cuadros comparando prevalencia y extension por paises por separado

load("~/Dropbox/odontologia/maestria_anunziatta/BancoUnidoBrasUru/BRASURU(07112013).RData")
library(survey)
## 
## Attaching package: 'survey'
## 
## The following object(s) are masked from 'package:graphics':
## 
##     dotchart
summary(disenio_urubra)
## Stratified 1 - level Cluster Sampling design (with replacement)
## With (83) clusters.
## svydesign(id = ~numer_esc, strata = ~pais, weights = ~round(weight.rec, 
##     1), data = brasuru, nest = TRUE)
## Probabilities:
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 0.00754 0.05620 0.07520 0.07610 0.07690 0.25600 
## Stratum Sizes: 
##             Bra  Uru
## obs        1528 1154
## design.PSU   42   41
## actual.PSU   42   41
## Data variables:
##  [1] "id"                 "pais"               "ficha"             
##  [4] "eta"                "tipoesc"            "sexoinv"           
##  [7] "weight"             "weight.rec"         "numesc"            
## [10] "numer_esc"          "idade"              "socioecon4cat"     
## [13] "socioecon3cat"      "escolmae"           "escolmae13cat"     
## [16] "escolmaerecat23cat" "freqescov"          "freqescovacat"     
## [19] "usofio"             "freqfio"            "usocreme"          
## [22] "idadcreme"          "visidentcatonde"    "visiquando"        
## [25] "fluorprof"          "idadefluor"         "isg."              
## [28] "isg45"              "isg20"              "cposoms"           
## [31] "cpodoms"            "prevoms"            "cposbere"          
## [34] "cpodbere"           "prevbere"           "cposicdas"         
## [37] "cpodicdas"          "previcdas"
names(disenio_urubra$variables)
##  [1] "id"                 "pais"               "ficha"             
##  [4] "eta"                "tipoesc"            "sexoinv"           
##  [7] "weight"             "weight.rec"         "numesc"            
## [10] "numer_esc"          "idade"              "socioecon4cat"     
## [13] "socioecon3cat"      "escolmae"           "escolmae13cat"     
## [16] "escolmaerecat23cat" "freqescov"          "freqescovacat"     
## [19] "usofio"             "freqfio"            "usocreme"          
## [22] "idadcreme"          "visidentcatonde"    "visiquando"        
## [25] "fluorprof"          "idadefluor"         "isg."              
## [28] "isg45"              "isg20"              "cposoms"           
## [31] "cpodoms"            "prevoms"            "cposbere"          
## [34] "cpodbere"           "prevbere"           "cposicdas"         
## [37] "cpodicdas"          "previcdas"
# prevoms,prevbere,cpodoms,cpodbere
summary(disenio_urubra$variables[, c(32, 35, 31, 34)])
##       prevoms      prevbere       cpodoms         cpodbere    
##  1-SinCavi:1105   0-NTL: 932   Min.   : 0.00   Min.   : 0.00  
##  2-conCavi:1577   1-LC :1750   1st Qu.: 0.00   1st Qu.: 0.00  
##                                Median : 1.00   Median : 2.00  
##                                Mean   : 1.56   Mean   : 2.41  
##                                3rd Qu.: 3.00   3rd Qu.: 4.00  
##                                Max.   :15.00   Max.   :26.00

tablas prevalencia

round(svyby(~prevoms, ~pais, disenio_urubra, svymean, na.rm = TRUE)[, 2:5] * 
    100, 1)
##     prevoms1-SinCavi prevoms2-conCavi se.prevoms1-SinCavi
## Bra             44.6             55.4                 2.4
## Uru             38.5             61.5                 2.5
##     se.prevoms2-conCavi
## Bra                 2.4
## Uru                 2.5
round(confint(svyby(~prevoms, ~pais, disenio_urubra, svymean, na.rm = TRUE)) * 
    100, 1)
##                      2.5 % 97.5 %
## Bra:prevoms1-SinCavi  40.0   49.2
## Uru:prevoms1-SinCavi  33.6   43.4
## Bra:prevoms2-conCavi  50.8   60.0
## Uru:prevoms2-conCavi  56.6   66.4

