rm(list=ls())
getwd()
## [1] "C:/Users/김지수/Desktop/2023/여름방학/AI빅데이터인력양성/adsp"
setwd("c:/data")
getwd()
## [1] "c:/data"
library(dplyr)
## 
## 다음의 패키지를 부착합니다: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(caret)
## 필요한 패키지를 로딩중입니다: ggplot2
## 필요한 패키지를 로딩중입니다: lattice
#단순선형회귀분석
#BM(건강한자기관리)
#HAPPLINESS(행복도)
#bm이 happiness에 끼치는 영향관계
#건강한 자기관리를 잘할수록 행복도 증가하는가



df<-read.csv("DATA1.csv")
glimpse(df)
## Rows: 1,925
## Columns: 26
## $ Q1        <int> 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, …
## $ Q2        <int> 4, 4, 4, 4, 4, 4, 2, 2, 4, 4, 4, 4, 4, 2, 4, 4, 2, 4, 2, 2, …
## $ Q3        <int> 2, 4, 4, 4, 4, 4, 4, 4, 4, 2, 4, 2, 4, 4, 4, 4, 4, 3, 2, 3, …
## $ Q4        <int> 3, 4, 4, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 2, 4, 4, 4, 2, 2, 4, …
## $ Q5        <int> 4, 4, 2, 4, 4, 4, 4, 4, 2, 4, 4, 2, 4, 4, 4, 4, 4, 3, 1, 2, …
## $ Q6        <int> 2, 3, 4, 4, 4, 4, 4, 4, 1, 2, 2, 2, 4, 4, 3, 5, 2, 2, 1, 4, …
## $ Q7        <int> 2, 2, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 5, 4, 4, 5, 4, 3, 4, 4, …
## $ Q8        <int> 4, 4, 4, 4, 4, 4, 5, 5, 2, 2, 4, 4, 4, 4, 3, 5, 4, 2, 4, 4, …
## $ Q9        <int> 4, 4, 4, 4, 2, 4, 5, 5, 3, 4, 4, 4, 2, 2, 4, 5, 2, 4, 2, 4, …
## $ Q10       <int> 4, 4, 2, 4, 4, 4, 5, 5, 2, 4, 2, 4, 4, 4, 3, 4, 4, 3, 2, 3, …
## $ Q11       <int> 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 3, 4, 4, 4, 4, 5, 4, 3, 3, …
## $ Q12       <int> 4, 4, 4, 4, 4, 4, 5, 5, 3, 4, 4, 3, 4, 3, 3, 4, 5, 4, 4, 2, …
## $ Q13       <int> 4, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 2, 4, 4, 4, 5, 4, 4, 4, …
## $ Q14       <int> 4, 4, 4, 4, 4, 4, 5, 5, 5, 4, 4, 4, 3, 4, 5, 4, 5, 4, 4, 4, …
## $ Q15       <int> 4, 4, 3, 4, 4, 4, 4, 2, 3, 4, 4, 3, 1, 4, 4, 4, 5, 4, 4, 4, …
## $ Q16       <int> 4, 4, 4, 4, 4, 4, 5, 2, 4, 4, 4, 4, 4, 4, 5, 4, 5, 4, 4, 4, …
## $ Q17       <int> 4, 3, 4, 4, 4, 4, 2, 2, 4, 4, 4, 4, 3, 2, 4, 5, 4, 4, 3, 4, …
## $ Q18       <int> 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 2, 4, 4, 4, …
## $ Q19       <int> 4, 2, 4, 4, 4, 4, 4, 2, 4, 2, 4, 4, 1, 4, 4, 4, 5, 4, 2, 3, …
## $ Q20       <int> 4, 1, 3, 4, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 4, 5, 5, 4, 2, 4, …
## $ Gender1   <int> 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, …
## $ EDU1      <int> 1, 1, 2, 1, 2, 1, 1, 1, 4, 3, 2, 1, 1, 3, 3, 2, 1, 1, 