• This code makes and compares multiple generalized linear models of the experiment data with jellyfish bimass vs. total copepod density.
  • A best fit model is chosen, and the results are visualized.
  • Link to report here: https://rpubs.com/HailaSchultz/exp_GLM-AllCopepods

load packages

library(MASS)
library(ggplot2)
library(ggeffects)
library(dplyr)
library(scales)

Set up data

Read database into R. If current database changes, just change the path

Database <- read.csv("/Users/hailaschultz/Dropbox/Other studies/Aurelia project/Data Analysis/data/current_data/Final_Aurelia_Database_Jan11_2023.csv")

Add control tanks

First, read in the file that designates different samples to tanks with jellies other, tanks with zero jellies sampled at the beginning of the experiment remove, and tanks with zero jellies sampled at the end of the experiment zero

Control_tanks <- read.csv("/Users/hailaschultz/Dropbox/Other studies/Aurelia project/Data Analysis/data/current_data/Control_Tanks.csv")

Add control tank data to the database file

Database$Control_info <- Control_tanks$c1[match(Database$Sample.Code, Control_tanks$Sample.Code)]

Subset data

Subset to trials with large jellies where the number of jellies in the tanks was manipulated

Exp_numb_trials<- subset(Database, Trial.Type=='Number')
Exp_numb_large<-subset(Exp_numb_trials,Jelly.Size=="Large")

remove aug 22 2019 - the jellies we used for this experiment were younger/smaller than the other experiments, so I decided to omit it from analysis

Exp_sub<-subset(Exp_numb_large,Sample.Date!="08/22/2019")

remove tanks sampled at the beginning of experiment - we decided not to use these tanks because they were different than the tanks with zero jellies sampled at the end of the experiment and didn’t add anything beneficial

Exp_sub<-subset(Exp_sub,Control_info!="remove")

Prepare data

#convert sample year to a factor
Exp_sub$Sample.Year<- as.factor(Exp_sub$Sample.Year)
#Rename Vars (get the dots out)
Exp_sub$Jelly.Mass<-Exp_sub$Jelly.Mass..g.
Exp_sub$Density<-Exp_sub$Density....m3.
#calculate jelly density
Exp_sub$Jelly.Density<-Exp_sub$Jelly.Mass/Exp_sub$Vol.Filtered..m3.
#add 1 to jelly  density for analyses that prohibit zeroes
Exp_sub$Jelly.Density <-Exp_sub$Jelly.Density
colnames(Exp_sub)
##  [1] "BugSampleID"          "Project"              "Sample.Code"         
##  [4] "Sampling.Group"       "Station"              "Site"                
##  [7] "Site.Name"            "Basin"                "Sub.Basin"           
## [10] "Latitude"             "Longitude"            "Sample.Date"         
## [13] "Sample.Year"          "Sample.Month"         "Sample.Time"         
## [16] "Tow.Type"             "Mesh.Size"            "Station.Depth..m."   
## [19] "Flow.meter..revs."    "Broad.Group"          "Mid.Level.Group"     
## [22] "X1st.Word.Taxa"       "Genus.species"        "Life.History.Stage"  
## [25] "Total.Ct"             "Density....m3."       "Vol.Filtered..m3."   
## [28] "Jelly.Mass..g."       "Number.of.Jellies"    "Trial.Time"          
## [31] "Trial.Type"           "Jelly.Size"           "Jelly.Density....m3."
## [34] "Jelly.Density..g.m3." "Location"             "Control_info"        
## [37] "Jelly.Mass"           "Density"              "Jelly.Density"

Subset

Subset data:The mean of jelly density is taken because this should be the same number for all taxa in each tank.

AllCop<-subset(Exp_sub, Broad.Group == "Copepod")
AllCop <- AllCop %>%
  group_by(Sample.Code, Station,Sample.Date,Sample.Year,Control_info) %>%
  summarise(
    CopDensity = sum(Density),
    Jelly.Density = mean(Jelly.Density))

Control geometric means

Calculate the geometric mean of the zero-jelly tanks to use as a control.

