1 DATA PREPARATION

## √ Successfully imported: 308 obs. of 185 variables
## [1] "BMDM"         "creativityV"  "coachingV"    "pychcapitalV" "trustV"      
## [6] "YG1_a"        "YG2_a"        "LD3"
##  [1] "BMDM"              "creativityV"       "coachingV"        
##  [4] "pychcapitalV"      "trustV"            "YG1_a"            
##  [7] "YG2_a"             "LD3"               "creativityV_mean" 
## [10] "creativityV.GroC"  "coachingV_mean"    "coachingV.GroC"   
## [13] "pychcapitalV_mean" "pychcapitalV.GroC" "trustV_mean"      
## [16] "trustV.GroC"       "YG1_a_mean"        "YG1_a.GroC"       
## [19] "YG2_a_mean"        "YG2_a.GroC"        "LD3_mean"         
## [22] "LD3.GroC"
## 
## ------ Sample Size Information ------
## 
## Level 1: N = 303 observations ("creativityV")
## Level 2: K = 65 groups ("BMDM")
## 
##        n (group sizes)
## Min.             1.000
## Median           5.000
## Mean             4.662
## Max.             6.000
## 
## ------ ICC(1), ICC(2), and rWG ------
## 
## ICC variable: "creativityV"
## 
## ICC(1) = 0.528 (non-independence of data)
## ICC(2) = 0.821 (reliability of group means)
## 
## rWG variable: "creativityV"
## 
## rWG (within-group agreement for single-item measures)
## ───────────────────────────────────────────────────
##       Min. 1st Qu. Median  Mean 3rd Qu.  Max.  NA's
## ───────────────────────────────────────────────────
## rWG  0.000   0.763  0.907 0.826   0.965 1.000 1.000
## ───────────────────────────────────────────────────
## 
## ------ Sample Size Information ------
## 
## Level 1: N = 308 observations ("pychcapitalV")
## Level 2: K = 65 groups ("BMDM")
## 
##        n (group sizes)
## Min.             2.000
## Median           5.000
## Mean             4.738
## Max.             7.000
## 
## ------ ICC(1), ICC(2), and rWG ------
## 
## ICC variable: "pychcapitalV"
## 
## ICC(1) = 0.131 (non-independence of data)
## ICC(2) = 0.406 (reliability of group means)
## 
## rWG variable: "pychcapitalV"
## 
## rWG (within-group agreement for single-item measures)
## ─────────────────────────────────────────────
##       Min. 1st Qu. Median  Mean 3rd Qu.  Max.
## ─────────────────────────────────────────────
## rWG  0.000   0.732  0.831 0.758   0.918 0.996
## ─────────────────────────────────────────────
## 
## ------ Sample Size Information ------
## 
## Level 1: N = 308 observations ("coachingV")
## Level 2: K = 65 groups ("BMDM")
## 
##        n (group sizes)
## Min.             2.000
## Median           5.000
## Mean             4.738
## Max.             7.000
## 
## ------ ICC(1), ICC(2), and rWG ------
## 
## ICC variable: "coachingV"
## 
## ICC(1) = 0.252 (non-independence of data)
## ICC(2) = 0.598 (reliability of group means)
## 
## rWG variable: "coachingV"
## 
## rWG (within-group agreement for single-item measures)
## ─────────────────────────────────────────────
##       Min. 1st Qu. Median  Mean 3rd Qu.  Max.
## ─────────────────────────────────────────────
## rWG  0.000   0.561  0.788 0.695   0.939 0.998
## ─────────────────────────────────────────────
## 
## ------ Sample Size Information ------
## 
## Level 1: N = 305 observations ("trustV")
## Level 2: K = 65 groups ("BMDM")
## 
##        n (group sizes)
## Min.             2.000
## Median           5.000
## Mean             4.692
## Max.             7.000
## 
## ------ ICC(1), ICC(2), and rWG ------
## 
## ICC variable: "trustV"
## 
## ICC(1) = 0.240 (non-independence of data)
## ICC(2) = 0.578 (reliability of group means)
## 
## rWG variable: "trustV"
## 
## rWG (within-group agreement for single-item measures)
## ─────────────────────────────────────────────
##       Min. 1st Qu. Median  Mean 3rd Qu.  Max.
## ─────────────────────────────────────────────
## rWG  0.000   0.588  0.772 0.707   0.898 0.996
## ─────────────────────────────────────────────

