81888.99867 
##          4174          4175          4176          4177          4178 
##   46610.12908  -36389.87092   14111.00133  -25389.87092  -58888.99867 
##          4179          4180          4181          4182          4183 
##   40610.12908   -8888.99867  -95389.87092    9111.00133  -46389.87092 
##          4184          4185          4186          4187          4188 
##  103610.12908  -71888.99867   38111.00133   -8389.87092  -81888.99867 
##          4189          4190          4191          4192          4193 
##   46610.12908  -36389.87092   14111.00133  -25389.87092  -58888.99867 
##          4194          4195          4196          4197          4198 
##   40610.12908   -8888.99867  -95389.87092    9111.00133  -46389.87092 
##          4199          4200          4201          4202          4203 
##  103610.12908  -71888.99867   38111.00133   -8389.87092  -81888.99867 
##          4204          4205          4206          4207          4208 
##   46610.12908  -36389.87092   14111.00133  -25389.87092  -58888.99867 
##          4209          4210          4211          4212          4213 
##   40610.12908   -8888.99867  -95389.87092    9111.00133  -46389.87092 
##          4214          4215          4216          4217          4218 
##  103610.12908  -71888.99867   38111.00133   -8389.87092  -81888.99867 
##          4219          4220          4221          4222          4223 
##   46610.12908  -36389.87092   14111.00133  -25389.87092  -58888.99867 
##          4224          4225          4226          4227          4228 
##   40610.12908   -8888.99867  -95389.87092    9111.00133  -46389.87092 
##          4229          4230          4231          4232          4233 
##  103610.12908  -71888.99867   38111.00133   -8389.87092  -81888.99867 
##          4234          4235          4236          4237          4238 
##   46610.12908  -36389.87092   14111.00133  -25389.87092  -58888.99867 
##          4239          4240          4241          4242          4243 
##   40610.12908   -8888.99867  -95389.87092    9111.00133  -46389.87092 
##          4244          4245          4246          4247          4248 
##  103610.12908  -71888.99867   38111.00133   -8389.87092  -81888.99867 
##          4249          4250          4251          4252          4253 
##   46610.12908  -36389.87092  -12888.99867   58610.12908  -66888.99867 
##          4254          4255          4256          4257          4258 
##  -95389.87092  -39888.99867    5610.12908  -60888.99867   33610.12908 
##          4259          4260          4261          4262          4263 
##  -15888.99867  -95389.87092   17111.00133  -50389.87092  118610.12908 
##          4264          4265          4266          4267          4268 
##  -71888.99867   44111.00133   -2389.87092  -81888.99867   68610.12908 
##          4269          4270          4271          4272          4273 
##  -36389.87092   23111.00133  -20389.87092  -58888.99867   60610.12908 
##          4274          4275          4276          4277          4278 
##  -15888.99867  -95389.87092   17111.00133  -50389.87092  118610.12908 
##          4279          4280          4281          4282          4283 
##  -71888.99867   44111.00133   -2389.87092  -81888.99867   68610.12908 
##          4284          4285          4286          4287          4288 
##  -36389.87092   23111.00133  -20389.87092  -58888.99867   60610.12908 
##          4289          4290          4291          4292          4293 
##  -15888.99867  -95389.87092   17111.00133  -50389.87092  118610.12908 
##          4294          4295          4296          4297          4298 
##  -71888.99867   44111.00133   -2389.87092  -81888.99867   68610.12908 
##          4299          4300          4301          4302          4303 
##  -36389.87092   23111.00133  -20389.87092  -58888.99867   60610.12908 
##          4304          4305          4306          4307          4308 
##  -15888.99867  -95389.87092   17111.00133  -50389.87092  118610.12908 
##          4309          4310          4311          4312          4313 
##  -71888.99867   44111.00133   -2389.87092  -81888.99867   68610.12908 
##          4314          4315          4316          4317          4318 
##  -36389.87092   23111.00133  -20389.87092  -58888.99867   60610.12908 
##          4319          4320          4321          4322          4323 
##  -15888.99867  -95389.87092   17111.00133  -50389.87092  118610.12908 
##          4324          4325          4326          4327          4328 
##  -71888.99867   44111.00133   -2389.87092  -81888.99867   68610.12908 
##          4329          4330          4331          4332          4333 
##  -36389.87092   23111.00133  -20389.87092  -58888.99867   60610.12908 
##          4334          4335          4336          4337          4338 
##  -15888.99867  -95389.87092   17111.00133  -50389.87092  118610.12908 
##          4339          4340          4341          4342          4343 
##  -71888.99867   44111.00133   -2389.87092  -81888.99867   68610.12908 
##          4344          4345          4346          4347          4348 
##  -36389.87092   23111.00133  -20389.87092  -58888.99867   60610.12908 
##          4349          4350          4351          4352          4353 
##  -15888.99867  -95389.87092   17111.00133  -50389.87092  118610.12908 
##          4354          4355          4356          4357          4358 
##  -71888.99867   44111.00133   -2389.87092  -81888.99867   68610.12908 
##          4359          4360          4361          4362          4363 
##  -36389.87092   23111.00133  -20389.87092  -58888.99867   60610.12908 
##          4364          4365          4366          4367          4368 
##  -15888.99867  -95389.87092   17111.00133  -50389.87092  118610.12908 
##          4369          4370          4371          4372          4373 
##  -71888.99867   44111.00133   -2389.87092  -81888.99867   68610.12908 
##          4374          4375          4376          4377          4378 
##  -36389.87092   23111.00133  -59389.87092   29111.00133   -9389.87092 
##          4379          4380          4381          4382          4383 
##  -62888.99867  -96389.87092  -16888.99867   57610.12908  -33888.99867 
##          4384          4385          4386          4387          4388 
##  106610.12908  -70888.99867   85111.00133   -2389.87092  -82888.99867 
##          4389          4390          4391          4392          4393 
##   82610.12908  -46888.99867   35610.12908  -15888.99867  -69389.87092 
##          4394          4395          4396          4397          4398 
##  -49888.99867   97610.12908  -30888.99867  -17389.87092  -82888.99867 
##          4399          4400          4401          4402          4403 
##   82610.12908  -70888.99867   75111.00133   -2389.87092  -82888.99867 
##          4404          4405          4406          4407          4408 
##   82610.12908  -46888.99867   35610.12908  -15888.99867  -69389.87092 
##          4409          4410          4411          4412          4413 
##  -49888.99867   97610.12908  -30888.99867  -17389.87092  -82888.99867 
##          4414          4415          4416          4417          4418 
##   82610.12908  -70888.99867   75111.00133   -2389.87092  -82888.99867 
##          4419          4420          4421          4422          4423 
##   82610.12908  -46888.99867   35610.12908  -15888.99867  -69389.87092 
##          4424          4425          4426          4427          4428 
##  -49888.99867   97610.12908  -30888.99867  -17389.87092  -82888.99867 
##          4429          4430          4431          4432          4433 
##   82610.12908  -70888.99867   75111.00133   -2389.87092  -82888.99867 
##          4434          4435          4436          4437          4438 
##   82610.12908  -46888.99867   35610.12908  -15888.99867  -69389.87092 
##          4439          4440          4441          4442          4443 
##  -49888.99867   97610.12908  -30888.99867  -17389.87092  -82888.99867 
##          4444          4445          4446          4447          4448 
##   82610.12908  -70888.99867   75111.00133   -2389.87092  -82888.99867 
##          4449          4450          4451          4452          4453 
##   82610.12908  -46888.99867   35610.12908  -15888.99867  -69389.87092 
##          4454          4455          4456          4457          4458 
##  -49888.99867   97610.12908  -30888.99867  -17389.87092  -82888.99867 
##          4459          4460          4461          4462          4463 
##   82610.12908  -70888.99867   75111.00133   -2389.87092  -82888.99867 
##          4464          4465          4466          4467          4468 
##   82610.12908  -46888.99867   35610.12908  -15888.99867  -69389.87092 
##          4469          4470          4471          4472          4473 
##  -49888.99867   97610.12908  -30888.99867  -17389.87092  -82888.99867 
##          4474          4475          4476          4477          4478 
##   82610.12908  -70888.99867   75111.00133   -2389.87092  -82888.99867 
##          4479          4480          4481          4482          4483 
##   82610.12908  -46888.99867   35610.12908  -15888.99867  -69389.87092 
##          4484          4485          4486          4487          4488 
##  -49888.99867   97610.12908  -30888.99867  -17389.87092  -82888.99867 
##          4489          4490          4491          4492          4493 
##   82610.12908  -70888.99867   75111.00133   -2389.87092  -82888.99867 
##          4494          4495          4496          4497          4498 
##   82610.12908  -46888.99867   35610.12908  -15888.99867  -69389.87092 
##          4499          4500          4501          4502          4503 
##  -49888.99867   97610.12908  -30888.99867  -12888.99867  -76389.87092 
##          4504          4505          4506          4507          4508 
##  -37888.99867  -11389.87092  -72888.99867  -61389.87092  -57888.99867 
##          4509          4510          4511          4512          4513 
##   -1389.87092  -75888.99867  -56389.87092  -72888.99867    8610.12908 
##          4514          4515          4516          4517          4518 
##  -12888.99867  -78389.87092  -57888.99867  -61389.87092  -27888.99867 
##          4519          4520          4521          4522          4523 
##  -73389.87092   17111.00133  -36389.87092  -65888.99867  -51389.87092 
##          4524          4525          4526          4527          4528 
##  -75888.99867  -41389.87092  -65888.99867  -31389.87092  -42888.99867 
##          4529          4530          4531          4532          4533 
##  -81389.87092    2111.00133  -16389.87092  -57888.99867  -26389.87092 
##          4534          4535          4536          4537          4538 
##  -47888.99867  -81389.87092  -52888.99867  -51389.87092  -75888.99867 
##          4539          4540          4541          4542          4543 
##  -31389.87092  -57888.99867  -11389.87092  -75888.99867  -41389.87092 
##          4544          4545          4546          4547          4548 
##  -37888.99867  -76389.87092  -42888.99867  -71389.87092  -62888.99867 
##          4549          4550          4551          4552          4553 
##  -26389.87092  -42888.99867  -83389.87092   17111.00133  -31389.87092 
##          4554          4555          4556          4557          4558 
##  -64888.99867  -61389.87092  -47888.99867  -11389.87092  -72888.99867 
##          4559          4560          4561          4562          4563 
##  -26389.87092  -65888.99867  -21389.87092  -75888.99867  -56389.87092 
##          4564          4565          4566          4567          4568 
##  -65888.99867    8610.12908  -12888.99867  -78389.87092  -57888.99867 
##          4569          4570          4571          4572          4573 
##  -61389.87092  -27888.99867  -73389.87092   17111.00133  -36389.87092 
##          4574          4575          4576          4577          4578 
##  -65888.99867  -51389.87092  -75888.99867  -41389.87092  -65888.99867 
##          4579          4580          4581          4582          4583 
##  -31389.87092  -42888.99867  -81389.87092    2111.00133  -16389.87092 
##          4584          4585          4586          4587          4588 
##  -57888.99867  -26389.87092  -47888.99867  -81389.87092  -52888.99867 
##          4589          4590          4591          4592          4593 
##  -51389.87092  -75888.99867  -31389.87092  -57888.99867  -11389.87092 
##          4594          4595          4596          4597          4598 
##  -75888.99867  -41389.87092  -37888.99867  -76389.87092  -42888.99867 
##          4599          4600          4601          4602          4603 
##  -71389.87092  -62888.99867  -26389.87092  -42888.99867  -83389.87092 
##          4604          4605          4606          4607          4608 
##   17111.00133  -31389.87092  -64888.99867  -61389.87092  -47888.99867 
##          4609          4610          4611          4612          4613 
##  -11389.87092  -72888.99867  -26389.87092  -65888.99867  -21389.87092 
##          4614          4615          4616          4617          4618 
##  -75888.99867  -56389.87092  -65888.99867    8610.12908  -12888.99867 
##          4619          4620          4621          4622          4623 
##  -78389.87092 -107388.99867  -62888.99867   -1389.87092  -52888.99867 
##          4624          4625          4626          4627          4628 
##  -51389.87092   32111.00133  -91389.87092   -7888.99867  -71389.87092 
##          4629          4630          4631          4632          4633 
##  -52888.99867    8610.12908  -62888.99867   -1389.87092  -52888.99867 
##          4634          4635          4636          4637          4638 
##  -51389.87092   32111.00133  -91389.87092   -7888.99867  -71389.87092 
##          4639          4640          4641          4642          4643 
##  -52888.99867    8610.12908  -62888.99867   -1389.87092  -52888.99867 
##          4644          4645          4646          4647          4648 
##  -51389.87092   32111.00133  -91389.87092   -7888.99867  -71389.87092 
##          4649          4650          4651          4652          4653 
##  -52888.99867    8610.12908  -62888.99867   -1389.87092  -52888.99867 
##          4654          4655          4656          4657          4658 
##  -51389.87092   32111.00133  -91389.87092   -7888.99867  -71389.87092 
##          4659          4660          4661          4662          4663 
##  -52888.99867    8610.12908  -62888.99867   -1389.87092  -52888.99867 
##          4664          4665          4666          4667          4668 
##  -51389.87092   32111.00133  -91389.87092   -7888.99867  -71389.87092 
##          4669          4670          4671          4672          4673 
##  -52888.99867    8610.12908  -62888.99867   -1389.87092  -52888.99867 
##          4674          4675          4676          4677          4678 
##  -51389.87092   32111.00133  -91389.87092   -7888.99867  -71389.87092 
##          4679          4680          4681          4682          4683 
##  -52888.99867    8610.12908  -62888.99867   -1389.87092  -52888.99867 
##          4684          4685          4686          4687          4688 
##  -51389.87092   32111.00133  -91389.87092   -7888.99867  -71389.87092 
##          4689          4690          4691          4692          4693 
##  -52888.99867    8610.12908  -62888.99867   -1389.87092  -52888.99867 
##          4694          4695          4696          4697          4698 
##  -51389.87092   32111.00133  -91389.87092   -7888.99867  -71389.87092 
##          4699          4700          4701          4702          4703 
##  -52888.99867    8610.12908  -62888.99867   -1389.87092  -52888.99867 
##          4704          4705          4706          4707          4708 
##  -51389.87092   32111.00133  -91389.87092   -7888.99867  -71389.87092 
##          4709          4710          4711          4712          4713 
##  -52888.99867    8610.12908  -62888.99867   -1389.87092  -52888.99867 
##          4714          4715          4716          4717          4718 
##  -51389.87092   32111.00133  -91389.87092   -7888.99867  -71389.87092 
##          4719          4720          4721          4722          4723 
##  -52888.99867    8610.12908  -62888.99867   -1389.87092  -52888.99867 
##          4724          4725          4726          4727          4728 
##  -51389.87092   32111.00133  -91389.87092   -7888.99867  -71389.87092 
##          4729          4730          4731          4732          4733 
##  -52888.99867    8610.12908  -62888.99867   -1389.87092  -52888.99867 
##          4734          4735          4736          4737          4738 
##  -51389.87092   32111.00133  -91389.87092   -7888.99867  -71389.87092 
##          4739          4740          4741          4742          4743 
##  -52888.99867    8610.12908  -62888.99867  -59888.99867    3610.12908 
##          4744          4745          4746          4747          4748 
##  -50888.99867  -49389.87092   37111.00133  -90389.87092   -2888.99867 
##          4749          4750          4751          4752          4753 
##  -69389.87092  -50888.99867   13610.12908  -59888.99867    3610.12908 
##          4754          4755          4756          4757          4758 
##  -50888.99867  -49389.87092   37111.00133  -90389.87092   -2888.99867 
##          4759          4760          4761          4762          4763 
##  -69389.87092  -50888.99867   13610.12908  -59888.99867    3610.12908 
##          4764          4765          4766          4767          4768 
##  -50888.99867  -49389.87092   37111.00133  -90389.87092   -2888.99867 
##          4769          4770          4771          4772          4773 
##  -69389.87092  -50888.99867   13610.12908  -59888.99867    3610.12908 
##          4774          4775          4776          4777          4778 
##  -50888.99867  -49389.87092   37111.00133  -90389.87092   -2888.99867 
##          4779          4780          4781          4782          4783 
##  -69389.87092  -50888.99867   13610.12908  -59888.99867    3610.12908 
##          4784          4785          4786          4787          4788 
##  -50888.99867  -49389.87092   37111.00133  -90389.87092   -2888.99867 
##          4789          4790          4791          4792          4793 
##  -69389.87092  -50888.99867   13610.12908  -59888.99867    3610.12908 
##          4794          4795          4796          4797          4798 
##  -50888.99867  -49389.87092   37111.00133  -90389.87092   -2888.99867 
##          4799          4800          4801          4802          4803 
##  -69389.87092  -50888.99867   13610.12908  -59888.99867    3610.12908 
##          4804          4805          4806          4807          4808 
##  -50888.99867  -49389.87092   37111.00133  -90389.87092   -2888.99867 
##          4809          4810          4811          4812          4813 
##  -69389.87092  -50888.99867   13610.12908  -59888.99867    3610.12908 
##          4814          4815          4816          4817          4818 
##  -50888.99867  -49389.87092   37111.00133  -90389.87092   -2888.99867 
##          4819          4820          4821          4822          4823 
##  -69389.87092  -50888.99867   13610.12908  -59888.99867    3610.12908 
##          4824          4825          4826          4827          4828 
##  -50888.99867  -49389.87092   37111.00133  -90389.87092   -2888.99867 
##          4829          4830          4831          4832          4833 
##  -69389.87092  -50888.99867   13610.12908  -59888.99867    3610.12908 
##          4834          4835          4836          4837          4838 
##  -50888.99867  -49389.87092   37111.00133  -90389.87092   -2888.99867 
##          4839          4840          4841          4842          4843 
##  -69389.87092  -50888.99867   13610.12908  -59888.99867    3610.12908 
##          4844          4845          4846          4847          4848 
##  -50888.99867  -49389.87092   37111.00133  -90389.87092   -2888.99867 
##          4849          4850          4851          4852          4853 
##  -69389.87092  -50888.99867   13610.12908  -59888.99867    3610.12908 
##          4854          4855          4856          4857          4858 
##  -50888.99867  -49389.87092   37111.00133  -90389.87092   -2888.99867 
##          4859          4860          4861          4862          4863 
##  -69389.87092  -50888.99867   13610.12908  -59888.99867  -36389.87092 
##          4864          4865          4866          4867          4868 
##    2111.00133   48610.12908   18610.12908  -77888.99867  -26389.87092 
##          4869          4870          4871          4872          4873 
##  -27888.99867   33610.12908  -82888.99867   38610.12908  -42888.99867 
##          4874          4875          4876          4877          4878 
##   -1389.87092   -2888.99867  -36389.87092    2111.00133   48610.12908 
##          4879          4880          4881          4882          4883 
##   18610.12908  -77888.99867  -26389.87092  -27888.99867   33610.12908 
##          4884          4885          4886          4887          4888 
##  -82888.99867   38610.12908  -42888.99867   -1389.87092   -2888.99867 
##          4889          4890          4891          4892          4893 
##  -36389.87092    2111.00133   48610.12908   18610.12908  -77888.99867 
##          4894          4895          4896          4897          4898 
##  -26389.87092  -27888.99867   33610.12908  -82888.99867   38610.12908 
##          4899          4900          4901          4902          4903 
##  -42888.99867   -1389.87092   -2888.99867  -36389.87092    2111.00133 
##          4904          4905          4906          4907          4908 
##   48610.12908   18610.12908  -77888.99867  -26389.87092  -27888.99867 
##          4909          4910          4911          4912          4913 
##   33610.12908  -82888.99867   38610.12908  -42888.99867   -1389.87092 
##          4914          4915          4916          4917          4918 
##   -2888.99867  -36389.87092    2111.00133   48610.12908   18610.12908 
##          4919          4920          4921          4922          4923 
##  -77888.99867  -26389.87092  -27888.99867   33610.12908  -82888.99867 
##          4924          4925          4926          4927          4928 
##   38610.12908  -42888.99867   -1389.87092   -2888.99867  -36389.87092 
##          4929          4930          4931          4932          4933 
##    2111.00133   48610.12908   18610.12908  -77888.99867  -26389.87092 
##          4934          4935          4936          4937          4938 
##  -27888.99867   33610.12908  -82888.99867   38610.12908  -42888.99867 
##          4939          4940          4941          4942          4943 
##   -1389.87092   -2888.99867  -36389.87092    2111.00133   48610.12908 
##          4944          4945          4946          4947          4948 
##   18610.12908  -77888.99867  -26389.87092  -27888.99867   33610.12908 
##          4949          4950          4951          4952          4953 
##  -82888.99867   38610.12908  -42888.99867   -1389.87092   -2888.99867 
##          4954          4955          4956          4957          4958 
##  -36389.87092    2111.00133   48610.12908   18610.12908  -77888.99867 
##          4959          4960          4961          4962          4963 
##  -26389.87092  -27888.99867   33610.12908  -82888.99867   38610.12908 
##          4964          4965          4966          4967          4968 
##  -42888.99867   -1389.87092   -2888.99867  -36389.87092    2111.00133 
##          4969          4970          4971          4972          4973 
##   48610.12908   18610.12908  -77888.99867  -26389.87092  -27888.99867 
##          4974          4975          4976          4977          4978 
##   33610.12908  -82888.99867   38610.12908  -42888.99867   -1389.87092 
##          4979          4980          4981          4982          4983 
##   -2888.99867  -36389.87092    2111.00133   48610.12908   18610.12908 
##          4984          4985          4986          4987          4988 
##  -77888.99867  -26389.87092  -27888.99867  -82888.99867  128610.12908 
##          4989          4990          4991          4992          4993 
##   12111.00133  -41389.87092  -21389.87092   62111.00133  -71389.87092 
##          4994          4995          4996          4997          4998 
##   32111.00133   -1389.87092  -52888.99867  -36389.87092  -27888.99867 
##          4999          5000          5001          5002          5003 
##   48610.12908   18610.12908  -77888.99867  -26389.87092  -27888.99867 
##          5004          5005          5006          5007          5008 
##   33610.12908  -82888.99867   38610.12908  -42888.99867   -1389.87092 
##          5009          5010          5011          5012          5013 
##   -2888.99867  -36389.87092    2111.00133   48610.12908   18610.12908 
##          5014          5015          5016          5017          5018 
##  -77888.99867  -26389.87092  -27888.99867   33610.12908  -82888.99867 
##          5019          5020          5021          5022          5023 
##   38610.12908  -42888.99867   -1389.87092   -2888.99867  -36389.87092 
##          5024          5025          5026          5027          5028 
##    2111.00133   48610.12908   18610.12908  -77888.99867  -26389.87092 
##          5029          5030          5031          5032          5033 
##  -27888.99867   33610.12908  -82888.99867   38610.12908  -42888.99867 
##          5034          5035          5036          5037          5038 
##   -1389.87092   -2888.99867  -36389.87092    2111.00133   48610.12908 
##          5039          5040          5041          5042          5043 
##   18610.12908  -77888.99867  -26389.87092  -27888.99867   33610.12908 
##          5044          5045          5046          5047          5048 
##  -82888.99867   38610.12908  -42888.99867   -1389.87092   -2888.99867 
##          5049          5050          5051          5052          5053 
##  -36389.87092    2111.00133   48610.12908   18610.12908  -77888.99867 
##          5054          5055          5056          5057          5058 
##  -26389.87092  -27888.99867   33610.12908  -82888.99867   38610.12908 
##          5059          5060          5061          5062          5063 
##  -42888.99867   -1389.87092   -2888.99867  -36389.87092    2111.00133 
##          5064          5065          5066          5067          5068 
##   48610.12908   18610.12908  -77888.99867  -26389.87092  -27888.99867 
##          5069          5070          5071          5072          5073 
##   33610.12908  -82888.99867   38610.12908  -42888.99867   -1389.87092 
##          5074          5075          5076          5077          5078 
##   -2888.99867  -36389.87092    2111.00133   48610.12908   18610.12908 
##          5079          5080          5081          5082          5083 
##  -77888.99867  -26389.87092  -27888.99867   33610.12908  -82888.99867 
##          5084          5085          5086          5087          5088 
##   38610.12908  -42888.99867   -1389.87092   -2888.99867  -36389.87092 
##          5089          5090          5091          5092          5093 
##    2111.00133   48610.12908   18610.12908  -77888.99867  -26389.87092 
##          5094          5095          5096          5097          5098 
##  -27888.99867   33610.12908  -82888.99867   38610.12908  -42888.99867 
##          5099          5100          5101          5102          5103 
##   -1389.87092   -2888.99867  -36389.87092    2111.00133   48610.12908 
##          5104          5105          5106          5107          5108 
##   18610.12908  -77888.99867  -26389.87092  -27888.99867   33610.12908 
##          5109          5110          5111          5112          5113 
##  -82888.99867   38610.12908  -61389.87092   42111.00133  -41389.87092 
##          5114          5115          5116          5117          5118 
##   12111.00133    8610.12908  -57888.99867   58610.12908  -47888.99867 
##          5119          5120          5121          5122          5123 
##  -11389.87092  -82888.99867  -21389.87092  -52888.99867   18610.12908 
##          5124          5125          5126          5127          5128 
##  -82888.99867   28610.12908   62111.00133  -66389.87092  -42888.99867 
##          5129          5130          5131          5132          5133 
##  -61389.87092   42111.00133  -71389.87092   12111.00133  -66389.87092 
##          5134          5135          5136          5137          5138 
##  -42888.99867  -61389.87092   42111.00133  -71389.87092   12111.00133 
##          5139          5140          5141          5142          5143 
##  -61389.87092   42111.00133  -41389.87092   12111.00133    8610.12908 
##          5144          5145          5146          5147          5148 
##  -57888.99867   58610.12908  -47888.99867  -11389.87092  -82888.99867 
##          5149          5150          5151          5152          5153 
##  -21389.87092  -52888.99867   18610.12908  -82888.99867   28610.12908 
##          5154          5155          5156          5157          5158 
##   62111.00133  -66389.87092  -42888.99867  -61389.87092   42111.00133 
##          5159          5160          5161          5162          5163 
##  -71389.87092   12111.00133  -66389.87092  -42888.99867  -61389.87092 
##          5164          5165          5166          5167          5168 
##   42111.00133  -71389.87092   12111.00133  -61389.87092   42111.00133 
##          5169          5170          5171          5172          5173 
##  -41389.87092   12111.00133    8610.12908  -57888.99867   58610.12908 
##          5174          5175          5176          5177          5178 
##  -47888.99867  -11389.87092  -82888.99867  -21389.87092  -52888.99867 
##          5179          5180          5181          5182          5183 
##   18610.12908  -82888.99867   28610.12908   62111.00133  -66389.87092 
##          5184          5185          5186          5187          5188 
##  -42888.99867  -61389.87092   42111.00133  -71389.87092   12111.00133 
##          5189          5190          5191          5192          5193 
##  -66389.87092  -42888.99867  -61389.87092   42111.00133  -71389.87092 
##          5194          5195          5196          5197          5198 
##   12111.00133  -61389.87092   42111.00133  -41389.87092   12111.00133 
##          5199          5200          5201          5202          5203 
##    8610.12908  -57888.99867   58610.12908  -47888.99867  -11389.87092 
##          5204          5205          5206          5207          5208 
##  -82888.99867  -21389.87092  -52888.99867   18610.12908  -82888.99867 
##          5209          5210          5211          5212          5213 
##   28610.12908   62111.00133  -66389.87092  -42888.99867  -61389.87092 
##          5214          5215          5216          5217          5218 
##   42111.00133  -71389.87092   12111.00133  -66389.87092  -42888.99867 
##          5219          5220          5221          5222          5223 
##  -61389.87092   42111.00133  -71389.87092   12111.00133  -61389.87092 
##          5224          5225          5226          5227          5228 
##   42111.00133  -41389.87092   12111.00133    8610.12908  -57888.99867 
##          5229          5230          5231          5232          5233 
##   58610.12908  -47888.99867  -11389.87092  -82888.99867  -21389.87092 
##          5235          5236          5237          5238          5239 
##  -36389.87092   52111.00133  -66389.87092   -7888.99867   -1389.87092 
##          5240          5241          5242          5243          5244 
##  -57888.99867   63610.12908  -42888.99867    8610.12908  -82888.99867 
##          5245          5246          5247          5248          5249 
##  -21389.87092  -52888.99867   28610.12908  -82888.99867   38610.12908 
##          5250          5251          5252          5253          5254 
##   62111.00133  -66389.87092  -42888.99867  -61389.87092   52111.00133 
##          5255          5256          5257          5258          5259 
##  -71389.87092   12111.00133  -66389.87092  -42888.99867  -61389.87092 
##          5260          5261          5262          5263          5264 
##   52111.00133  -71389.87092   12111.00133  -36389.87092   52111.00133 
##          5265          5266          5267          5268          5269 
##  -66389.87092   -7888.99867   -1389.87092  -57888.99867   63610.12908 
##          5270          5271          5272          5273          5274 
##  -42888.99867    8610.12908  -82888.99867  -21389.87092  -52888.99867 
##          5275          5276          5277          5278          5279 
##   28610.12908  -82888.99867   38610.12908   62111.00133  -66389.87092 
##          5280          5281          5282          5283          5284 
##  -42888.99867  -61389.87092   52111.00133  -71389.87092   12111.00133 
##          5285          5286          5287          5288          5289 
##  -66389.87092  -42888.99867  -61389.87092   52111.00133  -71389.87092 
##          5290          5291          5292          5293          5294 
##   12111.00133  -36389.87092   52111.00133  -66389.87092   -7888.99867 
##          5295          5296          5297          5298          5299 
##   -1389.87092  -57888.99867   63610.12908  -42888.99867    8610.12908 
##          5300          5301          5302          5303          5304 
##  -82888.99867  -21389.87092  -52888.99867   28610.12908  -82888.99867 
##          5305          5306          5307          5308          5309 
##   38610.12908   62111.00133  -66389.87092  -42888.99867  -61389.87092 
##          5310          5311          5312          5313          5314 
##   52111.00133  -71389.87092   12111.00133  -66389.87092  -42888.99867 
##          5315          5316          5317          5318          5319 
##  -61389.87092   52111.00133  -71389.87092   12111.00133  -36389.87092 
##          5320          5321          5322          5323          5324 
##   52111.00133  -66389.87092   -7888.99867   -1389.87092  -57888.99867 
##          5325          5326          5327          5328          5329 
##   63610.12908  -42888.99867    8610.12908  -82888.99867  -21389.87092 
##          5330          5331          5332          5333          5334 
##  -52888.99867   28610.12908  -82888.99867   38610.12908   62111.00133 
##          5335          5336          5337          5338          5339 
##  -66389.87092  -42888.99867  -61389.87092   52111.00133  -71389.87092 
##          5340          5341          5342          5343          5344 
##   12111.00133  -66389.87092  -42888.99867  -61389.87092   52111.00133 
##          5345          5346          5347          5348          5349 
##  -71389.87092   12111.00133  -36389.87092   52111.00133  -66389.87092 
##          5350          5351          5352          5353          5354 
##   -7888.99867   -1389.87092  -57888.99867   63610.12908  -42888.99867 
##          5355          5356          5357          5358          5359 
##    8610.12908  -82888.99867  -21389.87092  -52888.99867   28610.12908 
##          5360          5361          5362          5363          5364 
##  -36389.87092   52111.00133  -66389.87092   -7888.99867   -1389.87092 
##          5365          5366          5367          5368          5369 
##  -57888.99867   63610.12908  -42888.99867    8610.12908  -82888.99867 
##          5370          5371          5372          5373          5374 
##  -21389.87092  -52888.99867   28610.12908  -82888.99867   38610.12908 
##          5375          5376          5377          5378          5379 
##   62111.00133  -66389.87092  -42888.99867  -61389.87092   52111.00133 
##          5380          5381          5382          5383          5384 
##  -71389.87092   12111.00133  -66389.87092  -42888.99867  -61389.87092 
##          5385          5386          5387          5388          5389 
##   52111.00133  -71389.87092   12111.00133  -36389.87092   52111.00133 
##          5390          5391          5392          5393          5394 
##  -66389.87092   -7888.99867   -1389.87092  -57888.99867   63610.12908 
##          5395          5396          5397          5398          5399 
##  -42888.99867    8610.12908  -82888.99867  -21389.87092  -52888.99867 
##          5400          5401          5402          5403          5404 
##   28610.12908  -82888.99867   38610.12908   62111.00133  -66389.87092 
##          5405          5406          5407          5408          5409 
##  -42888.99867  -61389.87092   52111.00133  -71389.87092   12111.00133 
##          5410          5411          5412          5413          5414 
##  -66389.87092  -42888.99867  -61389.87092   52111.00133  -71389.87092 
##          5415          5416          5417          5418          5419 
##   12111.00133  -36389.87092   52111.00133  -66389.87092   -7888.99867 
##          5420          5421          5422          5423          5424 
##   -1389.87092  -57888.99867   63610.12908  -42888.99867    8610.12908 
##          5425          5426          5427          5428          5429 
##  -82888.99867  -21389.87092  -52888.99867   28610.12908  -82888.99867 
##          5430          5431          5432          5433          