#Question 1

MacroData <- read.csv("https://vincentarelbundock.github.io/Rdatasets/csv/AER/USMacroSW.csv")

dfMacroData <- MacroData

summary(dfMacroData)
##        X           unemp             cpi             ffrate      
##  Min.   :  1   Min.   : 3.400   Min.   : 27.78   Min.   : 0.930  
##  1st Qu.: 49   1st Qu.: 5.000   1st Qu.: 35.87   1st Qu.: 3.480  
##  Median : 97   Median : 5.700   Median : 87.93   Median : 5.400  
##  Mean   : 97   Mean   : 5.891   Mean   : 91.73   Mean   : 5.953  
##  3rd Qu.:145   3rd Qu.: 6.833   3rd Qu.:143.07   3rd Qu.: 7.760  
##  Max.   :193   Max.   :10.667   Max.   :192.17   Max.   :19.100  
##      tbill            tbond           gbpusd          gdpjp       
##  Min.   : 0.830   Min.   : 1.01   Min.   :112.5   Min.   : 10149  
##  1st Qu.: 3.500   1st Qu.: 3.91   1st Qu.:159.6   1st Qu.: 57632  
##  Median : 5.080   Median : 5.62   Median :185.5   Median :254560  
##  Mean   : 5.435   Mean   : 6.04   Mean   :204.9   Mean   :259306  
##  3rd Qu.: 6.740   3rd Qu.: 7.55   3rd Qu.:246.9   3rd Qu.:482328  
##  Max.   :15.490   Max.   :16.52   Max.   :281.5   Max.   :523638
#Mean unemp~ffrate
MeanRaw.Unemp <- print(mean(dfMacroData$unemp))
## [1] 5.891019
MeanRaw.ffrate <- print(mean(dfMacroData$ffrate))
## [1] 5.953161
#Median unemp~ffrate
MedianRaw.Unemp <- print(median(dfMacroData$unemp))
## [1] 5.7
MedianRaw.ffrate <- print(median(dfMacroData$ffrate))
## [1] 5.4
#Question 2

dfMacro2 <- subset(dfMacroData, ffrate >= 3.0 & unemp >= 3.0, 
                   select = c(ffrate, unemp))

dfMacro2[1:10,]
##    ffrate    unemp
## 2    3.00 4.100000
## 3    3.47 4.233333
## 10   3.39 5.100000
## 11   3.76 5.266667
## 12   3.99 5.600000
## 13   3.84 5.133333
## 14   3.32 5.233333
## 27   3.48 5.500000
## 28   3.38 5.566667
## 29   3.43 5.466667
#Question 3

names(dfMacro2) <- c('Unemployment Rate', 'Federal Funds Rate')

dfMacro2[1:10,]
##    Unemployment Rate Federal Funds Rate
## 2               3.00           4.100000
## 3               3.47           4.233333
## 10              3.39           5.100000
## 11              3.76           5.266667
## 12              3.99           5.600000
## 13              3.84           5.133333
## 14              3.32           5.233333
## 27              3.48           5.500000
## 28              3.38           5.566667
## 29              3.43           5.466667

The mean for both the raw and subset Unemployment have increased, this is because unemployment is generally lower in the US, causing there to be more common in the data set. So when I subset data with conditions, a lot of the lowest unemp rates were removed. The same is also true for Median as well.

#Question 4

summary(dfMacro2)
##  Unemployment Rate Federal Funds Rate
##  Min.   : 3.000    Min.   : 3.400    
##  1st Qu.: 4.700    1st Qu.: 4.808    
##  Median : 5.870    Median : 5.633    
##  Mean   : 6.816    Mean   : 5.877    
##  3rd Qu.: 8.450    3rd Qu.: 7.033    
##  Max.   :19.100    Max.   :10.667
MeanSubset.Unemp <- print(mean(dfMacro2$`Unemployment Rate`))
## [1] 6.816329
MeanSubset.FederalFunds <- print(mean(dfMacro2$`Federal Funds Rate`))
## [1] 5.877004
MedianSubset.Unemp <- print(median(dfMacro2$`Unemployment Rate`))
## [1] 5.87
MedianSubset.FederalFunds <- print(median(dfMacro2$`Federal Funds Rate`))
## [1] 5.633333
#Mean ~ Raw Data vs. Subset Data
MeanRaw.Unemp <- print(mean(dfMacroData$unemp))
## [1] 5.891019
MeanSubset.Unemp <- print(mean(dfMacro2$`Unemployment Rate`))
## [1] 6.816329
MeanRaw.ffrate <- print(mean(dfMacroData$ffrate))
## [1] 5.953161
MeanSubset.FederalFunds <- print(mean(dfMacro2$`Federal Funds Rate`))
## [1] 5.877004
#The mean for raw data vs. subset data has increased as the data was subset