1, 4, …
## $ BF        <dbl> 3.4, 4.0, 3.6, 4.2, 4.0, 4.0, 3.6, 3.6, 3.6, 3.2, 4.0, 3.2, …
## $ BM        <dbl> 3.2, 3.4, 3.6, 4.0, 3.6, 4.0, 4.6, 4.6, 2.2, 3.2, 3.2, 3.6, …
## $ Happiness <dbl> 4.0, 4.0, 3.8, 4.0, 4.0, 4.0, 4.8, 4.4, 3.8, 4.0, 4.0, 3.4, …
## $ Peace     <dbl> 4.0, 2.8, 3.8, 4.0, 4.0, 4.0, 3.8, 2.4, 4.0, 3.2, 4.0, 3.9, …
#회귀분석은 등간척도 이상이어야함
#독립변수 범주형이라도 회귀분석이 가능하다.=더미변수
#종속변수가 이진데이터(0,1/성공실패)경우 로지스틱회귀분석



bs.out2<-lm(Happiness~BM,data=df) #lm=선형회귀분석을 만드는 함수
summary(bs.out2)
## 
## Call:
## lm(formula = Happiness ~ BM, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.1591 -0.4577  0.0418  0.4409  1.9386 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.06599    0.05777   35.77   <2e-16 ***
## BM           0.49771    0.01878   26.50   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6404 on 1923 degrees of freedom
## Multiple R-squared:  0.2675, Adjusted R-squared:  0.2671 
## F-statistic: 702.2 on 1 and 1923 DF,  p-value: < 2.2e-16
#~종속변수 관계 설정
#건강한 자기관리가 1 증가할 경우 행복은 0.498 증가함
#더빈왓슨(Durbin watson) 검정
#더빈왓슨 통계량을 0~4값을 가질 수 있음
#0에 가까울수록 양의 상관관계
#4에 가까울수록 음의 상관관계
#2에 가까울수록 오차항의 자기상관이 없음

#BM Estimate = 비율
#Intercept : 절편
#residuals : 잔차
#단순회귀분석 : happiness=2.06+0.497*BM, 모델링 完
#오차항 : 모집단을 알수 없음. 실제관측값-모회귀선의 차이(오차)
#잔차항 : 표본을 통해 표본회귀선을 만들고 그때 관측값의 차이(잔차), 잔차를 통해 오차항의 가정조건 성립을 확인=>잔차분석
library(car)#더빈왓슨 검정을 위해 필요
## 필요한 패키지를 로딩중입니다: carData
## 
## 다음의 패키지를 부착합니다: 'car'
## The following object is masked from 'package:dplyr':
## 
##     recode
sreg.res1<-residuals(bs.out2)
durbinWatsonTest(sreg.res1)
## [1] 1.787942
#오차는 독립성이라 판단한다.
library(caret)
#잔차의 등분산성
par(mfrow=c(2,2))
plot(bs.out2)

#q-q : 정규분포 확인



#잔차의 등분산성을 입증하기 위해서는 산점도에서 예측값(Fitted value)의
#변화에 관계없이 잔차(residuals)가 분포하는 모습이 일정하여야 한다.

#정규성검정
#shapiro-Wilk test(샤피로 윌크 검정)
shapiro.test(sreg.res1)#p-value 판단
## 
##  Shapiro-Wilk normality test
## 
## data:  sreg.res1
## W = 0.99439, p-value = 1.148e-06
options(scipen=999)#아라비아숫자로 바꾸기
shapiro.test(sreg.res1)
## 
##  Shapiro-Wilk normality test
## 
## data:  sreg.res1
## W = 0.99439, p-value = 0.000001148
options(scipen=-999)#원래대로 돌아가기
shapiro.test(sreg.res1)
## 
##  Shapiro-Wilk normality test
## 
## data:  sreg.res1
## W = 9.9439e-01, p-value = 1.148e-06
#귀무가설 : 정규분포 맞음
#대립가설 : 정규분포 아님
#유의확률 p-value<유의수준 0.05 = 귀무가설 기각
#정규분포가 아님
#정규성을 만족하지 못하면 박스콕스 변수 변환을 적용할 수 있다.

#Happiness 정규성 검정 한다.

