APLICANDO LOS CONOCIMIENTOS DE RSTUDIO
En este documento se presentan los ejercicios resuletos del taller #10 haciendo uso de rmarkdown
AUTORES
COLABORACIÓN
-Utilizando la base de datos interna mtcars, resolver los siguientes enunciados:
-Seleccionamos las 3 primeras columnas del dataset mtcars y mostramos la cabecera
a3<-head(select(mtcars, 1:3))
a3
## mpg cyl disp
## Mazda RX4 21.0 6 160
## Mazda RX4 Wag 21.0 6 160
## Datsun 710 22.8 4 108
## Hornet 4 Drive 21.4 6 258
## Hornet Sportabout 18.7 8 360
## Valiant 18.1 6 225
-Utiliza la ayuda ?select_helpers para que observes el resultado
?select_helpers
## starting httpd help server ... done
# << ?select_helpers: Permite observar la funcion select >>
# << con mas detalles en Help,en pocas palabras, nos >>
# << muestra todas las herramientas de la función select.>>
-Seleccionar las columnas que empiezan por d
head(select(mtcars,starts_with("d")))
## disp drat
## Mazda RX4 160 3.90
## Mazda RX4 Wag 160 3.90
## Datsun 710 108 3.85
## Hornet 4 Drive 258 3.08
## Hornet Sportabout 360 3.15
## Valiant 225 2.76
-Seleccionar las columnas que terminan por p
head(select(mtcars, ends_with("p")))
## disp hp
## Mazda RX4 160 110
## Mazda RX4 Wag 160 110
## Datsun 710 108 93
## Hornet 4 Drive 258 110
## Hornet Sportabout 360 175
## Valiant 225 105
-head(select( mtcars, -drat, -am )) (Explica que resultado obtienes ?):
head(select(mtcars,-drat,-am))
## mpg cyl disp hp wt qsec vs gear carb
## Mazda RX4 21.0 6 160 110 2.620 16.46 0 4 4
## Mazda RX4 Wag 21.0 6 160 110 2.875 17.02 0 4 4
## Datsun 710 22.8 4 108 93 2.320 18.61 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.215 19.44 1 3 1
## Hornet Sportabout 18.7 8 360 175 3.440 17.02 0 3 2
## Valiant 18.1 6 225 105 3.460 20.22 1 3 1
#EXPLICACION #Selecciona todas las columnas de mtcars, sin embargo, las columnas:
#drat y am quedan excluidas debido al signo menos.
-head(select( mtcars, contains( “a” ) )) (Explica que resultado obtienes ?):
head(select(mtcars,contains("a")))
## drat am gear carb
## Mazda RX4 3.90 1 4 4
## Mazda RX4 Wag 3.90 1 4 4
## Datsun 710 3.85 1 4 1
## Hornet 4 Drive 3.08 0 3 1
## Hornet Sportabout 3.15 0 3 2
## Valiant 2.76 0 3 1
-head(filter( mtcars, mpg > 20, gear == 4)) (Explica que resultado obtienes ?)
head(filter( mtcars, mpg > 20, gear == 4))
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
#EXPLICACION: Selecciona las columnas de mtcars, que cumplan con de condicion de:
#cuando su mpg es mayor a 20 y el engranaje sea igual a 4.
-Seleccionar los sujetos con tipo de transmisión (am) 1 que, además, tienen 6 cilindros o menos
filter(mtcars, am == 1 & cyl <= 6)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
-Seleccionar los sujetos que bien consumen menos de 21 mpg o bien tienen menos de 3 carburantes (carb) y menos de 4 engranajes (gear)
filter(mtcars, mpg < 21 | carb < 3 & gear < 4)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
-Ordena por cilindrada (cyl) y por desplazamiento (disp)
arrange(mtcars, cyl, disp)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
mutate(mtcars, kilogramos= wt*0.45)%>%head
## mpg cyl disp hp drat wt qsec vs am gear carb kilogramos
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 1.17900
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 1.29375
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 1.04400
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 1.44675
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 1.54800
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1 1.55700
grupo_disp <- group_by(mtcars, disp)
grupo_disp
## # A tibble: 32 × 11
## # Groups: disp [27]
## mpg cyl disp hp drat wt qsec vs am gear carb
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
## 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
## 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
## 4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
## 5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
## 6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
## 7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
## 8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
## 9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
## 10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
## # ℹ 22 more rows
# Se calcula la media de disp usando la función summarise:
#summarise(grupo_disp, mean(disp))
#<< PASO 2 >>._ Tambien se puede hacer de la siguiente forma;
#mtcars%>%summarise(media_disp= mean(disp))%>%head
-summarise(group_by(mtcars, cyl), max = max(disp)) (Explica que resultado obtienes ?)
