For 2012 correlation
teamRank = c(1,2,3,3,4,4,4,4,5,5) # Create teh Vector teamRank
wins2012 = c(94,88,95,88,93,94,98,97,93,94) # Create the vector wins2012
Let us find the correlation between Team Rank and the number of
winds.
cor(teamRank,wins2012)
[1] 0.3477129
We can see that there is a very low correlation between team rank and
wins for the year 2012. This correlation is 0.34 which is fairly less
than 50%.
Lets run some test statistics to see if the p value.
cor.test(teamRank,wins2012)
Pearson's product-moment correlation
data: teamRank and wins2012
t = 1.0489, df = 8, p-value = 0.3249
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.3609319 0.8018015
sample estimates:
cor
0.3477129
We can see the p value is not significant. So we can Not reject the
null, that there is no correlation. So we must accept that there is no
correlation.
For 2013 correlation
teamRank2 = c(1,2,3,3,4,4,4,4,5,5)
wins2013 = c(97,97,92,93,92,96,94,96,92,90)
cor(teamRank2,wins2013)
[1] -0.6556945
We can see that there is some negative correlation between a teams
rank and wins. So apparantely the more you win your chance of lower rank
increases, which is highly counter intuitive. Maybe this is due to
exhaustion, maybe this indication would lead team management to only
prioritize games that will influence their rank in the leauge.
Lets run some test statistics to inspect the p value.
cor.test(teamRank2,wins2013)
Pearson's product-moment correlation
data: teamRank2 and wins2013
t = -2.4563, df = 8, p-value = 0.03955
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.90974104 -0.04439732
sample estimates:
cor
-0.6556945
We can see that the p value is less than alpha so we can reject hO
(that there is no correlation). So in rejecting hO we acccept the turth
that there is a correlation, which we sae already to be: -0.65.
LS0tCnRpdGxlOiAiSW4tY2xhc3MgYWN0aXZpdHkgMTA6IENvcnJlbGF0aW9uIGJldHdlZW4gdGVhbXMgcmFuayBhbmQgd2lucwoiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCiMjIyBGb3IgMjAxMiBjb3JyZWxhdGlvbiAKYGBge3J9CnRlYW1SYW5rID0gYygxLDIsMywzLDQsNCw0LDQsNSw1KSAjIENyZWF0ZSB0ZWggVmVjdG9yIHRlYW1SYW5rCndpbnMyMDEyID0gYyg5NCw4OCw5NSw4OCw5Myw5NCw5OCw5Nyw5Myw5NCkgIyBDcmVhdGUgdGhlIHZlY3RvciB3aW5zMjAxMgpgYGAKCkxldCB1cyBmaW5kIHRoZSBjb3JyZWxhdGlvbiBiZXR3ZWVuIFRlYW0gUmFuayBhbmQgdGhlIG51bWJlciBvZiB3aW5kcy4gCmBgYHtyfQpjb3IodGVhbVJhbmssd2luczIwMTIpCmBgYApXZSBjYW4gc2VlIHRoYXQgdGhlcmUgaXMgYSB2ZXJ5IGxvdyBjb3JyZWxhdGlvbiBiZXR3ZWVuIHRlYW0gcmFuayBhbmQgd2lucyBmb3IgdGhlIHllYXIgMjAxMi4gVGhpcyBjb3JyZWxhdGlvbiBpcyAwLjM0IHdoaWNoIGlzIGZhaXJseSBsZXNzIHRoYW4gNTAlLgoKTGV0cyBydW4gc29tZSB0ZXN0IHN0YXRpc3RpY3MgdG8gc2VlIGlmIHRoZSBwIHZhbHVlLiAKCmBgYHtyfQpjb3IudGVzdCh0ZWFtUmFuayx3aW5zMjAxMikKYGBgCldlIGNhbiBzZWUgdGhlIHAgdmFsdWUgaXMgbm90IHNpZ25pZmljYW50LiBTbyB3ZSBjYW4gTm90IHJlamVjdCB0aGUgbnVsbCwgdGhhdCB0aGVyZSBpcyBubyBjb3JyZWxhdGlvbi4gU28gd2UgbXVzdCBhY2NlcHQgdGhhdCB0aGVyZSBpcyBubyBjb3JyZWxhdGlvbi4gIAoKCgojIyMgRm9yIDIwMTMgY29ycmVsYXRpb24gCgpgYGB7cn0KdGVhbVJhbmsyID0gYygxLDIsMywzLDQsNCw0LDQsNSw1KQp3aW5zMjAxMyA9IGMoOTcsOTcsOTIsOTMsOTIsOTYsOTQsOTYsOTIsOTApCmBgYAoKCgpgYGB7cn0KY29yKHRlYW1SYW5rMix3aW5zMjAxMykKYGBgCldlIGNhbiBzZWUgdGhhdCB0aGVyZSBpcyBzb21lIG5lZ2F0aXZlIGNvcnJlbGF0aW9uIGJldHdlZW4gYSB0ZWFtcyByYW5rIGFuZCB3aW5zLiBTbyBhcHBhcmFudGVseSB0aGUgbW9yZSB5b3Ugd2luIHlvdXIgY2hhbmNlIG9mIGxvd2VyIHJhbmsgaW5jcmVhc2VzLCB3aGljaCBpcyBoaWdobHkgY291bnRlciBpbnR1aXRpdmUuIE1heWJlIHRoaXMgaXMgZHVlIHRvIGV4aGF1c3Rpb24sIG1heWJlIHRoaXMgaW5kaWNhdGlvbiB3b3VsZCBsZWFkIHRlYW0gbWFuYWdlbWVudCB0byBvbmx5IHByaW9yaXRpemUgZ2FtZXMgdGhhdCB3aWxsIGluZmx1ZW5jZSB0aGVpciByYW5rIGluIHRoZSBsZWF1Z2UuIAoKTGV0cyBydW4gc29tZSB0ZXN0IHN0YXRpc3RpY3MgdG8gaW5zcGVjdCB0aGUgcCB2YWx1ZS4gCmBgYHtyfQpjb3IudGVzdCh0ZWFtUmFuazIsd2luczIwMTMpCmBgYAoKV2UgY2FuIHNlZSB0aGF0IHRoZSBwIHZhbHVlIGlzIGxlc3MgdGhhbiBhbHBoYSBzbyB3ZSBjYW4gcmVqZWN0IGhPICh0aGF0IHRoZXJlIGlzIG5vIGNvcnJlbGF0aW9uKS4gU28gaW4gcmVqZWN0aW5nIGhPIHdlIGFjY2NlcHQgdGhlIHR1cnRoIHRoYXQgdGhlcmUgaXMgYSBjb3JyZWxhdGlvbiwgd2hpY2ggd2Ugc2FlIGFscmVhZHkgdG8gYmU6IC0wLjY1Lg==