options(scipen=999)
shapiro.test(sreg.res1)
## 
##  Shapiro-Wilk normality test
## 
## data:  sreg.res1
## W = 0.99439, p-value = 0.000001148
#위 잔차분석 결과 등분산성, 정규성만족 x
#정규성을 만족하지 못하는 경우 박스콕스 변수 변환을 적용 가능



#다항회귀분석 :독립변수의 차수 제곱을 넘어가는 것
#회귀분석(all)은 시험당 1문제

#다중회귀분석
#다중선형 회귀모형에서는 두개 이상의 독립변수가 주어졌다는 가정에서
#종속변수에 대한 분포를 가정하고 있다
#ㅣ는 독립변수들은 서로 독립적이야 한다는 것을
#다중공선성 vif함수를 통해 확인해야 한다
bs.out3<-lm(Happiness~BM+BF,data=df)
summary(bs.out3)
## 
## Call:
## lm(formula = Happiness ~ BM + BF, data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.23134 -0.40553  0.02014  0.41352  1.86210 
## 
## Coefficients:
##             Estimate Std. Error t value            Pr(>|t|)    
## (Intercept)  1.60995    0.06412   25.11 <0.0000000000000002 ***
## BM           0.29054    0.02331   12.47 <0.0000000000000002 ***
## BF           0.33817    0.02435   13.89 <0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6106 on 1922 degrees of freedom
## Multiple R-squared:  0.3343, Adjusted R-squared:  0.3336 
## F-statistic: 482.6 on 2 and 1922 DF,  p-value: < 0.00000000000000022
library(car)
vif(bs.out3)
##       BM       BF 
## 1.693504 1.693504
#vif값이 모두 10보다 작으므로 두 변수는 서로 내용추가




library(caret)
dim(df)
## [1] 1925   26
idx<-createDataPartition(df$Happiness,p=0.8,list=FALSE)
train<-df[idx,]
test<-df[-idx,]
library(dplyr)
glimpse(train)
## Rows: 1,541
## Columns: 26
## $ Q1        <int> 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 5, 4, …
## $ Q2        <int> 4, 4, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 4, 2, 4, 2, 2, 2, 5, 4, …
## $ Q3        <int> 2, 4, 4, 4, 4, 4, 4, 2, 4, 2, 4, 4, 4, 4, 3, 2, 3, 2, 5, 4, …
## $ Q4        <int> 3, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 2, 4, 4, 2, 2, 4, 1, 5, 4, …
## $ Q5        <int> 4, 4, 2, 4, 4, 4, 2, 4, 4, 2, 4, 4, 4, 4, 3, 1, 2, 1, 5, 3, …
## $ Q6        <int> 2, 3, 4, 4, 4, 4, 1, 2, 2, 2, 4, 4, 5, 2, 2, 1, 4, 1, 5, 4, …
## $ Q7        <int> 2, 2, 4, 4, 4, 4, 3, 4, 4, 4, 5, 4, 5, 4, 3, 4, 4, 2, 5, 5, …
## $ Q8        <int> 4, 4, 4, 4, 4, 5, 2, 2, 4, 4, 4, 4, 5, 4, 2, 4, 4, 4, 5, 3, …
## $ Q9        <int> 4, 4, 4, 2, 4, 5, 3, 4, 4, 4, 2, 2, 5, 2, 4, 2, 4, 4, 5, 3, …
## $ Q10       <int> 4, 4, 2, 4, 4, 5, 2, 4, 2, 4, 4, 4, 4, 4, 3, 2, 3, 3, 5, 2, …
## $ Q11       <int> 4, 4, 4, 4, 4, 5, 4, 4, 4, 3, 4, 4, 4, 5, 4, 3, 3, 3, 5, 3, …
## $ Q12       <int> 4, 4, 4, 4, 4, 5, 3, 4, 4, 3, 4, 3, 4, 5, 4, 4, 2, 4, 5, 4, …
## $ Q13       <int> 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 2, 4, 4, 5, 4, 4, 4, 2, 5, 4, …
## $ Q14       <int> 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 3, 4, 4, 5, 4, 4, 4, 4, 5, 3, …
## $ Q15       <int> 4, 4, 3, 4, 4, 4, 3, 4, 4, 3, 1, 4, 4, 5, 4, 4, 4, 3, 4, 2, …
## $ Q16       <int> 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, …
## $ Q17       <int> 4, 3, 4, 4, 4, 2, 4, 4, 4, 4, 3, 2, 5, 4, 4, 3, 4, 4, 4, 5, …
## $ Q18       <int> 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 2, 4, 4, 4, 4, 4, 2, …
## $ Q19       <int> 4, 2, 4, 4, 4, 4, 4, 2, 4, 4, 1, 4, 4, 5, 4, 2, 3, 3, 4, 1, …
## $ Q20       <int> 4, 1, 3, 4, 4, 4, 4, 2, 4, 4, 4, 2, 5, 5, 4, 2, 4, 3, 5, 4, …
## $ Gender1   <int> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, …
## $ EDU1      <int> 1, 1, 2, 2, 1, 1, 4, 3, 2, 1, 1, 3, 2, 1, 1, 1, 4, 2, 1, 2, …
## $ BF        <dbl> 3.4, 4.0, 3.6, 4.0, 4.0, 3.6, 3.6, 3.2, 4.0, 3.2, 4.0, 3.2, …
## $ BM        <dbl> 3.2, 3.4, 3.6, 3.6, 4.0, 4.6, 2.2, 3.2, 3.2, 3.6, 3.8, 3.6, …
## $ Happiness <dbl> 4.0, 4.0, 3.8, 4.0, 4.0, 4.8, 3.8, 4.0, 4.0, 3.4, 2.8, 3.8, …
## $ Peace     <dbl> 4.0, 2.8, 3.8, 4.0, 4.0, 3.8, 4.0, 3.2, 4.0, 3.9, 3.2, 3.2, …
#linear regrssion model
