Loading Libraries
library(knitr)
library(printr)
library(rCharts)
iris
head(iris)
| Sepal.Length | Sepal.Width | Petal.Length | Petal.Width | Species |
|---|---|---|---|---|
| 5.1 | 3.5 | 1.4 | 0.2 | setosa |
| 4.9 | 3.0 | 1.4 | 0.2 | setosa |
| 4.7 | 3.2 | 1.3 | 0.2 | setosa |
| 4.6 | 3.1 | 1.5 | 0.2 | setosa |
| 5.0 | 3.6 | 1.4 | 0.2 | setosa |
| 5.4 | 3.9 | 1.7 | 0.4 | setosa |
HairEyeColor
hair_eye = as.data.frame(HairEyeColor)
hair_eye
| Hair | Eye | Sex | Freq |
|---|---|---|---|
| Black | Brown | Male | 32 |
| Brown | Brown | Male | 53 |
| Red | Brown | Male | 10 |
| Blond | Brown | Male | 3 |
| Black | Blue | Male | 11 |
| Brown | Blue | Male | 50 |
| Red | Blue | Male | 10 |
| Blond | Blue | Male | 30 |
| Black | Hazel | Male | 10 |
| Brown | Hazel | Male | 25 |
| Red | Hazel | Male | 7 |
| Blond | Hazel | Male | 5 |
| Black | Green | Male | 3 |
| Brown | Green | Male | 15 |
| Red | Green | Male | 7 |
| Blond | Green | Male | 8 |
| Black | Brown | Female | 36 |
| Brown | Brown | Female | 66 |
| Red | Brown | Female | 16 |
| Blond | Brown | Female | 4 |
| Black | Blue | Female | 9 |
| Brown | Blue | Female | 34 |
| Red | Blue | Female | 7 |
| Blond | Blue | Female | 64 |
| Black | Hazel | Female | 5 |
| Brown | Hazel | Female | 29 |
| Red | Hazel | Female | 7 |
| Blond | Hazel | Female | 5 |
| Black | Green | Female | 2 |
| Brown | Green | Female | 14 |
| Red | Green | Female | 7 |
| Blond | Green | Female | 8 |
HairEyeColor
data(tips, package = 'reshape2')
head(tips)
| total_bill | tip | sex | smoker | day | time | size |
|---|---|---|---|---|---|---|
| 16.99 | 1.01 | Female | No | Sun | Dinner | 2 |
| 10.34 | 1.66 | Male | No | Sun | Dinner | 3 |
| 21.01 | 3.50 | Male | No | Sun | Dinner | 3 |
| 23.68 | 3.31 | Male | No | Sun | Dinner | 2 |
| 24.59 | 3.61 | Female | No | Sun | Dinner | 4 |
| 25.29 | 4.71 | Male | No | Sun | Dinner | 4 |
names(iris) = gsub("\\.", "", names(iris))
p1 <- rPlot(SepalLength ~ SepalWidth | Species,
data = iris,
color = 'Species',
type = 'point')
p1$show('inline', include_assets = TRUE)
\(\\\)
p2 <- rPlot(Freq ~ Hair,
color = 'Eye',
data = hair_eye,
type = 'bar')
p2$show('inline', include_assets = TRUE)
\(\\\)
p2 <- rPlot(Freq ~ Hair,
color = 'Eye',
data = hair_eye,
type = 'bar')
p2$facet(var = 'Eye', type = 'wrap', rows = 2)
p2$show('inline', include_assets = TRUE)
\(\\\)
p3 <- rPlot(x = 'day',
y = 'box(tip)',
data = tips,
type = 'box')
p3$show('inline', include_assets = TRUE)
\(\\\)
require(plyr)
Loading required package: plyr
dat = count(mtcars, .(gear, am))
p4 <- rPlot(x = 'bin(gear, 1)',
y = 'freq',
data = dat,
type = 'bar',
list(var = 'am', type = 'wrap'))
p4$show('inline', include_assets = TRUE)
\(\\\)
dat = expand.grid(x = 1:5, y = 1:5)
dat = transform(dat, value = sample(1:5, 25, replace = T))
p5 <- rPlot(x = 'bin(x, 1)',
y = 'bin(y, 1)',
color = 'value',
data = dat,
type = 'tile')
p5$show('inline', include_assets = TRUE)
\(\\\)
require(reshape2); require(scales); require(plyr)
Loading required package: reshape2
Loading required package: scales
nba <- read.csv('http://datasets.flowingdata.com/ppg2008.csv')
nba.m <- ddply(melt(nba), .(variable), transform, rescale = rescale(value))
Using Name as id variables
p6 <- rPlot(Name ~ variable, color = 'rescale', data = nba.m, type = 'tile', height = 600)
p6$guides("{color: {scale: {type: gradient, lower: white, upper: steelblue}}}")
p6$show('inline', include_assets = TRUE)