5434 
##   38610.12908   62111.00133  -66389.87092  -42888.99867  -61389.87092 
##          5435          5436          5437          5438          5439 
##   52111.00133  -71389.87092   12111.00133  -66389.87092  -42888.99867 
##          5440          5441          5442          5443          5444 
##  -61389.87092   52111.00133  -71389.87092   12111.00133  -36389.87092 
##          5445          5446          5447          5448          5449 
##   52111.00133  -66389.87092   -7888.99867   -1389.87092  -57888.99867 
##          5450          5451          5452          5453          5454 
##   63610.12908  -42888.99867    8610.12908  -82888.99867  -21389.87092 
##          5455          5456          5457          5458          5459 
##  -52888.99867   28610.12908  -82888.99867   38610.12908   62111.00133 
##          5460          5461          5462          5463          5464 
##  -66389.87092  -42888.99867  -61389.87092   52111.00133  -71389.87092 
##          5465          5466          5467          5468          5469 
##   12111.00133  -66389.87092  -42888.99867  -61389.87092   52111.00133 
##          5470          5471          5472          5473          5474 
##  -71389.87092   12111.00133  -36389.87092   52111.00133  -66389.87092 
##          5475          5476          5477          5478          5479 
##   -7888.99867   -1389.87092  -57888.99867   63610.12908  -42888.99867 
##          5480          5481          5482          5483          5484 
##    8610.12908  -82888.99867  -21389.87092   -7888.99867   -1389.87092 
##          5485          5486          5487          5488          5489 
##  -57888.99867    8610.12908  -72888.99867   38610.12908  -57888.99867 
##          5490          5491          5492          5493          5494 
##  -21389.87092  -27888.99867  -61389.87092  -17888.99867   48610.12908 
##          5495          5496          5497          5498          5499 
##  -47888.99867   -1389.87092  -82888.99867   58610.12908   92111.00133 
##          5500          5501          5502          5503          5504 
##  -71389.87092   32111.00133  -51389.87092   22111.00133  -41389.87092 
##          5505          5506          5507          5508          5509 
##   52111.00133  -66389.87092  -22888.99867   48610.12908  -47888.99867 
##          5510          5511          5512          5513          5514 
##   -1389.87092  -82888.99867   58610.12908   92111.00133  -71389.87092 
##          5515          5516          5517          5518          5519 
##   32111.00133  -51389.87092   22111.00133  -41389.87092   52111.00133 
##          5520          5521          5522          5523          5524 
##  -66389.87092  -22888.99867   48610.12908  -47888.99867   -1389.87092 
##          5525          5526          5527          5528          5529 
##  -82888.99867   58610.12908   92111.00133  -71389.87092   32111.00133 
##          5530          5531          5532          5533          5534 
##  -51389.87092   22111.00133  -41389.87092   52111.00133  -66389.87092 
##          5535          5536          5537          5538          5539 
##  -22888.99867   48610.12908  -47888.99867   -1389.87092  -82888.99867 
##          5540          5541          5542          5543          5544 
##   58610.12908   92111.00133  -71389.87092   32111.00133  -51389.87092 
##          5545          5546          5547          5548          5549 
##   22111.00133  -41389.87092   52111.00133  -66389.87092  -22888.99867 
##          5550          5551          5552          5553          5554 
##   48610.12908  -47888.99867   -1389.87092  -82888.99867   58610.12908 
##          5555          5556          5557          5558          5559 
##   92111.00133  -71389.87092   32111.00133  -51389.87092   22111.00133 
##          5560          5561          5562          5563          5564 
##  -41389.87092   52111.00133  -66389.87092  -22888.99867   48610.12908 
##          5565          5566          5567          5568          5569 
##  -47888.99867   -1389.87092  -82888.99867   58610.12908   92111.00133 
##          5570          5571          5572          5573          5574 
##  -71389.87092   32111.00133  -51389.87092   22111.00133  -41389.87092 
##          5575          5576          5577          5578          5579 
##   52111.00133  -66389.87092  -22888.99867   48610.12908  -47888.99867 
##          5580          5581          5582          5583          5584 
##   -1389.87092  -82888.99867   58610.12908   92111.00133  -71389.87092 
##          5585          5586          5587          5588          5589 
##   32111.00133  -51389.87092   22111.00133  -41389.87092   52111.00133 
##          5590          5591          5592          5593          5594 
##  -66389.87092  -22888.99867   48610.12908  -47888.99867   -1389.87092 
##          5595          5596          5597          5598          5599 
##  -82888.99867   58610.12908   92111.00133  -71389.87092   32111.00133 
##          5600          5601          5602          5603          5604 
##  -51389.87092   22111.00133  -41389.87092   52111.00133  -66389.87092 
##          5605          5606          5607          5608          5609 
##  -22888.99867   48610.12908  -47888.99867   -1389.87092  -82888.99867 
##          5610          5611          5612          5613          5614 
##   58610.12908  -47888.99867   -1389.87092  -62888.99867  -41389.87092 
##          5615          5616          5617          5618          5619 
##   42111.00133  -56389.87092   -7888.99867  -31389.87092  -67888.99867 
##          5620          5621          5622          5623          5624 
##  -11389.87092   62111.00133  -46389.87092   12111.00133  -51389.87092 
##          5625          5626          5627          5628          5629 
##  -77888.99867   58610.12908   92111.00133  -71389.87092   32111.00133 
##          5630          5631          5632          5633          5634 
##  -56389.87092    2111.00133  -93389.87092   68610.12908  102111.00133 
##          5635          5636          5637          5638          5639 
##  -66389.87092   32111.00133  -51389.87092   22111.00133  -41389.87092 
##          5640          5641          5642          5643          5644 
##   62111.00133  -61389.87092  -17888.99867   38610.12908  -47888.99867 
##          5645          5646          5647          5648          5649 
##   -1389.87092  -82888.99867   68610.12908   92111.00133  -66389.87092 
##          5650          5651          5652          5653          5654 
##   32111.00133  -51389.87092   22111.00133  -41389.87092   62111.00133 
##          5655          5656          5657          5658          5659 
##  -61389.87092  -17888.99867   38610.12908  -47888.99867   -1389.87092 
##          5660          5661          5662          5663          5664 
##  -82888.99867   68610.12908   92111.00133  -66389.87092   32111.00133 
##          5665          5666          5667          5668          5669 
##  -51389.87092   22111.00133  -41389.87092   62111.00133  -61389.87092 
##          5670          5671          5672          5673          5674 
##  -17888.99867   38610.12908  -47888.99867   -1389.87092  -82888.99867 
##          5675          5676          5677          5678          5679 
##   68610.12908   92111.00133  -66389.87092   32111.00133  -51389.87092 
##          5680          5681          5682          5683          5684 
##   22111.00133  -41389.87092   62111.00133  -61389.87092  -17888.99867 
##          5685          5686          5687          5688          5689 
##   38610.12908  -47888.99867   -1389.87092  -82888.99867   68610.12908 
##          5690          5691          5692          5693          5694 
##   92111.00133  -66389.87092   32111.00133  -51389.87092   22111.00133 
##          5695          5696          5697          5698          5699 
##  -41389.87092   62111.00133  -61389.87092  -17888.99867   38610.12908 
##          5700          5701          5702          5703          5704 
##  -47888.99867   -1389.87092  -82888.99867   68610.12908   92111.00133 
##          5705          5706          5707          5708          5709 
##  -66389.87092   32111.00133  -51389.87092   22111.00133  -41389.87092 
##          5710          5711          5712          5713          5714 
##   62111.00133  -61389.87092  -17888.99867   38610.12908  -47888.99867 
##          5715          5716          5717          5718          5719 
##   -1389.87092  -82888.99867   68610.12908   92111.00133  -66389.87092 
##          5720          5721          5722          5723          5724 
##   32111.00133  -51389.87092   22111.00133  -41389.87092   62111.00133 
##          5725          5726          5727          5728          5729 
##  -61389.87092  -17888.99867   38610.12908  -47888.99867   -1389.87092 
##          5730          5731          5732          5733          5734 
##  -82888.99867   68610.12908   92111.00133  -66389.87092   32111.00133 
##          5735          5736          5737          5738          5739 
##  -51389.87092   22111.00133  -41389.87092  -46389.87092   12111.00133 
##          5740          5741          5742          5743          5744 
##  -56389.87092   -7888.99867   28610.12908  -47888.99867   -1389.87092 
##          5745          5746          5747          5748          5749 
##  -62888.99867  -41389.87092   42111.00133  -56389.87092   -7888.99867 
##          5750          5751          5752          5753          5754 
##  -31389.87092  -67888.99867  -11389.87092   62111.00133  -46389.87092 
##          5755          5756          5757          5758          5759 
##   12111.00133  -51389.87092  -77888.99867   58610.12908   92111.00133 
##          5760          5761          5762          5763          5764 
##  -71389.87092   32111.00133  -56389.87092    2111.00133  -93389.87092 
##          5765          5766          5767          5768          5769 
##   68610.12908  102111.00133  -66389.87092   32111.00133  -51389.87092 
##          5770          5771          5772          5773          5774 
##   22111.00133  -41389.87092   62111.00133  -61389.87092  -17888.99867 
##          5775          5776          5777          5778          5779 
##   38610.12908  -47888.99867   -1389.87092  -82888.99867   68610.12908 
##          5780          5781          5782          5783          5784 
##   92111.00133  -66389.87092   32111.00133  -51389.87092   22111.00133 
##          5785          5786          5787          5788          5789 
##  -41389.87092   62111.00133  -61389.87092  -17888.99867   38610.12908 
##          5790          5791          5792          5793          5794 
##  -47888.99867   -1389.87092  -82888.99867   68610.12908   92111.00133 
##          5795          5796          5797          5798          5799 
##  -66389.87092   32111.00133  -51389.87092   22111.00133  -41389.87092 
##          5800          5801          5802          5803          5804 
##   62111.00133  -61389.87092  -17888.99867   38610.12908  -47888.99867 
##          5805          5806          5807          5808          5809 
##   -1389.87092  -82888.99867   68610.12908   92111.00133  -66389.87092 
##          5810          5811          5812          5813          5814 
##   32111.00133  -51389.87092   22111.00133  -41389.87092   62111.00133 
##          5815          5816          5817          5818          5819 
##  -61389.87092  -17888.99867   38610.12908  -47888.99867   -1389.87092 
##          5820          5821          5822          5823          5824 
##  -82888.99867   68610.12908   92111.00133  -66389.87092   32111.00133 
##          5825          5826          5827          5828          5829 
##  -51389.87092   22111.00133  -41389.87092   62111.00133  -61389.87092 
##          5830          5831          5832          5833          5834 
##  -17888.99867   38610.12908  -47888.99867   -1389.87092  -82888.99867 
##          5835          5836          5837          5838          5839 
##   68610.12908   92111.00133  -66389.87092   32111.00133  -51389.87092 
##          5840          5841          5842          5843          5844 
##   22111.00133  -41389.87092   62111.00133  -61389.87092  -17888.99867 
##          5845          5846          5847          5848          5849 
##   38610.12908  -47888.99867   -1389.87092  -82888.99867   68610.12908 
##          5850          5851          