fit<-lm(Happiness~BM+BF+Peace,data=train)
summary(fit)
## 
## Call:
## lm(formula = Happiness ~ BM + BF + Peace, data = train)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.88604 -0.32617 -0.01011  0.33664  2.19432 
## 
## Coefficients:
##             Estimate Std. Error t value             Pr(>|t|)    
## (Intercept)  0.52177    0.08509   6.132         0.0000000011 ***
## BM           0.21000    0.02360   8.900 < 0.0000000000000002 ***
## BF           0.23543    0.02471   9.527 < 0.0000000000000002 ***
## Peace        0.46335    0.02333  19.858 < 0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5453 on 1537 degrees of freedom
## Multiple R-squared:  0.4641, Adjusted R-squared:  0.4631 
## F-statistic: 443.8 on 3 and 1537 DF,  p-value: < 0.00000000000000022
#happiness=0.51388+0.20878*BM+0.24636*BF+0.45747*Peace
predict(fit,newdata=test)
##        4        8       15       21       31       33       35       41 
## 4.203960 3.447336 4.077213 3.471854 4.202461 4.165548 3.576196 3.941793 
##       48       57       59       66       82       83       84       92 
## 1.988073 3.793365 3.793365 3.756452 2.989520 3.791866 4.855655 3.308943 
##      106      107      108      112      122      124      129      134 
## 4.160462 3.260947 3.743281 3.923537 4.939653 4.578230 3.676628 4.385715 
##      135      140      154      156      162      164      166      174 
## 3.625368 2.565166 3.027932 4.020706 3.424769 3.356616 2.634682 4.368370 
##      177      178      185      190      191      198      206      209 
## 3.492036 3.389355 3.363202 3.702194 4.221305 3.371098 3.576196 3.568861 
##      214      220      227      228      238      243      250      265 
## 4.424128 2.650663 4.109790 3.983793 3.781694 3.789778 3.396528 4.062705 
##      268      277      283      287      291      299      302      309 
## 3.567524 2.295826 4.198874 3.936708 2.753506 3.833865 4.114876 3.434029 
##      310      325      330      337      344      349      352      354 
## 3.016261 3.433441 3.897707 2.423323 3.704281 3.499371 3.794864 3.350943 
##      356      366      369      374      375      382      391      401 
## 3.300859 2.800591 3.440615 3.699195 3.270531 3.012674 3.449287 3.263358 
##      403      409      416      417      419      427      432      439 
## 3.716540 3.670954 3.424769 3.978707 3.442114 3.977207 3.751366 3.257360 
##      441      443      445      448      451      460      464      467 
## 3.277116 3.338683 3.276205 2.996693 3.305945 3.800538 4.156875 3.559439 
##      468      472      474      476      483      486      487      502 
## 3.975120 4.305891 3.622370 3.924448 3.462134 4.128635 3.885286 2.853350 
##      505      506      510      519      531      537      560      