AllCop$Control_info_combined <- paste(AllCop$Sample.Date, AllCop$Control_info)
AllCop2<- AllCop %>%
  group_by(Control_info,Control_info_combined,Sample.Date) %>%
  summarise(
    ave = exp(mean(log(CopDensity))))
AllCop3<-subset(AllCop2,Control_info=="zero")
# match the geometric mean of zero jelly tanks to each experiment
AllCop$Control<- AllCop3$ave[match(AllCop$Sample.Date, AllCop3$Sample.Date)]

Examine Data

Histograms of Jellyfish Density and Copepod Density

hist(AllCop$CopDensity) 

hist(AllCop$Jelly.Density) 

See if years are different

boxplot(CopDensity~Sample.Year, data=AllCop)

The years do look different - we may want to include in the model. Stocking densities in 2019 were higher than they were in 2020.

Plot Jellyfish Density against zooplankton density

ggplot(AllCop, aes(x=Jelly.Density, y=CopDensity)) + geom_point(aes(colour=Sample.Date))

Stocking density varies a lot from experiment to experiment, but there are no high copepod density values at the high jelly density tanks. Experiment days with higher stocking densities still had quite a few copepods left over 50% at the end of the experiments in the high jelly tanks. This could indicate that they ate to fullness. # Family Options ## Negative Binomial Distribution

#round to integers
AllCop$CopDensity_round<-round(as.numeric(AllCop$CopDensity), 0)
AllCop$Control_round<-round(as.numeric(AllCop$Control), 0)
#run model
AllCop_model1 <- glm.nb(CopDensity_round~Jelly.Density, data = AllCop)
summary(AllCop_model1)
## 
## Call:
## glm.nb(formula = CopDensity_round ~ Jelly.Density, data = AllCop, 
##     init.theta = 1.318787584, link = log)
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   11.2594948  0.1469756  76.608  < 2e-16 ***
## Jelly.Density -0.0001852  0.0000585  -3.166  0.00155 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Negative Binomial(1.3188) family taken to be 1)
## 
##     Null deviance: 84.884  on 64  degrees of freedom
## Residual deviance: 72.829  on 63  degrees of freedom
## AIC: 1555.9
## 
## Number of Fisher Scoring iterations: 1
## 
## 
##               Theta:  1.319 
##           Std. Err.:  0.209 
## 
##  2 x log-likelihood:  -1549.868
plot(AllCop_model1)

Gaussian distribution

AllCop_model2<-glm(CopDensity~Jelly.Density, data= AllCop, family="gaussian")
summary(AllCop_model2)
## 
## Call:
## glm(formula = CopDensity ~ Jelly.Density, family = "gaussian", 
##     data = AllCop)
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   81796.863   8122.809  10.070 9.53e-15 ***
## Jelly.Density   -12.362      3.233  -3.824 0.000304 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for gaussian family taken to be 2316097082)
## 
##     Null deviance: 1.7978e+11  on 64  degrees of freedom
## Residual deviance: 1.4591e+11  on 63  degrees of freedom
## AIC: 1590
## 
## Number of Fisher Scoring iterations: 2
plot(AllCop_model2)

Gamma distribution

AllCop_model3<-glm(CopDensity~Jelly.Density, data= AllCop, family="Gamma")
summary(AllCop_model3)
## 
## Call:
## glm(formula = CopDensity ~ Jelly.Density, family = "Gamma", data = AllCop)
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.094e-05  1.592e-06   6.873 3.33e-09 ***
## Jelly.Density 5.468e-09  1.320e-09   4.144 0.000104 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Gamma family taken to be 0.5524674)
## 
##     Null deviance: 64.369  on 64  degrees of freedom
## Residual deviance: 51.698  on 63  degrees of freedom
## AIC: 1551.5
## 
## Number of Fisher Scoring iterations: 6
plot(AllCop_model3)

Like Gamma has best AIC. QQplot looks worse than gaussian, but I think that will be accounted for with control variable.