#<<PASO 1 >>.- Ejecutamos el código presentado
summarise(group_by(mtcars, cyl), max = max(disp))
## # A tibble: 3 × 2
## cyl max
## <dbl> <dbl>
## 1 4 147.
## 2 6 258
## 3 8 472
#<< PASO 2 >>._ Explicación: Agrupa los datos del cilindraje por su valor
# y obtiene el máximo de ese conjunto de datos.
#<< PASO 1 >>._ Ejecutamos el código presentado:
mtcars %>% select( mpg:disp )%>% head
## mpg cyl disp
## Mazda RX4 21.0 6 160
## Mazda RX4 Wag 21.0 6 160
## Datsun 710 22.8 4 108
## Hornet 4 Drive 21.4 6 258
## Hornet Sportabout 18.7 8 360
## Valiant 18.1 6 225
#<< PASO 2 >>._ Explicación: Selecciona las columnas desde mpg hasta disp
# y nos muestra los 6 primeros valores de esta.
head(select(select(mtcars, contains("a")), -drat, -am))
## gear carb
## Mazda RX4 4 4
## Mazda RX4 Wag 4 4
## Datsun 710 4 1
## Hornet 4 Drive 3 1
## Hornet Sportabout 3 2
## Valiant 3 1
#<< PASO 2 >>._ Explicación: Selecciona las columnas que contengan una
# letra a en su encabezado a excepción de drat y am.
-Utilizando pipes ejecuta el ejercicio 15
#<< PASO 1 >>._ utilizamos la siguiente sintáxis
mtcars %>%
select((contains("a")), -drat, -am)
## gear carb
## Mazda RX4 4 4
## Mazda RX4 Wag 4 4
## Datsun 710 4 1
## Hornet 4 Drive 3 1
## Hornet Sportabout 3 2
## Valiant 3 1
## Duster 360 3 4
## Merc 240D 4 2
## Merc 230 4 2
## Merc 280 4 4
## Merc 280C 4 4
## Merc 450SE 3 3
## Merc 450SL 3 3
## Merc 450SLC 3 3
## Cadillac Fleetwood 3 4
## Lincoln Continental 3 4
## Chrysler Imperial 3 4
## Fiat 128 4 1
## Honda Civic 4 2
## Toyota Corolla 4 1
## Toyota Corona 3 1
## Dodge Challenger 3 2
## AMC Javelin 3 2
## Camaro Z28 3 4
## Pontiac Firebird 3 2
## Fiat X1-9 4 1
## Porsche 914-2 5 2
## Lotus Europa 5 2
## Ford Pantera L 5 4
## Ferrari Dino 5 6
## Maserati Bora 5 8
## Volvo 142E 4 2
#<< PASO 2 >>._ Se puede usar la siguiente sintáxis
# mtcars%>%select(contains("a"))%>%select(-drat, -am)%>%head
#<< PASO 1 >>._ Ejecutamos el código presentado:
mtcars_filtered = filter(mtcars, wt > 1.5)
mtcars_grouped = group_by(mtcars_filtered, cyl)
summarise(mtcars_grouped, mn = mean(mpg), sd = sd(mpg))
## # A tibble: 3 × 3
## cyl mn sd
## <dbl> <dbl> <dbl>
## 1 4 26.7 4.51
## 2 6 19.7 1.45
## 3 8 15.1 2.56
#<< PASO 2 >>._Explicación:
#Se obtiene la media y la desviación estándar de la columna mpg,
#agrupadas según su cilindraje y siempre y cuando su wt sea mayor a 1.5.