563 
## 4.526059 3.674541 3.736108 4.981652 2.077158 3.844624 4.109790 3.305945 
##      565      575      579      586      587      588      590      606 
## 3.618783 2.080744 3.881538 3.980206 3.835364 3.529111 4.114876 3.202514 
##      618      619      624      631      632      634      647      650 
## 3.960638 4.077051 4.350889 3.936708 3.929534 3.581870 3.484113 3.440027 
##      652      665      669      684      685      686      688      693 
## 3.810710 2.891175 2.524666 3.502958 4.342217 3.445701 3.455872 3.722214 
##      694      709      712      723      728      734      739      740 
## 3.442702 3.204601 4.161961 2.627509 2.711507 3.027932 3.528787 3.788279 
##      742      745      746      747      756      760      768      769 
## 2.948432 3.988879 3.760038 3.529111 3.484113 3.748367 2.213327 2.208241 
##      770      774      780      794      795      801      804      811 
## 3.033018 2.926589 3.810710 3.410874 3.440027 3.582458 3.090863 4.390801 
##      817      822      823      824      825      841      847      855 
## 3.931622 3.092950 3.494285 3.746280 4.032377 3.389943 3.155429 2.791919 
##      860      866      868      881      883      887      889      892 
## 4.015620 3.531198 4.428302 3.410287 3.218360 2.386409 2.753506 2.660835 
##      893      894      899      900      902      906      908      927 
## 2.517493 2.979510 2.517493 2.208241 1.982987 3.815208 4.156875 3.721626 
##      931      938      945      949      957      958      972      976 
## 3.751366 2.670096 3.353030 3.046777 3.899794 3.610111 3.496960 3.258859 
##      980      982      983      992      998     1007     1008     1010 
## 3.929534 2.711507 2.665921 3.347944 3.265445 4.536231 3.132862 3.758539 
##     1013     1016     1021     1027     1032     1033     1034     1036 
## 3.288012 3.935208 3.243014 3.502958 3.516852 3.045865 3.681126 4.345216 
##     1042     1046     1047     1048     1064     1070     1089     1091 
## 3.585456 3.672454 3.884536 4.153876 3.076517 2.959779 3.040191 3.318204 
##     1098     1106     1108     1109     1115     1117     1123     1131 
## 3.494285 4.059118 3.700694 4.359562 2.617337 4.156875 4.088723 3.487700 
##     1132     1133     1136     1141     1153     1154     1156     1161 
## 3.212686 3.412374 3.544045 3.156928 3.406700 4.784639 3.247512 3.526112 
##     1163     1166     1171     1172     1179     1181     1182     1185 
## 3.155429 4.121461 3.653609 2.480580 3.302358 3.352442 2.874418 4.355975 
##     1189     1192     1194     1197     1205     1219     1220     1225 
## 4.030878 2.844678 3.793365 3.096085 3.434941 3.130775 3.450199 3.201015 
##     1233     1239     1241     1242     1247     1253     1254     1256 
## 3.328512 3.793365 3.486200 3.468267 3.295773 3.501458 4.207547 3.884536 
##     1278     1280     1283     1289     1293     1295     1298     1300 
## 3.138084 3.248100 3.143034 3.704281 3.744193 3.586956 3.841038 3.703169 
##     1307     1308     1309     1310     1318     1320     1329     1334 
## 3.358116 3.798451 3.166189 3.031519 4.030878 3.731798 2.886677 2.844678 
##     1339     1344     1346     1357     1359     1367     1373     1376 
## 