Add other parameters

All Copepod Final Model

AllCopMod<-glm(CopDensity~Jelly.Density+offset(log(Control)), data= AllCop, family="Gamma"(link="log"))
summary(AllCopMod)
## 
## Call:
## glm(formula = CopDensity ~ Jelly.Density + offset(log(Control)), 
##     family = Gamma(link = "log"), data = AllCop)
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   -9.697e-02  5.470e-02  -1.773   0.0811 .  
## Jelly.Density -2.210e-04  2.177e-05 -10.150 6.99e-15 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Gamma family taken to be 0.1050273)
## 
##     Null deviance: 18.2931  on 64  degrees of freedom
## Residual deviance:  7.5334  on 63  degrees of freedom
## AIC: 1419.1
## 
## Number of Fisher Scoring iterations: 7
plot(AllCopMod)

Use predict function to predict model values

predictcop<-ggpredict(
  AllCopMod,
  terms=c("Jelly.Density"),
  ci.lvl = 0.95,
  type = "fe",
  typical = "mean",
  condition = NULL,
  back.transform = TRUE,
  ppd = FALSE,
  vcov.fun = NULL,
  vcov.type = NULL,
  vcov.args = NULL,
  interval = "confidence")

Plot with original values

AllCopPlot<-plot(predictcop,add.data = TRUE)+
  theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),panel.background = element_blank(), axis.line = element_line(colour = "black"))+theme_classic() +
  geom_line(size=1.5) +
  geom_ribbon( aes(ymin = conf.low, ymax = conf.high), alpha = .15) +
  xlab(bquote('Jellyfish Biomass ( g /' ~m^3~ ')'))+ylab(bquote('Copepod Density ( individuals /'~m^3~')'))+
  theme(axis.text=element_text(size=15,colour="black"),
        legend.position=c(0.87, 0.8),
        legend.text=element_text(size=15,colour="black"),
        legend.title=element_text(size=15,colour="black"),
        axis.title=element_text(size=15,colour="black"),
        axis.line = element_line(colour = "black"))+theme(plot.title = element_blank())
AllCopPlot

save plot

setwd("/Users/hailaschultz/Dropbox/Other studies/Aurelia project/Data Analysis/output")
ggsave(filename = "Exp_GLM_AllCop.png", plot = AllCopPlot, width = 6, height = 5, device='png', dpi=700)

Plot without original values

AllCopPlot_nodata<-plot(predictcop)+xlab('Jellyfish Biomass ( g /' ~m^3~ ')')+
  ylab(bquote('Copepod Density ( individuals /'~m^3~')'))+ 
  theme(axis.line = element_line(colour = "black"))+theme_classic() +
  geom_line(size=1) +
  geom_ribbon( aes(ymin = conf.low, ymax = conf.high, color = NULL),
               alpha = .15,show.legend=FALSE) +
  scale_x_continuous(breaks=seq(0,7500,1500),expand = c(0, 20), limits = c(-10, 7500),labels=label_comma()) + 
  scale_y_continuous(breaks=seq(0,100000,20000),expand = c(0, 20), limits = c(-10, 100000),labels=label_comma())+
  theme(axis.text=element_text(size=8,colour="black"),
        axis.title=element_text(size=10),
        plot.title=element_blank())+
  theme(legend.position='none')+
  theme(plot.margin=margin(0.5, 0.5, 0.5, 0.5, unit = "cm"))
AllCopPlot_nodata

save plot

setwd("/Users/hailaschultz/Dropbox/Other studies/Aurelia project/Data Analysis/output")
ggsave(filename = "Exp_GLM_AllCop_nodata.png", plot = AllCopPlot_nodata, width = 6, height = 5, device='png', dpi=700)