5852          5853          5854 
##   92111.00133  -66389.87092   32111.00133  -51389.87092   22111.00133 
##          5855          5856          5857          5858          5859 
##  -41389.87092   62111.00133  -61389.87092  -17888.99867   38610.12908 
##          5860          5861          5862          5863          5864 
##  -47888.99867   -1389.87092  -82888.99867   68610.12908   92111.00133 
##          5865          5866          5867          5868          5869 
##   -1389.87092  -47888.99867   -1389.87092  -42888.99867  -21389.87092 
##          5870          5871          5872          5873          5874 
##   42111.00133  -56389.87092   12111.00133  -76389.87092  -27888.99867 
##          5875          5876          5877          5878          5879 
##   28610.12908  -56389.87092   -7888.99867  -31389.87092  -67888.99867 
##          5880          5881          5882          5883          5884 
##  -11389.87092   62111.00133  -46389.87092   12111.00133  -51389.87092 
##          5885          5886          5887          5888          5889 
##  -77888.99867   58610.12908   92111.00133  -71389.87092   32111.00133 
##          5890          5891          5892          5893          5894 
##  -56389.87092    2111.00133  -93389.87092   68610.12908  102111.00133 
##          5895          5896          5897          5898          5899 
##  -66389.87092   32111.00133  -51389.87092   22111.00133  -41389.87092 
##          5900          5901          5902          5903          5904 
##   62111.00133  -61389.87092  -17888.99867   38610.12908  -47888.99867 
##          5905          5906          5907          5908          5909 
##   -1389.87092  -82888.99867   68610.12908   92111.00133  -66389.87092 
##          5910          5911          5912          5913          5914 
##   32111.00133  -51389.87092   22111.00133  -41389.87092   62111.00133 
##          5915          5916          5917          5918          5919 
##  -61389.87092  -17888.99867   38610.12908  -47888.99867   -1389.87092 
##          5920          5921          5922          5923          5924 
##  -82888.99867   68610.12908   92111.00133  -66389.87092   32111.00133 
##          5925          5926          5927          5928          5929 
##  -51389.87092   22111.00133  -41389.87092   62111.00133  -61389.87092 
##          5930          5931          5932          5933          5934 
##  -17888.99867   38610.12908  -47888.99867   -1389.87092  -82888.99867 
##          5935          5936          5937          5938          5939 
##   68610.12908   92111.00133  -66389.87092   32111.00133  -51389.87092 
##          5940          5941          5942          5943          5944 
##   22111.00133  -41389.87092   62111.00133  -61389.87092  -17888.99867 
##          5945          5946          5947          5948          5949 
##   38610.12908  -47888.99867   -1389.87092  -82888.99867   68610.12908 
##          5950          5951          5952          5953          5954 
##   92111.00133  -66389.87092   32111.00133  -51389.87092   22111.00133 
##          5955          5956          5957          5958          5959 
##  -41389.87092   62111.00133  -61389.87092  -17888.99867   38610.12908 
##          5960          5961          5962          5963          5964 
##  -47888.99867   -1389.87092  -82888.99867   68610.12908   92111.00133 
##          5965          5966          5967          5968          5969 
##  -66389.87092   32111.00133  -51389.87092   22111.00133  -41389.87092 
##          5970          5971          5972          5973          5974 
##   62111.00133  -61389.87092  -17888.99867   38610.12908  -47888.99867 
##          5975          5976          5977          5978          5979 
##   -1389.87092  -82888.99867   68610.12908   92111.00133  -66389.87092 
##          5980          5981          5982          5983          5984 
##   32111.00133  -51389.87092   22111.00133  -41389.87092   62111.00133 
##          5985          5986          5987          5988          5989 
##  -61389.87092  -17888.99867   38610.12908  -47888.99867   -1389.87092 
##          5990          5991          5992          5993          5994 
##  -82888.99867   68610.12908   92111.00133  -42888.99867    3610.12908 
##          5995          5996          5997          5998          5999 
##  -37888.99867  -11389.87092   52111.00133  -46389.87092   12111.00133 
##          6000          6001          6002          6003          6004 
##  -71389.87092  -22888.99867   33610.12908  -51389.87092    7111.00133 
##          6005          6006          6007          6008          6009 
##  -26389.87092  -67888.99867   -6389.87092   67111.00133  -51389.87092 
##          6010          6011          6012          6013          6014 
##   27111.00133  -46389.87092  -77888.99867   63610.12908  102111.00133 
##          6015          6016          6017          6018          6019 
##  -76389.87092   37111.00133  -51389.87092   12111.00133  -93389.87092 
##          6020          6021          6022          6023          6024 
##   73610.12908  107111.00133  -66389.87092   37111.00133  -46389.87092 
##          6025          6026          6027          6028          6029 
##   27111.00133  -41389.87092   77111.00133  -61389.87092  -12888.99867 
##          6030          6031          6032          6033          6034 
##   48610.12908  -42888.99867   -1389.87092  -82888.99867   73610.12908 
##          6035          6036          6037          6038          6039 
##  107111.00133  -66389.87092   37111.00133  -46389.87092   27111.00133 
##          6040          6041          6042          6043          6044 
##  -41389.87092   77111.00133  -61389.87092  -12888.99867   48610.12908 
##          6045          6046          6047          6048          6049 
##  -42888.99867   -1389.87092  -82888.99867   73610.12908  107111.00133 
##          6050          6051          6052          6053          6054 
##  -66389.87092   37111.00133  -46389.87092   27111.00133  -41389.87092 
##          6055          6056          6057          6058          6059 
##   77111.00133  -61389.87092  -12888.99867   48610.12908  -42888.99867 
##          6060          6061          6062          6063          6064 
##   -1389.87092  -82888.99867   73610.12908  107111.00133  -66389.87092 
##          6065          6066          6067          6068          6069 
##   37111.00133  -46389.87092   27111.00133  -41389.87092   77111.00133 
##          6070          6071          6072          6073          6074 
##  -61389.87092  -12888.99867   48610.12908  -42888.99867   -1389.87092 
##          6075          6076          6077          6078          6079 
##  -82888.99867   73610.12908  107111.00133  -66389.87092   37111.00133 
##          6080          6081          6082          6083          6084 
##  -46389.87092   27111.00133  -41389.87092   77111.00133  -61389.87092 
##          6085          6086          6087          6088          6089 
##  -12888.99867   48610.12908  -42888.99867   -1389.87092  -82888.99867 
##          6090          6091          6092          6093          6094 
##   73610.12908  107111.00133  -66389.87092   37111.00133  -46389.87092 
##          6095          6096          6097          6098          6099 
##   27111.00133  -41389.87092   77111.00133  -61389.87092  -12888.99867 
##          6100          6101          6102          6103          6104 
##   48610.12908  -42888.99867   -1389.87092  -82888.99867   73610.12908 
##          6105          6106          6107          6108          6109 
##  107111.00133  -66389.87092   37111.00133  -46389.87092   27111.00133 
##          6110          6111          6112          6113          6114 
##  -41389.87092   77111.00133  -61389.87092  -12888.99867   48610.12908 
##          6115          6116          6117          6118          6119 
##  -42888.99867   -1389.87092  -82888.99867   73610.12908  107111.00133 
##          6120          6121          6122          6123          6124 
##  -32888.99867   63610.12908   12111.00133  -61389.87092   37111.00133 
##          6125          6126          6127          6128          6129 
##  -46389.87092   27111.00133  -51389.87092   67111.00133  -93389.87092 
##          6130          6131          6132          6133          6134 
##   73610.12908  107111.00133  -66389.87092   37111.00133  -46389.87092 
##          6135          6136          6137          6138          6139 
##   27111.00133  -41389.87092   77111.00133  -61389.87092  -12888.99867 
##          6140          6141          6142          6143          6144 
##   48610.12908  -42888.99867   -1389.87092  -82888.99867   73610.12908 
##          6145          6146          6147          6148          6149 
##  107111.00133  -66389.87092   37111.00133  -46389.87092   27111.00133 
##          6150          6151          6152          6153          6154 
##  -41389.87092   77111.00133  -61389.87092  -12888.99867   48610.12908 
##          6155          6156          6157          6158          6159 
##  -42888.99867   -1389.87092  -82888.99867   73610.12908  107111.00133 
##          6160          6161          6162          6163          6164 
##  -66389.87092   37111.00133  -46389.87092   27111.00133  -41389.87092 
##          6165          6166          6167          6168          6169 
##   77111.00133  -61389.87092  -12888.99867   48610.12908  -42888.99867 
##          6170          6171          6172          6173          6174 
##   -1389.87092  -82888.99867   73610.12908  107111.00133  -66389.87092 
##          6175          6176          6177          6178          6179 
##   37111.00133  -46389.87092   27111.00133  -41389.87092   77111.00133 
##          6180          6181          6182          6183          6184 
##  -61389.87092  -12888.99867   48610.12908  -42888.99867   -1389.87092 
##          6185          6186          6187          6188          6189 
##  -82888.99867   73610.12908  107111.00133  -66389.87092   37111.00133 
##          6190          6191          6192          6193          6194 
##  -46389.87092   27111.00133  -41389.87092   77111.00133  -61389.87092 
##          6195          6196          6197          6198          6199 
##  -12888.99867   48610.12908  -42888.99867   -1389.87092  -82888.99867 
##          6200          6201          6202          6203          6204 
##   73610.12908  107111.00133  -66389.87092   37111.00133  -46389.87092 
##          6205          6206          6207          6208          6209 
##   27111.00133  -41389.87092   77111.00133  -61389.87092  -12888.99867 
##          6210          6211          6212          6213          6214 
##   48610.12908  -42888.99867   -1389.87092  -82888.99867   73610.12908 
##          6215          6216          6217          6218          6219 
##  107111.00133  -66389.87092   37111.00133  -46389.87092   27111.00133 
##          6220          6221          6222          6223          6224 
##  -41389.87092   77111.00133  -61389.87092  -12888.99867   48610.12908 
##          6225          6226          6227          6228          6229 
##  -42888.99867   -1389.87092  -82888.99867   73610.12908  107111.00133 
##          6230          6231          6232          6233          6234 
##  -66389.87092   37111.00133  -46389.87092   27111.00133  -41389.87092 
##          6235          6236          6237          6238          6239 
##   77111.00133  -61389.87092  -12888.99867   48610.12908  -42888.99867 
##          6240          6241          6242          6243          6244 
##   -1389.87092  -82888.99867   73610.12908  107111.00133  -66389.87092 
##          6245          6246          6247          6248          6249 
##   37111.00133  -46389.87092  -76389.87092  -27888.99867  -31389.87092 
##          6250          6251          6252          6253          6254 
##  -72888.99867   -1389.87092  -47888.99867  -51389.87092  -67888.99867 
##          6255          6256          6257          6258          6259 
##   28610.12908  -72888.99867    8610.12908  -72888.99867   58610.12908 
##          6260          6261          6262          6263          6264 
##  -47888.99867  -46389.87092  -57888.99867  -21389.87092  -67888.99867 
##          6265          6266          6267          6268          6269 
##  -11389.87092  -52888.99867   48610.12908  -67888.99867  -26389.87092 
##          6270          