3.600850 3.894708 3.073518 3.486200 4.298718 2.893262 2.752007 3.930122 
##     1377     1380     1389     1391     1400     1407     1413     1430 
## 3.515353 3.643463 3.127188 3.008952 3.387856 3.562438 3.219859 3.713541 
##     1442     1460     1466     1468     1472     1475     1479     1480 
## 3.747779 3.248100 3.578283 4.144480 3.092362 3.721626 3.012674 3.389943 
##     1482     1483     1485     1486     1491     1495     1503     1513 
## 3.852709 2.975761 3.351530 3.838951 3.810710 2.979348 2.907608 2.980847 
##     1514     1515     1520     1526     1528     1538     1542     1544 
## 3.400115 3.497872 3.973621 3.177860 3.756452 3.650474 2.854850 4.379130 
##     1549     1552     1556     1562     1567     1576     1581     1584 
## 3.674541 3.706368 3.889622 3.709954 4.090810 3.928035 4.160462 3.492786 
##     1585     1589     1599     1606     1608     1611     1617     1624 
## 3.454373 3.062758 4.177807 3.027344 4.072877 3.870054 3.076517 3.712953 
##     1627     1632     1635     1641     1644     1650     1651     1664 
## 3.856296 2.810175 3.856296 3.311031 3.798451 3.374097 2.765178 3.888123 
##     1671     1673     1674     1677     1682     1687     1694     1705 
## 3.306856 2.924502 3.127776 3.357528 3.076517 3.433441 3.440615 3.306856 
##     1706     1710     1711     1714     1718     1720     1727     1734 
## 3.306856 3.159016 3.484113 3.970034 3.261858 3.473353 2.706421 4.114876 
##     1736     1739     1740     1741     1743     1745     1746     1753 
## 3.061259 4.531145 4.039550 3.370511 3.883037 3.164101 3.125689 4.665227 
##     1754     1755     1759     1770     1771     1772     1773     1774 
## 4.880309 4.324872 3.061259 3.522526 4.028791 4.248047 3.571698 3.479027 
##     1781     1789     1798     1800     1813     1824     1828     1832 
## 4.429802 4.291545 4.266891 3.671542 3.986791 4.198287 3.762126 3.447788 
##     1842     1844     1853     1865     1866     1872     1876     1882 
## 3.377684 4.140894 2.907021 4.291545 3.939382 3.464681 4.255220 3.611610 
##     1883     1884     1897     1909     1911     1914     1919     1925 
## 4.691969 3.508044 2.437081 3.621782 3.747779 3.522526 3.286512 2.685354
lm_p<-predict(fit,newdata=test)
round(predict(fit,newdata=test),1)
##    4    8   15   21   31   33   35   41   48   57   59   66   82   83   84   92 
##  4.2  3.4  4.1  3.5  4.2  4.2  3.6  3.9  2.0  3.8  3.8  3.8  3.0  3.8  4.9  3.3 
##  106  107  108  112  122  124  129  134  135  140  154  156  162  164  166  174 
##  4.2  3.3  3.7  3.9  4.9  4.6  3.7  4.4  3.6  2.6  3.0  4.0  3.4  3.4  2.6  4.4 
##  177  178  185  190  191  198  206  209  214  220  227  228  238  243  250  265 
##  3.5  3.4  3.4  3.7  4.2  3.4  3.6  3.6  4.4  2.7  4.1  4.0  3.8  3.8  3.4  4.1 
##  268  277  283  287  291  299  302  309  310  325  330  337  344  349  352  354 
##  3.6  2.3  4.2  3.9  2.8  3.8  4.1  3.4  3.0  3.4  3.9  2.4  3.7  3.5  3.8  3.4 
##  356  366  369  374  375  382  391  401  403  409  416  417  419  427  432  439 
##  3.3  2.8  3.4  3.7  3.3  3.0  3.4  3.3  3.7  3.7  3.4  4.0  3.4  4.0  3.8  3.3 
##  441  443  445  448  451  460  464  467  468  472  474  476  483  486  487  502 
##  3.3  