#Median ~ Raw Data vs. Subset Data
MedianRaw.Unemp <- print(median(dfMacroData$unemp))
## [1] 5.7
MedianSubset.Unemp <- print(median(dfMacro2$`Unemployment Rate`))
## [1] 5.87
MedianRaw.ffrate <- print(median(dfMacroData$ffrate))
## [1] 5.4
MedianSubset.FederalFunds <- print(median(dfMacro2$`Federal Funds Rate`))
## [1] 5.633333
#Question 5

head(dfMacro2)
##    Unemployment Rate Federal Funds Rate
## 2               3.00           4.100000
## 3               3.47           4.233333
## 10              3.39           5.100000
## 11              3.76           5.266667
## 12              3.99           5.600000
## 13              3.84           5.133333
dfUnempLevels <- cbind(dfMacro2, UnempLevels = factor(NA, 
    levels = c("LowUnemp", "MidUnemp", "HighUnemp")))
head(dfUnempLevels)
##    Unemployment Rate Federal Funds Rate UnempLevels
## 2               3.00           4.100000        <NA>
## 3               3.47           4.233333        <NA>
## 10              3.39           5.100000        <NA>
## 11              3.76           5.266667        <NA>
## 12              3.99           5.600000        <NA>
## 13              3.84           5.133333        <NA>
dfUnempLevels[dfUnempLevels$`Unemployment Rate` <= 5.0, "UnempLevels"] <- "LowUnemp"

dfUnempLevels[dfUnempLevels$`Unemployment Rate` > 5.0 & 
                  dfUnempLevels$`Unemployment Rate` <= 6.5, "UnempLevels"] <- "MidUnemp"

dfUnempLevels[dfUnempLevels$`Unemployment Rate` >= 6.5, "UnempLevels"] <- "HighUnemp"

head(dfUnempLevels)
##    Unemployment Rate Federal Funds Rate UnempLevels
## 2               3.00           4.100000    LowUnemp
## 3               3.47           4.233333    LowUnemp
## 10              3.39           5.100000    LowUnemp
## 11              3.76           5.266667    LowUnemp
## 12              3.99           5.600000    LowUnemp
## 13              3.84           5.133333    LowUnemp
#Question 6

dfUnempLevels[1:45, ]
##    Unemployment Rate Federal Funds Rate UnempLevels
## 2               3.00           4.100000    LowUnemp
## 3               3.47           4.233333    LowUnemp
## 10              3.39           5.100000    LowUnemp
## 11              3.76           5.266667    LowUnemp
## 12              3.99           5.600000    LowUnemp
## 13              3.84           5.133333    LowUnemp
## 14              3.32           5.233333    LowUnemp
## 27              3.48           5.500000    LowUnemp
## 28              3.38           5.566667    LowUnemp
## 29              3.43           5.466667    LowUnemp
## 30              3.50           5.200000    LowUnemp
## 31              3.45           5.000000    LowUnemp
## 32              3.85           4.966667    LowUnemp
## 33              4.04           4.900000    LowUnemp
## 34              4.04           4.666667    LowUnemp
## 35              4.01           4.366667    LowUnemp
## 36              4.32           4.100000    LowUnemp
## 37              4.65           3.866667    LowUnemp
## 38              5.17           3.833333    MidUnemp
## 39              5.40           3.766667    MidUnemp
## 40              5.40           3.700000    MidUnemp
## 41              4.53           3.833333    LowUnemp
## 42              3.98           3.833333    LowUnemp
## 43              3.99           3.800000    LowUnemp
## 44              4.51           3.900000    LowUnemp
## 45              5.05           3.733333    MidUnemp
## 46              6.07           3.566667    MidUnemp
## 47              5.78           3.533333    MidUnemp
## 48              6.02           3.400000    MidUnemp
## 49              6.79           3.400000   HighUnemp
## 50              8.90           3.433333   HighUnemp
## 51              9.15           3.566667   HighUnemp
## 52              8.97           3.566667   HighUnemp
## 53              7.76           4.166667   HighUnemp
## 54              7.60           4.766667   HighUnemp
## 55              6.29           5.166667    MidUnemp
## 56              4.90           5.833333    LowUnemp
## 57              3.71           5.933333    LowUnemp
## 58              4.91           5.900000    LowUnemp
## 59              5.55           6.033333    MidUnemp
## 60              4.14           5.933333    LowUnemp
## 61              3.83           5.766667    LowUnemp
## 62              4.46           5.700000    LowUnemp
## 63              4.87           5.566667    LowUnemp
## 64              5.33           5.366667    MidUnemp
#Question 7 ~ Bonus


git.MacroData <- read.csv("https://raw.githubusercontent.com/jonburns2454/USMacroData/master/USMacroSW.csv")


head(git.MacroData)
##   X    unemp      cpi ffrate tbill tbond   gbpusd   gdpjp
## 1 1 3.933333 27.77667   2.96  3.08  3.42 279.3047 10149.0
## 2 2 4.100000 28.01333   3.00  3.29  3.65 279.0237 10904.0
## 3 3 4.233333 28.26333   3.47  3.53  4.07 278.5088 11231.0
## 4 4 4.933333 28.40000   2.98  3.04  3.18 280.5796 11075.0
## 5 5 6.300000 28.73667   1.20  1.30  1.84 281.5398 10973.0
## 6 6 7.366667 28.93000   0.93  0.83  1.23 281.1111 11325.3