2 SINGLE-LVEL ANALYSIS

2.1 Model 58

## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 58 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Moderated Mediation
## -    Outcome (Y) : creativityV
## -  Predictor (X) : coachingV
## -  Mediators (M) : pychcapitalV
## - Moderators (W) : trustV
## - Covariates (C) : YG1_a, YG2_a, LD3
## -   HLM Clusters : -
## 
## All numeric predictors have been grand-mean centered.
## (For details, please see the help page of PROCESS.)
## 
## Formula of Mediator:
## -    pychcapitalV ~ YG1_a + YG2_a + LD3 + coachingV*trustV
## Formula of Outcome:
## -    creativityV ~ YG1_a + YG2_a + LD3 + coachingV + pychcapitalV*trustV
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────
##                      (1) creativityV  (2) pychcapitalV  (3) creativityV
## ───────────────────────────────────────────────────────────────────────
## (Intercept)            4.790 ***        5.023 ***         4.760 ***    
##                       (0.050)          (0.035)           (0.052)       
## YG1_a                 -0.341 **        -0.049            -0.320 *      
##                       (0.128)          (0.074)           (0.126)       
## YG2_a                 -0.009            0.008            -0.012        
##                       (0.008)          (0.005)           (0.008)       
## LD3                   -0.154           -0.015            -0.132        
##                       (0.084)          (0.049)           (0.084)       
## coachingV              0.202 ***        0.360 ***         0.289 **     
##                       (0.060)          (0.057)           (0.103)       
## trustV                                 -0.024            -0.168        
##                                        (0.057)           (0.094)       
## coachingV:trustV                        0.077 *                        
##                                        (0.037)                         
## pychcapitalV                                              0.229        
##                                                          (0.121)       
## pychcapitalV:trustV                                       0.211        
##                                                          (0.121)       
## ───────────────────────────────────────────────────────────────────────
## R^2                    0.100            0.283             0.139        
## Adj. R^2               0.082            0.262             0.109        
## Num. obs.            209              209               209            
## ───────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘mediation’ (v4.5.0), ‘interactions’ (v1.1.5)
## Effect Type : Moderated Mediation (Model 58)
## Sample Size : 209 (99 missing observations deleted)
## Random Seed : set.seed(1223)
## Simulations : 2000 (Bootstrap)
## 
## Direct Effect: "coachingV" (X) ==> "creativityV" (Y)
## ──────────────────────────────────────────────────────────
##              Effect    S.E.     t     p           [95% CI]
## ──────────────────────────────────────────────────────────
## Direct (c')   0.289 (0.103) 2.792  .006 **  [0.085, 0.493]
## ──────────────────────────────────────────────────────────
## 
## Interaction Effect on "pychcapitalV" (M)
## ──────────────────────────────────────────
##                        F df1 df2     p    
## ──────────────────────────────────────────
## coachingV * trustV  4.34   1 202  .039 *  
## ──────────────────────────────────────────
## 
## Simple Slopes: "coachingV" (X) ==> "pychcapitalV" (M)
## (Conditional Effects [a] of X on M)
## ───────────────────────────────────────────────────────────
##  "trustV"     Effect    S.E.     t     p           [95% CI]
## ───────────────────────────────────────────────────────────
##  4.116 (- SD)  0.295 (0.060) 4.943 <.001 *** [0.177, 0.412]
##  4.966 (Mean)  0.360 (0.057) 6.279 <.001 *** [0.247, 0.473]
##  5.816 (+ SD)  0.425 (0.071) 6.025 <.001 *** [0.286, 0.564]
## ───────────────────────────────────────────────────────────
## 
## Interaction Effect on "creativityV" (Y)
## ─────────────────────────────────────────────
##                           F df1 df2     p    
## ─────────────────────────────────────────────
## pychcapitalV * trustV  3.03   1 201  .083 .  
## ─────────────────────────────────────────────
## 
## Simple Slopes: "pychcapitalV" (M) ==> "creativityV" (Y)
## (Conditional Effects [b] of M on Y)
## ────────────────────────────────────────────────────────────
##  "trustV"     Effect    S.E.     t     p            [95% CI]
## ────────────────────────────────────────────────────────────
##  4.116 (- SD)  0.049 (0.142) 0.348  .728     [-0.231, 0.330]
##  4.966 (Mean)  0.229 (0.121) 1.896  .059 .   [-0.009, 0.467]
##  5.816 (+ SD)  0.408 (0.174) 2.347  .020 *   [ 0.065, 0.752]
## ────────────────────────────────────────────────────────────
## 
## Running 2000 * 3 simulations...
## Indirect Path: "coachingV" (X) ==> "pychcapitalV" (M) ==> "creativityV" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ────────────────────────────────────────────────────────────
##  "trustV"     Effect    S.E.     z     p       [Boot 95% CI]
## ────────────────────────────────────────────────────────────
##  4.116 (- SD)  0.015 (0.042) 0.351  .726     [-0.058, 0.112]
##  4.966 (Mean)  0.082 (0.060) 1.368  .171     [0.002, 0.236] 
##  5.816 (+ SD)  0.174 (0.101) 1.719  .086 .   [0.032, 0.424] 
## ────────────────────────────────────────────────────────────
## Percentile Bootstrap Confidence Interval
## (SE and CI are estimated based on 2000 Bootstrap samples.)
## 
## Note. The results based on bootstrapping or other random processes
## are unlikely identical to other statistical software (e.g., SPSS).
## To make results reproducible, you need to set a seed (any number).
## Please see the help page for details: help(PROCESS)
## Ignore this note if you have already set a seed. :)