6271          6272          6273          6274 
##  -72888.99867   18610.12908  -37888.99867  -71389.87092  -32888.99867 
##          6275          6276          6277          6278          6279 
##  -81389.87092   12111.00133  -81389.87092   52111.00133  -66389.87092 
##          6280          6281          6282          6283          6284 
##   -7888.99867  -86389.87092  -27888.99867  -31389.87092  -72888.99867 
##          6285          6286          6287          6288          6289 
##    8610.12908  -47888.99867  -51389.87092  -67888.99867   28610.12908 
##          6290          6291          6292          6293          6294 
##  -72888.99867   58610.12908  -67888.99867  -46389.87092   12111.00133 
##          6295          6296          6297          6298          6299 
##  -71389.87092  -17888.99867  -86389.87092    2111.00133  -76389.87092 
##          6300          6301          6302          6303          6304 
##  -37888.99867  -91389.87092   22111.00133  -61389.87092   42111.00133 
##          6305          6306          6307          6308          6309 
##  -41389.87092  -72888.99867   38610.12908  -67888.99867   48610.12908 
##          6310          6311          6312          6313          6314 
##  -67888.99867  -26389.87092  -72888.99867  -21389.87092  -37888.99867 
##          6315          6316          6317          6318          6319 
##  -71389.87092   12111.00133  -81389.87092  -71389.87092   32111.00133 
##          6320          6321          6322          6323          6324 
##  -81389.87092   -7888.99867  -91389.87092  -32888.99867  -81389.87092 
##          6325          6326          6327          6328          6329 
##   72111.00133  -41389.87092  -72888.99867   -1389.87092  -62888.99867 
##          6330          6331          6332          6333          6334 
##  -31389.87092  -52888.99867   38610.12908  -67888.99867   48610.12908 
##          6335          6336          6337          6338          6339 
##  -67888.99867  -26389.87092  -72888.99867  -11389.87092  -32888.99867 
##          6340          6341          6342          6343          6344 
##  -71389.87092   12111.00133  -81389.87092   42111.00133  -51389.87092 
##          6345          6346          6347          6348          6349 
##   82111.00133  -81389.87092  -32888.99867   18610.12908  -72888.99867 
##          6350          6351          6352          6353          6354 
##   -1389.87092  -27888.99867  -86389.87092   22111.00133  -81389.87092 
##          6355          6356          6357          6358          6359 
##  -17888.99867  -66389.87092   72111.00133  -76389.87092   82111.00133 
##          6360          6361          6362          6363          6364 
##  -71389.87092  -52888.99867    8610.12908  -72888.99867   -1389.87092 
##          6365          6366          6367          6368          6369 
##  -12888.99867  -86389.87092   32111.00133  -81389.87092  -27888.99867 
##          6370          6371          6372          6373          6374 
##  -66389.87092   82111.00133  -46389.87092   62111.00133  -71389.87092 
##          6375          6376          6377          6378          6379 
##  -52888.99867    8610.12908  -72888.99867   -1389.87092  -12888.99867 
##          6380          6381          6382          6383          6384 
##  -86389.87092   32111.00133  -81389.87092  -27888.99867  -66389.87092 
##          6385          6386          6387          6388          6389 
##   82111.00133  -46389.87092   62111.00133  -71389.87092  -52888.99867 
##          6390          6391          6392          6393          6394 
##    8610.12908  -72888.99867   -1389.87092  -12888.99867  -86389.87092 
##          6395          6396          6397          6398          6399 
##   32111.00133  -81389.87092  -27888.99867  -66389.87092   82111.00133 
##          6400          6401          6402          6403          6404 
##  -46389.87092   62111.00133  -71389.87092  -52888.99867    8610.12908 
##          6405          6406          6407          6408          6409 
##  -72888.99867   -1389.87092  -12888.99867  -86389.87092   32111.00133 
##          6410          6411          6412          6413          6414 
##  -81389.87092  -27888.99867  -66389.87092   82111.00133  -46389.87092 
##          6415          6416          6417          6418          6419 
##   62111.00133  -71389.87092  -52888.99867    8610.12908  -72888.99867 
##          6420          6421          6422          6423          6424 
##   -1389.87092  -12888.99867  -86389.87092   32111.00133  -81389.87092 
##          6425          6426          6427          6428          6429 
##  -27888.99867  -66389.87092   82111.00133  -46389.87092   62111.00133 
##          6430          6431          6432          6433          6434 
##  -71389.87092  -52888.99867    8610.12908  -72888.99867   -1389.87092 
##          6435          6436          6437          6438          6439 
##  -12888.99867  -86389.87092   32111.00133  -81389.87092  -27888.99867 
##          6440          6441          6443          6444          6445 
##  -66389.87092   82111.00133  -11389.87092  -67888.99867   28610.12908 
##          6446          6447          6448          6449          6450 
##  -52888.99867  -51389.87092   52111.00133  -86389.87092   -7888.99867 
##          6451          6452          6453          6454          6455 
##  -31389.87092  -57888.99867   18610.12908  -67888.99867   58610.12908 
##          6456          6457          6458          6459          6460 
##  -17888.99867  -86389.87092   12111.00133  -76389.87092  -27888.99867 
##          6461          6462          6463          6464          6465 
##  -66389.87092   72111.00133  -46389.87092   82111.00133  -81389.87092 
##          6466          6467          6468          6469          6470 
##  -37888.99867   28610.12908  -72888.99867   -1389.87092  -27888.99867 
##          6471          6472          6473          6474          6475 
##  -86389.87092   22111.00133  -81389.87092  -17888.99867  -66389.87092 
##          6476          6477          6478          6479          6480 
##   72111.00133  -76389.87092   82111.00133  -71389.87092  -52888.99867 
##          6481          6482          6483          6484          6485 
##    8610.12908  -72888.99867   -1389.87092  -12888.99867  -86389.87092 
##          6486          6487          6488          6489          6490 
##   32111.00133  -81389.87092  -27888.99867  -66389.87092   82111.00133 
##          6491          6492          6493          6494          6495 
##  -46389.87092   62111.00133  -71389.87092  -52888.99867    8610.12908 
##          6496          6497          6498          6499          6500 
##  -72888.99867   -1389.87092  -12888.99867  -86389.87092   32111.00133 
##          6501          6502          6503          6504          6505 
##  -81389.87092  -27888.99867  -66389.87092   82111.00133  -46389.87092 
##          6506          6507          6508          6509          6510 
##   62111.00133  -71389.87092  -52888.99867    8610.12908  -72888.99867 
##          6511          6512          6513          6514          6515 
##   -1389.87092  -12888.99867  -86389.87092   32111.00133  -81389.87092 
##          6516          6517          6518          6519          6520 
##  -27888.99867  -66389.87092   82111.00133  -46389.87092   62111.00133 
##          6521          6522          6523          6524          6525 
##  -71389.87092  -52888.99867    8610.12908  -72888.99867   -1389.87092 
##          6526          6527          6528          6529          6530 
##  -12888.99867  -86389.87092   32111.00133  -81389.87092  -27888.99867 
##          6531          6532          6533          6534          6535 
##  -66389.87092   82111.00133  -46389.87092   62111.00133  -71389.87092 
##          6536          6537          6538          6539          6540 
##  -52888.99867    8610.12908  -72888.99867   -1389.87092  -12888.99867 
##          6541          6542          6543          6544          6545 
##  -86389.87092   32111.00133  -81389.87092  -27888.99867  -66389.87092 
##          6546          6547          6548          6549          6550 
##   82111.00133  -46389.87092   62111.00133  -71389.87092  -52888.99867 
##          6551          6552          6553          6554          6555 
##    8610.12908  -72888.99867   -1389.87092  -12888.99867  -86389.87092 
##          6556          6557          6558          6559          6560 
##   32111.00133  -81389.87092  -27888.99867  -66389.87092   82111.00133 
##          6561          6562          6563          6564          6565 
##  -46389.87092   62111.00133  -71389.87092  -52888.99867    8610.12908 
##          6566          6567          6568          6569          6570 
##  -72888.99867   -1389.87092  -62888.99867   38610.12908  -37888.99867 
##          6571          6572          6573          6574          6575 
##  -46389.87092   62111.00133  -86389.87092    2111.00133  -41389.87092 
##          6576          6577          6578          6579          6580 
##  -52888.99867   28610.12908  -67888.99867   68610.12908  -27888.99867 
##          6581          6582          6583          6584          6585 
##  -86389.87092   22111.00133  -76389.87092  -17888.99867  -66389.87092 
##          6586          6587          6588          6589          6590 
##   82111.00133  -31389.87092   92111.00133  -81389.87092  -37888.99867 
##          6591          6592          6593          6594          6595 
##   38610.12908  -72888.99867    8610.12908  -12888.99867  -86389.87092 
##          6596          6597          6598          6599          6600 
##   32111.00133  -81389.87092  -17888.99867  -66389.87092   82111.00133 
##          6601          6602          6603          6604          6605 
##  -46389.87092   92111.00133  -71389.87092  -52888.99867   18610.12908 
##          6606          6607          6608          6609          6610 
##  -72888.99867    8610.12908   -7888.99867  -86389.87092   42111.00133 
##          6611          6612          6613          6614          6615 
##  -81389.87092  -27888.99867  -66389.87092   82111.00133  -31389.87092 
##          6616          6617          6618          6619          6620 
##   92111.00133  -81389.87092  -37888.99867   38610.12908  -72888.99867 
##          6621          6622          6623          6624          6625 
##    8610.12908  -12888.99867  -86389.87092   32111.00133  -81389.87092 
##          6626          6627          6628          6629          6630 
##  -17888.99867  -66389.87092   82111.00133  -46389.87092   92111.00133 
##          6631          6632          6633          6634          6635 
##  -71389.87092  -52888.99867   18610.12908  -72888.99867    8610.12908 
##          6636          6637          6638          6639          6640 
##   -7888.99867  -86389.87092   42111.00133  -81389.87092  -27888.99867 
##          6641          6642          6643          6644          6645 
##  -66389.87092   82111.00133  -31389.87092   92111.00133  -81389.87092 
##          6646          6647          6648          6649          6650 
##  -37888.99867   38610.12908  -72888.99867    8610.12908  -12888.99867 
##          6651          6652          6653          6654          6655 
##  -86389.87092   32111.00133  -81389.87092  -17888.99867  -66389.87092 
##          6656          6657          6658          6659          6660 
##   82111.00133  -46389.87092   92111.00133  -71389.87092  -52888.99867 
##          6661          6662          6663          6664          6665 
##   18610.12908  -72888.99867    8610.12908   -7888.99867  -86389.87092 
##          6666          6667          6668          6669          6670 
##   42111.00133  -81389.87092  -27888.99867  -66389.87092   82111.00133 
##          6671          6672          6673          6674          6675 
##  -31389.87092   92111.00133  -81389.87092  -37888.99867   38610.12908 
##          6676          6677          6678          6679          6680 
##  -72888.99867    8610.12908  -12888.99867  -86389.87092   32111.00133 
##          6681          6682          6683          6684          6685 
##  -81389.87092  -17888.99867  -66389.87092   82111.00133  -46389.87092 
##          6686          6687          6688          6689          6690 
##   92111.00133  -71389.87092  -52888.99867   18610.12908  -72888.99867