-Utilizando pipes ejecuta el ejercicio 17
# %>% <- pipes
# << PASO 1 >>. utlizamos el codigo head para ver la base de datos que se utilizará
#head(mtcars)
# << PASO 2 >>. Utilizando los pipes realizamos el codigo del ejercicio 17
mtcars%>%
filter(wt>1.5)%>%
group_by(cyl)%>%
summarise(mn=mean(mpg),sd=sd(mpg))%>%
# << PASO 3 >>. Utilizamos el comando head para mostrar los resultados
head
## # A tibble: 3 × 3
## cyl mn sd
## <dbl> <dbl> <dbl>
## 1 4 26.7 4.51
## 2 6 19.7 1.45
## 3 8 15.1 2.56
dplyr
y recomendable utilizar pipes %>% para los siguientes
ejercicios# Activamos la libreria dplyr para realizar los siguientes ejercicios
#library(dplyr)
vuelos.csv situado en http://gauss.inf.um.es/datos/; en local o localiza la
url donde se encuentra:# << PASO 1 >>. buscamos el archivo vuelos.csv en el link
# << PASO 2 >>. Lo ponemos en una variable para poder usar el archivo
url<-"http://gauss.inf.um.es/datos/vuelos.csv"
head(read.csv(file = url,header = T,sep = ","))
## date hour minute dep arr dep_delay arr_delay carrier flight dest
## 1 2011-01-01 14 0 1400 1500 0 -10 AA 428 DFW
## 2 2011-01-02 14 1 1401 1501 1 -9 AA 428 DFW
## 3 2011-01-03 13 52 1352 1502 -8 -8 AA 428 DFW
## 4 2011-01-04 14 3 1403 1513 3 3 AA 428 DFW
## 5 2011-01-05 14 5 1405 1507 5 -3 AA 428 DFW
## 6 2011-01-06 13 59 1359 1503 -1 -7 AA 428 DFW
## plane cancelled time dist
## 1 N576AA 0 40 224
## 2 N557AA 0 45 224
## 3 N541AA 0 48 224
## 4 N403AA 0 39 224
## 5 N492AA 0 44 224
## 6 N262AA 0 45 224
# << PASO 3 >>. Utilizamos la función head
# para visualizar el archivo vuelos.csv
-Descarga el archivo y Guarda los datos en una variable llamada
vuelos
# << PASO 1 >>. Ubicamos la dirección del archivo vuelos.csv que se va a descargar
url<-("http://gauss.inf.um.es/datos/vuelos.csv")
url
## [1] "http://gauss.inf.um.es/datos/vuelos.csv"
# << PASO 2 >>. Ponemos la dirección en donde se descargara el archivo
destino<-"C:\\Users\\PC\\Downloads\\vuelos.csv" #<- direccion donde se guardara el archivo descargado: Archivo:carpeta creada para guardar el archivo.csv
# << PASO 3 >>. Utilizando el comando download.file descargaremos el archivo
download.file(url,destino)
# << PASO 4 >>. Guardamos los datos en una variable y con el comando head visualizamos los primeros valores
vuelos<-read.csv(destino,header = T,sep = ",")
head(vuelos)
## date hour minute dep arr dep_delay arr_delay carrier flight dest
## 1 2011-01-01 14 0 1400 1500 0 -10 AA 428 DFW
## 2 2011-01-02 14 1 1401 1501 1 -9 AA 428 DFW
## 3 2011-01-03 13 52 1352 1502 -8 -8 AA 428 DFW
## 4 2011-01-04 14 3 1403 1513 3 3 AA 428 DFW
## 5 2011-01-05 14 5 1405 1507 5 -3 AA 428 DFW
## 6 2011-01-06 13 59 1359 1503 -1 -7 AA 428 DFW
## plane cancelled time dist
## 1 N576AA 0 40 224
## 2 N557AA 0 45 224
## 3 N541AA 0 48 224
## 4 N403AA 0 39 224
## 5 N492AA 0 44 224
## 6 N262AA 0 45 224
-Selecciona los vuelos con destino SFO u
OAK utilizando las funciones del paquete dplyr. ¿Con
cuantos vuelos nos quedamos?