3.3  3.3  3.0  3.3  3.8  4.2  3.6  4.0  4.3  3.6  3.9  3.5  4.1  3.9  2.9 
##  505  506  510  519  531  537  560  563  565  575  579  586  587  588  590  606 
##  4.5  3.7  3.7  5.0  2.1  3.8  4.1  3.3  3.6  2.1  3.9  4.0  3.8  3.5  4.1  3.2 
##  618  619  624  631  632  634  647  650  652  665  669  684  685  686  688  693 
##  4.0  4.1  4.4  3.9  3.9  3.6  3.5  3.4  3.8  2.9  2.5  3.5  4.3  3.4  3.5  3.7 
##  694  709  712  723  728  734  739  740  742  745  746  747  756  760  768  769 
##  3.4  3.2  4.2  2.6  2.7  3.0  3.5  3.8  2.9  4.0  3.8  3.5  3.5  3.7  2.2  2.2 
##  770  774  780  794  795  801  804  811  817  822  823  824  825  841  847  855 
##  3.0  2.9  3.8  3.4  3.4  3.6  3.1  4.4  3.9  3.1  3.5  3.7  4.0  3.4  3.2  2.8 
##  860  866  868  881  883  887  889  892  893  894  899  900  902  906  908  927 
##  4.0  3.5  4.4  3.4  3.2  2.4  2.8  2.7  2.5  3.0  2.5  2.2  2.0  3.8  4.2  3.7 
##  931  938  945  949  957  958  972  976  980  982  983  992  998 1007 1008 1010 
##  3.8  2.7  3.4  3.0  3.9  3.6  3.5  3.3  3.9  2.7  2.7  3.3  3.3  4.5  3.1  3.8 
## 1013 1016 1021 1027 1032 1033 1034 1036 1042 1046 1047 1048 1064 1070 1089 1091 
##  3.3  3.9  3.2  3.5  3.5  3.0  3.7  4.3  3.6  3.7  3.9  4.2  3.1  3.0  3.0  3.3 
## 1098 1106 1108 1109 1115 1117 1123 1131 1132 1133 1136 1141 1153 1154 1156 1161 
##  3.5  4.1  3.7  4.4  2.6  4.2  4.1  3.5  3.2  3.4  3.5  3.2  3.4  4.8  3.2  3.5 
## 1163 1166 1171 1172 1179 1181 1182 1185 1189 1192 1194 1197 1205 1219 1220 1225 
##  3.2  4.1  3.7  2.5  3.3  3.4  2.9  4.4  4.0  2.8  3.8  3.1  3.4  3.1  3.5  3.2 
## 1233 1239 1241 1242 1247 1253 1254 1256 1278 1280 1283 1289 1293 1295 1298 1300 
##  3.3  3.8  3.5  3.5  3.3  3.5  4.2  3.9  3.1  3.2  3.1  3.7  3.7  3.6  3.8  3.7 
## 1307 1308 1309 1310 1318 1320 1329 1334 1339 1344 1346 1357 1359 1367 1373 1376 
##  3.4  3.8  3.2  3.0  4.0  3.7  2.9  2.8  3.6  3.9  3.1  3.5  4.3  2.9  2.8  3.9 
## 1377 1380 1389 1391 1400 1407 1413 1430 1442 1460 1466 1468 1472 1475 1479 1480 
##  3.5  3.6  3.1  3.0  3.4  3.6  3.2  3.7  3.7  3.2  3.6  4.1  3.1  3.7  3.0  3.4 
## 1482 1483 1485 1486 1491 1495 1503 1513 1514 1515 1520 1526 1528 1538 1542 1544 
##  3.9  3.0  3.4  3.8  3.8  3.0  2.9  3.0  3.4  3.5  4.0  3.2  3.8  3.7  2.9  4.4 
## 1549 1552 1556 1562 1567 1576 1581 1584 1585 1589 1599 1606 1608 1611 1617 1624 
##  3.7  3.7  3.9  3.7  4.1  3.9  4.2  3.5  3.5  3.1  4.2  3.0  4.1  3.9  3.1  3.7 
## 1627 1632 1635 1641 1644 1650 1651 1664 1671 1673 1674 1677 1682 1687 1694 1705 
##  3.9  2.8  3.9  3.3  3.8  3.4  2.8  3.9  3.3  2.9  3.1  3.4  3.1  3.4  3.4  3.3 
## 1706 1710 1711 1714 1718 1720 1727 1734 1736 1739 1740 1741 1743 1745 1746 1753 
##  3.3  3.2  3.5  4.0  3.3  3.5  2.7  4.1  3.1  4.5  4.0  3.4  3.9  3.2  3.1  4.7 
## 1754 1755 1759 1770 1771 1772 1773 1774 1781 1789 1798 1800 1813 1824 1828 1832 
##  4.9  4.3  3.1  3.5  4.0  4.2  3.6  3.5  4.4  4.3  4.3  3.7  4.0  4.2  3.8  3.4 
## 1842 1844 1853 1865 1866 1872 1876 1882 1883 1884 1897 1909 1911 1914 1919 1925 
##  3.4  4.1  2.9  4.3  3.9  3.5  4.3  3.6  4.7  3.5  2.4  3.6  3.7  3.5  3.3  2.7
test$Happiness1<-round(predict(fit,newdata=test),1)
View(test)
#오차가 생기는지 확인
#Happiness-Happiness1=오차