H0: os residuos tem uma distribuiçao normal

H1: os residuos nao tem uma distribuiçao normal

alpha: 0,05

se pvalor <= alpha rejeita H0

se pvalor > alpha nao rejeita H0

#Teste Anderson-Darling
ad.test(residuos1)
## 
##  Anderson-Darling normality test
## 
## data:  residuos1
## A = 78.896, p-value < 2.2e-16

p-value < 0.00000000000000022

P-valor muito menor do que alpha, rejeita a hipótese nula H0

concluo que os residuos não tem distribuição normal

pressuposto de normalidade violado

Já que não possui distribuição normal e a variável possui 2 categorias, relizaremos o teste de wilcox

H0: a distribuição de salario do sexo masculino é igual a distribui?ao de salário do sexo feminino

H1: as duas distribuições são diferentes

#Teste de Wilcoxon
options(scipen = 999)
wilcox.test(Salary ~ Gender, data = Salario3)
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  Salary by Gender
## W = 4724180, p-value < 0.00000000000000022
## alternative hypothesis: true location shift is not equal to 0

p-value < 0.00000000000000022

P-valor muito menor do que alpha, rejeita a hipótese nula H0

Concluo que a distribuição das duas variáveis são diferentes.

Conclusão sobre os resultados da hipótese 1:

Em cada um dos meios de análise foi confirmado que há uma diferença nos ganhos de salários entre os gêneros feminino e masculino, podendo ser confirmada a hipótese que os funcionários do sexo masculino ganham mais do que as funcionárias do sexo feminino.

Teste de Hipóteses 2 - Salário x Nível Educacional

#Teste de hipóteses salário x nível educacional
modelo2 = aov(Salary ~ Education.Level, data = Salario3)
residuos2 = residuals(modelo2)

H0: os residuos tem distribuiçãoo normal

H1: os residuos não tem distribuiçao normal

alpha: 0,05

se p-valor ??? alpha rejeita H0

se p-valor > alpha não rejeita H0

#Teste Anderson-Darling
ad.test(residuos2)
## 
##  Anderson-Darling normality test
## 
## data:  residuos2
## A = 18.099, p-value < 0.00000000000000022

p-value < 0.00000000000000022

p-valor é menor do que alpha, portanto rejeita H0 e concluo que os residuos

não possuem distribuiçao normal. Ou seja, pressuposto da normalidade violado.

A partir disso, realizaremos o teste de Kruskal-Wallis já que a variável possui mais de três categorias e o teste de comparações múltiplas de Wilcoxon.

#Teste de Kruskal Wallis
kruskal.test(Salary ~ Education.Level, data = Salario3)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Salary by Education.Level
## Kruskal-Wallis chi-squared = 3266.4, df = 6, p-value <
## 0.00000000000000022
#Teste de comparações múltiplas de Wilcoxon
pairwise.wilcox.test(Salario3$Salary, Salario3$Education.Level)
## 
##  Pairwise comparisons using Wilcoxon rank sum test with continuity correction 
## 
## data:  Salario3$Salary and Salario3$Education.Level 
## 
##                        Bachelor's          Bachelor's Degree  
## Bachelor's        1.00 -                   -                  
## Bachelor's Degree 1.00 <0.0000000000000002 -                  
## High School       0.61 <0.0000000000000002 <0.0000000000000002
## Master's          0.96 <0.0000000000000002 <0.0000000000000002
## Master's Degree   1.00 1.00                <0.0000000000000002
## PhD               0.75 <0.0000000000000002 <0.0000000000000002
##                   High School         Master's            Master's Degree    
## Bachelor's        -                   -                   -                  
## Bachelor's Degree -                   -                   -                  
## High School       -                   -                   -                  
## Master's          <0.0000000000000002 -                   -                  
## Master's Degree   <0.0000000000000002 <0.0000000000000002 -                  
## PhD               <0.0000000000000002 0.54                <0.0000000000000002
## 
## P value adjustment method: holm

H0: A distribuição de salários é igual em todos os níveis educacionais

H1: As distribuições são diferentes

p-value < 0.00000000000000022

p-valor é menor do que alpha, portanto rejeita H0 e concluo que as distribuições

de salários são diferentes em cada nível.

Conclusão sobre os resultados da hipótese 2:

Após apurarmos todas as formas cabíveis para confirmar nossa hipótese, conseguimos concluir que há sim uma diferença nos salários entre funcionários com diferentes tipos de nível educacional, onde fica constatado e comprovado que um funcionário que possui apenas o Ensino Médio não recebe a mesma quantidade de remuneração que um funcionário com nível educacional de Phd, por exemplo.

Teste de Hipóteses 3 - Salário x Profissões

#Teste de hipóteses salário x profissões
modelo3 = aov(Salary ~ profissoes, data = Salario3)
residuos3 = residuals(modelo3)

H0: Os residuos tem uma distribuição normal.

H1: os residuos não tem uma distribuição normal.

Alpha: 0,05 Se pvalor <= alpha REJEITO H0

Se pvalor > for menor NÃO REJEITO o H0

#Teste Anderson-Darling
ad.test(residuos3)
## 
##  Anderson-Darling normality test
## 
## data:  residuos3
## A = 40.392, p-value < 0.00000000000000022

p-value < 0.00000000000000022

pvalor é menor do que alpha, sendo assim, rejeita H0 da hipotese, portanto,

concluimos que não tem uma distruição normal.

Pressuposto de nomalidade violado.

H0: As distribuições são normais nos níveis hierárquicos.

H1: As distribuições são diferentes.

#Teste de Kruskal Wallis
kruskal.test(Salary ~ profissoes, data = Salario3)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Salary by profissoes
## Kruskal-Wallis chi-squared = 1454.4, df = 5, p-value <
## 0.00000000000000022

p-value < 0.00000000000000022

pvalor é menor do que alpha, sendo assim, rejeita H0, então concluo que as distribuiçoes de sálarios são diferentes em cada nível hierárquico.

Conclusão de resultados da hipótese 3:

Após todas as análises, foi possível confirmar que há sim uma influência das profissões em relação ao salário dos funcionários, visto que há uma grande variação nos salários quando alternam as profissões.

Teste de Hipóteses 4 - Salário x Anos de experiência

#Teste de hipótese Salário x Anos de experiência
modelo4 = aov(Salary ~ Years.of.Experience, data = Salario3)
residuos4 = residuals(modelo4)
#Teste Anderson-Darling
options(scipen = 999)
ad.test(residuos4)
## 
##  Anderson-Darling normality test
## 
## data:  residuos4
## A = 76.848, p-value < 0.00000000000000022

H0: A distribuição de salários é igual em todos os anos de experiência

H1: As distribuições são diferentes

p-value < 0.00000000000000022

pvalor menor que alpha, rejeita a hipótese nula H0, logo pelo teste de normalidade AD, o pressuposto de normalidade foi violado, concluímos então que a distribuição do salario não é normal.

Agora, iremos descobrir se há uma correlação das variáveis pelo teste de Spearman:

Objetivo = testar a correlação entre anos de experiencia e salario

informação = anos de experiencia e salario não tem distribuição normal

H0: rho = 0 (não tem correlação)

H1: rho != 0 (tem correlação)

alpha: 0,05

#Teste de Spearman
cor.test(Salario3$Years.of.Experience,Salario3$Salary, method = "spearman", conf.level = 0.95)
## 
##  Spearman's rank correlation rho
## 
## data:  Salario3$Years.of.Experience and Salario3$Salary
## S = 7008379132, p-value < 2.2e-16
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.8592447

p-value < 0.00000000000000022, então rejeita H0, concluímos que tem relação entre as variáveis “Anos de Experiência” e “Salário”

Existe uma correlação linear, positiva, forte e significativa

rho 0.8591923

O rho sendo próximo de 1 indica que as duas variáveis estão fortemente correlacionadas.

Conclusão de resultados da hipótese 4:

Com os resultados do teste de hipótese, o diagrama de dispersão e matriz de correlação, conseguimos concluir que os anos de experiencia dos funcionários influencia no valor dos salários vai ganhar, pois quanto mais anos de experiencia, maior vai ser o salario.

Cabe observarmos também que, no diagrama de dispersão, optamos por uma relação entre as variáveis “Anos de Experiência” e “Salário” com uma comparação junto à variável “Gênero”, onde foi possivel confirmar a relação das variáveis de uma forma mais certeira e correta que até os 20 anos de experiencia não há tanta diferença entre generos no mercado de trabalho, porém depois de 20 anos de experiencia diminui a quantidade de mulheres no mercado desse modo homens tem uma dominancia maior e com salarios maiores.