round(svyby(~prevbere, ~pais, disenio_urubra, svymean, na.rm = TRUE)[, 2:5] * 
    100, 1)
##     prevbere0-NTL prevbere1-LC se.prevbere0-NTL se.prevbere1-LC
## Bra          36.5         63.5              2.1             2.1
## Uru          33.7         66.3              2.8             2.8
round(confint(svyby(~prevbere, ~pais, disenio_urubra, svymean, na.rm = TRUE)) * 
    100, 1)
##                   2.5 % 97.5 %
## Bra:prevbere0-NTL  32.4   40.5
## Uru:prevbere0-NTL  28.3   39.1
## Bra:prevbere1-LC   59.5   67.6
## Uru:prevbere1-LC   60.9   71.7

tablas extension


round(svyby(~cpodoms, ~pais, disenio_urubra, svymean, na.rm = TRUE)[, 2:3] * 
    1, 1)
##     cpodoms  se
## Bra     1.4 0.1
## Uru     1.6 0.1
round(confint(svyby(~cpodoms, ~pais, disenio_urubra, svymean, na.rm = TRUE)) * 
    1, 1)
##     2.5 % 97.5 %
## Bra   1.2    1.6
## Uru   1.4    1.9
svyboxplot(cpodoms ~ pais, disenio_urubra, all.outliers = TRUE, horizontal = TRUE, 
    main = "Cpodoms", cex.main = 1, col = c("lightsalmon", "skyblue"))
media_cpodoms <- svyby(~cpodoms, ~pais, disenio_urubra, svymean, na.rm = TRUE)

abline(v = media_cpodoms[1, 2], col = c("red4"), lwd = 2)
abline(v = media_cpodoms[2, 2], col = c("blue4"), lwd = 2)

plot of chunk tablas extension

round(svyby(~cpodbere, ~pais, disenio_urubra, svymean, na.rm = TRUE)[, 2:3] * 
    1, 1)
##     cpodbere  se
## Bra      2.0 0.1
## Uru      2.8 0.2
round(confint(svyby(~cpodbere, ~pais, disenio_urubra, svymean, na.rm = TRUE)) * 
    1, 1)
##     2.5 % 97.5 %
## Bra   1.8    2.2
## Uru   2.4    3.2
svyboxplot(cpodbere ~ pais, disenio_urubra, all.outliers = TRUE, horizontal = TRUE, 
    main = "Cpodbere", cex.main = 1, col = c("lightsalmon", "skyblue"))
media_cpodbere <- svyby(~cpodbere, ~pais, disenio_urubra, svymean, na.rm = TRUE)

abline(v = media_cpodbere[1, 2], col = c("red4"), lwd = 2)
abline(v = media_cpodbere[2, 2], col = c("blue4"), lwd = 2)

plot of chunk tablas extension

disenio_uru <- subset(disenio_urubra, pais == "Uru")
svyttest(I(cpodbere - cpodoms) ~ 0, disenio_uru)
## 
##  Design-based one-sample t-test
## 
## data:  I(cpodbere - cpodoms) ~ 0 
## t = 8.379, df = 40, p-value = 2.441e-10
## alternative hypothesis: true mean is not equal to 0 
## sample estimates:
##  mean 
## 1.164
disenio_bra <- subset(disenio_urubra, pais == "Bra")
svyttest(I(cpodbere - cpodoms) ~ 0, disenio_bra)
## 
##  Design-based one-sample t-test
## 
## data:  I(cpodbere - cpodoms) ~ 0 
## t = 17.24, df = 41, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0 
## sample estimates:
##   mean 
## 0.5625