# << PASO 1 >>. Utilizando los datos de la variable vuelos filtraremos
#los vuelos a SFO o OAK
vSFO_OAK<-(filter(vuelos,(dest=="SFO"|dest=="OAK")))
# << PASO 2 >>. Con el comando head visualizaremos los primeros casos seleccionados
head(vSFO_OAK)
## date hour minute dep arr dep_delay arr_delay carrier flight dest
## 373 2011-01-31 8 51 851 1052 1 -27 CO 170 SFO
## 389 2011-01-31 11 29 1129 1351 4 1 CO 270 SFO
## 402 2011-01-31 14 32 1432 1656 7 5 CO 370 SFO
## 436 2011-01-31 17 48 1748 2001 3 -4 CO 570 SFO
## 467 2011-01-31 21 43 2143 2338 50 24 CO 770 SFO
## 468 2011-01-31 7 29 729 1002 -1 2 CO 771 SFO
## plane cancelled time dist
## 373 N35407 0 225 1635
## 389 N37420 0 228 1635
## 402 N27213 0 229 1635
## 436 N75436 0 236 1635
## 467 N37281 0 224 1635
## 468 N26226 0 237 1635
# nota: nos quedamos con 1121 vuelos de los dos destinos seleccionados
vuelos%>%select(dest, dep_delay)%>%
filter(dep_delay >60)%>%
group_by(dest)%>%
summarise(destino_retraso= n_distinct(dep_delay))%>%head
## # A tibble: 6 × 2
## dest destino_retraso
## <chr> <int>
## 1 ABQ 28
## 2 AEX 13
## 3 AMA 11
## 4 ASE 6
## 5 ATL 105
## 6 AUS 49
select para seleccionar las variables relacionadas con los
retrasos (delay)select(vuelos, dep_delay, arr_delay)%>%head
## dep_delay arr_delay
## 1 0 -10
## 2 1 -9
## 3 -8 -8
## 4 3 3
## 5 5 -3
## 6 -1 -7
select(vuelos, contains("delay"))%>%head
## dep_delay arr_delay
## 1 0 -10
## 2 1 -9
## 3 -8 -8
## 4 3 3
## 5 5 -3
## 6 -1 -7
vuelos%>%select(dep_delay, arr_delay)%>%head
## dep_delay arr_delay
## 1 0 -10
## 2 1 -9
## 3 -8 -8
## 4 3 3
## 5 5 -3
## 6 -1 -7
vuelos%>%select(6,7)%>%head
## dep_delay arr_delay
## 1 0 -10
## 2 1 -9
## 3 -8 -8
## 4 3 3
## 5 5 -3
## 6 -1 -7
vuelos%>%
select(date, hour, dep_delay)%>%
group_by(date)%>%
summarise(media= mean(dep_delay, na.rm=T),
mediana= median(dep_delay, na.rm=T),
cuartil_75= quantile(dep_delay, 0.75, na.rm=T))%>%head
## # A tibble: 6 × 4
## date media mediana cuartil_75
## <chr> <dbl> <dbl> <dbl>
## 1 2011-01-01 10.7 3 15
## 2 2011-01-02 15.7 7 20
## 3 2011-01-03 13.4 4 18
## 4 2011-01-04 11.9 5 18
## 5 2011-01-05 6.33 1 8.5
## 6 2011-01-06 5.28 0 7
vuelos%>%select(dep_delay, date, hour, flight)%>%
filter(flight> 10)%>%
group_by(date)%>%
summarise(media_retraso= mean(dep_delay, na.rm=T),
cantidad_vuelos_x_dia= n_distinct(flight))%>%head
## # A tibble: 6 × 3
## date media_retraso cantidad_vuelos_x_dia
## <chr> <dbl> <int>
## 1 2011-01-01 10.6 531
## 2 2011-01-02 15.7 649
## 3 2011-01-03 13.6 668
## 4 2011-01-04 12.0 554
## 5 2011-01-05 6.42 561
## 6 2011-01-06 5.34 629
#install.packages("RODBC")
#library(RODBC)
#conexion<- odbcConnect("taller_10", uid= "root", pwd= "root")
#vuelos1<- sqlQuery(conexion, "SELECT * FROM taller_10.vuelos;")
#head(vuelos1)