Teste de Hipóteses 5 - Salário x Idade

#Teste de hipóteses Salário x Idade
modelo5 = aov(Salary ~ Age, data = Salario3)
residuos5 = residuals(modelo5)
#Teste Anderson-Darling
ad.test(residuos5)
## 
##  Anderson-Darling normality test
## 
## data:  residuos5
## A = 69.534, p-value < 2.2e-16

H0: rho = 0 ( não tem correlação)

H1: rho != 0 (tem correlação)

alpha: 0,05

#Teste de Spearman
cor.test(Salario3$Age, Salario3$Salary, method = "spearman")
## 
##  Spearman's rank correlation rho
## 
## data:  Salario3$Age and Salario3$Salary
## S = 1.2686e+10, p-value < 2.2e-16
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
##       rho 
## 0.7452203
options(scipen = 999)

H0: rho = 0 não existe correlação entre Idade e Salário

H1: rho != 0 existe correlação entre Idade e Salário

alpha: 0,05

p-value < 0.00000000000000022

rho < 0.745243

Rejeita-se H0, logo, existe correlação entre Idade e Salário

Pelo diagrama de dispersão e o teste de correlação, arrematamos que a idade influencia sim o salário que o funcionário receberá.

Conclusão de resultados da hipótese 4:

Tendo em vista que existe uma maior quantidade de homens em profissões que o funcionário recebe um salário maior, há essa alteração na idade em comparação com os salários, que comprova que homens recebem mais do que as mulheres, neste caso devido à uma inclinação maior de interesse masculino nas áreas mais rentáveis do mercado.

Regressão múltipla não paramétrica

Comparamos o gênero com o salário e confirmarmos que os homens ganham mais, tanto pelo Wilcoxon quanto pelo Boxplot, mas os diagramas de dispersão sujerem que tem um impacto da idade com os anos de experiência. Para verificar a influência dos gêneros contra os anos de experiência e a idade, realizamos um modelo Gam.

#Modelo Multivariado
modelo = gam(Salary ~ Age + Gender+Education.Level+Years.of.Experience+profissoes,data=Salario3)
summary(modelo)
## 
## Family: gaussian 
## Link function: identity 
## 
## Formula:
## Salary ~ Age + Gender + Education.Level + Years.of.Experience + 
##     profissoes
## 
## Parametric coefficients:
##                                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                          97122.56   24073.52   4.034 5.53e-05 ***
## Age                                  -1247.98     120.04 -10.397  < 2e-16 ***
## GenderMale                            5063.00     606.54   8.347  < 2e-16 ***
## Education.LevelBachelor's            27539.67   23960.73   1.149    0.250    
## Education.LevelBachelor's Degree        55.94   23939.70   0.002    0.998    
## Education.LevelHigh School          -23503.47   23965.79  -0.981    0.327    
## Education.LevelMaster's              44096.87   23980.44   1.839    0.066 .  
## Education.LevelMaster's Degree       15922.51   23944.45   0.665    0.506    
## Education.LevelPhD                   25571.09   23954.83   1.067    0.286    
## Years.of.Experience                   7283.56     146.60  49.683  < 2e-16 ***
## profissoesData Scientist              1949.51    1967.85   0.991    0.322    
## profissoesSenior Project Engineer    -2951.23    2131.54  -1.385    0.166    
## profissoesSoftware Engineer           2277.41    1678.25   1.357    0.175    
## profissoesSoftware Engineer Manager  -9968.83    2134.52  -4.670 3.07e-06 ***
## profissoesOutros                    -19475.09    1522.16 -12.794  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 
## R-sq.(adj) =  0.795   Deviance explained = 79.5%
## GCV = 5.7364e+08  Scale est. = 5.7236e+08  n = 6685

O modelo multivariado gam foi realizado como uma forma de relacionar todas as variáveis simultaneamente no salário, sabendo que o salário não tem distribuição normal.

Esse modelo de regressão múltipla é não paramétrico porque não há distribuição normal entre as variáveis.

A significância (***) é menor que 0,0001. Então está dizendo que as variáveis contribuem para explicar o salário simultaneamente.

Conseguimos visualizar que nos dados apresentados, é o gênero masculino apenas que aparece, isso se dá pelos valores da base e efeito, onde a variável base é o gênero feminino e o efeito é o gênero masculino, ou seja, o quanto a mais seria o salário do gênero masculino, chamaria-se como “o efeito do homem sobre o salário”.

Pelos resultados apresentados foi possível verificar que a significância em algumas variáveis é maior, o que nos diz o seguinte:

. A idade é muito importante para para a determinação dos salários

. O gênero masculino tem grande impacto no salário

. O nível educacional não tem tanto impacto sobre os salários

. Os anos de experiência também são importantes para a determinação dos salários

. Algumas profissões contribuem para explicar o salário e outras não são tão relevantes para impactar nos salários.

Foi possivel destacar que apesar de na matriz de correlação e diagrama de dispersão com os gêneros, salários, anos de experiência e idade, ter tido resultados visualmente similares onde não é tão perceptível a desigualdade de salários entre as variáveis comparadas ao gênero dos funcionários, na nossa análise multivariada entre todas elas, foi possível obter resultados onde consta um efeito do gênero masculino nos salários se comparado simultaneamente com as variáveis anos de experiência, idade, nível educacional e profissões. Então fica possível dizer, por exemplo, que: um homem que é engenheiro de projetos com 40 anos de idade e 10 anos de experiência ganha mais do que uma mulher da mesma profissão com também 40 anos de idade e 10 anos de experiência.

Vale ainda ressaltar que todas os graficos, tabelas e hipóteses nos forneceram dados suficientes para conseguirmos comprovar que há sim uma relação entre todas as variáveis sobre os salarios, mas ficou ainda mais claro quando relizamos o último teste multivariado juntando todas, tanto para uma melhor análise dos diagramas de dispersão quanto de todas as análises de hipóteses em geral.

Conclusão

Com base nos resultados obtidos, concluímos que a variável qualitativa Salário sofre interferência das demais variáveis que constituem a base de dados utilizada. Através das tabelas geradas e dos gráficos do tipo boxplot, foi possível observarmos a tangência do Salário com as outras variáveis qualitativas.

Nossa primeira hipótese nos mostrou que o gênero interfere diretamente nos salários dos indivíduos, uma vez que os salários do sexo masculino se mostraram superiores aos do sexo feminino. Da mesma forma, a segunda hipótese também notou variações nos índices salariais a depender do nível educacional apresentado. Em consonância com as outras duas, a terceira hipótese qualitativa, que buscava analisar a ligação entre o salário e o cargo profissional, também verificou oscilações nos índices salariais para os diferentes níveis hierárquicos nas empresas.

Por tratar-se de variáveis quantitativas, as análises das últimas duas hipóteses levantadas nesta pesquisa foram feitas pelo diagrama de dispersão e matriz de correlação que, em ambas, apontou correlação forte e grande grau de associação entre elas. A revelação desses dados responde às nossas hipóteses e confirma que existe influência do salário de acordo com a idade e os anos de experiência dos indivíduos juntamente da última análise feita com o teste multivariado entre todas as variáveis simultaneamente que auxiliou à nossa total confirmação de todas as hipóteses levantadas nesse estudo.

Para um melhor entendimento, também fizemos pesquisas em sites por fora da base de dados para acentuar mais os resultados comprobatórios de nosso estudo, conseguimos concluir que de acordo com esses sites, igualitariamente à nossa base de dados, existe influência de todas as variáveis levantadas nessa base em comparação com o salário dos funcionários das empresas. Optamos por realizar algumas transcresções dos sites, mas também realizamos algumas conclusões próprias baseadas nos dados apresentados em cada pesquisa realizada sobre fatores externos nos sites, como por exemplo:

“Conforme os dados colhidos e analisados, a partir do modelo observa-se que quanto maior o nível de escolaridade, maior seu salário médio dos trabalhadores e com isso também uma maior variação no nível salarial de acordo com o período analisado. A partir da análise dos dados, da pesquisa PNAD Contínua, observados no período de 2015 a 2019, foi possível concluir que os salários de trabalhadores com ensino superior tendem a ter aumento maior do que os trabalhadores com níveis de escolaridade inferiores.”

“O maior salário médio, de R$ 2.253,67, foi ofertado aos trabalhadores com mais de 65 anos. Na sequência, aparecem os contratados com idade entre 40 e 49 anos (R$ 1.922,87), 50 e 64 anos (R$1.920,59) e de 30 aos 39 anos(R$1.873,97).”

“Fatores que influenciam os salários dos contadores à luz das teorias econômicas do emprego: um estudo exploratório na Paraíba e no Rio Grande do Norte: As variáveis que interferem positivamente para que os salários dos contadores sejam mais altos são: o sexo, o nível de aperfeiçoamento, o tempo de experiência do profissional, o tipo de empresa na qual o contador trabalha, e o fato dele trabalhar enquanto estudava durante a graduação. A variável que mostrou maior influência na determinação do salário dos profissionais foi a “experiência”. Em seguida vieram o fato de não trabalhar na empresa desde a formação, o nível de aperfeiçoamento, e o sexo. Destaque para a variável “aperfeiçoamento” que reforça a tese da Teoria do Capital Humano, tendo em vista que esta Teoria afirma que, quanto maior a qualificação do indivíduo, maior tende a ser seu salário. De forma similar, a variável tempo de experiência também foi significativa e positivamente relacionada a maiores salários.”

“As mulheres no Brasil ganham cerca de 20% menos do que os homens, e essa diferença salarial entre os gêneros permanece em patamares elevados mesmo quando se compara trabalhadores com o mesmo perfil de escolaridade, idade, setor de atividade e categoria de ocupação. Essa constatação é resultado de um levantamento realizado pela consultoria IDados, com base na Pesquisa Nacional por Amostra de Domicílio do IBGE.

De acordo com o estudo exclusivo para o G1, as mulheres ganharam, em média, 20,50% a menos que os homens no 4º trimestre de 2021, em comparação a uma diferença de 19,70% a menos no final de 2020. Embora a disparidade venha apresentando uma tendência de redução nos últimos anos, a desigualdade permanece estagnada em torno de 20%.

A pesquisa também revelou que, mesmo com níveis de escolaridade, idade, cor e ocupação equivalentes, as mulheres ainda recebem menos que os homens. No 4º trimestre de 2021, a renda média por hora trabalhada para mulheres foi 20,3% inferior à dos homens.

Essa discrepância salarial é considerada um problema estrutural na sociedade brasileira, persistindo mesmo quando as mulheres têm um nível de escolaridade mais alto do que os homens. As mulheres também enfrentam maior desemprego e muitas vezes são submetidas a ocupações precárias ou com menor remuneração.

A questão é multifacetada e reflete tanto o machismo na sociedade quanto a falta de políticas favoráveis à inserção das mulheres em ocupações mais bem remuneradas. Além disso, fatores como a maternidade e a sobrecarga de afazeres domésticos também podem influenciar a situação das mulheres no mercado de trabalho.

Essa desigualdade salarial acarreta consequências significativas para as mulheres, que acabam recebendo menos por trabalhos equivalentes e tendo menos oportunidades de crescimento profissional e econômico. A conscientização sobre esse problema e a implementação de políticas que visem a igualdade salarial são fundamentais para reduzir essa disparidade e promover a equidade de gênero no mercado de trabalho.”