2.2 Model 4

## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 4 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Mediation
## -    Outcome (Y) : creativityV
## -  Predictor (X) : coachingV
## -  Mediators (M) : pychcapitalV
## - Moderators (W) : -
## - Covariates (C) : YG1_a, YG2_a, LD3
## -   HLM Clusters : -
## 
## All numeric predictors have been grand-mean centered.
## (For details, please see the help page of PROCESS.)
## 
## Formula of Mediator:
## -    pychcapitalV ~ YG1_a + YG2_a + LD3 + coachingV
## Formula of Outcome:
## -    creativityV ~ YG1_a + YG2_a + LD3 + coachingV + pychcapitalV
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ────────────────────────────────────────────────────────────────
##               (1) creativityV  (2) pychcapitalV  (3) creativityV
## ────────────────────────────────────────────────────────────────
## (Intercept)     4.790 ***        5.065 ***         4.790 ***    
##                (0.050)          (0.029)           (0.049)       
## YG1_a          -0.341 **        -0.045            -0.332 **     
##                (0.128)          (0.075)           (0.127)       
## YG2_a          -0.009            0.009            -0.011        
##                (0.008)          (0.005)           (0.008)       
## LD3            -0.154           -0.025            -0.149        
##                (0.084)          (0.049)           (0.084)       
## coachingV       0.202 ***        0.292 ***         0.143 *      
##                (0.060)          (0.035)           (0.069)       
## pychcapitalV                                       0.201        
##                                                   (0.119)       
## ────────────────────────────────────────────────────────────────
## R^2             0.100            0.264             0.112        
## Adj. R^2        0.082            0.250             0.090        
## Num. obs.     209              209               209            
## ────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘mediation’ (v4.5.0)
## Effect Type : Simple Mediation (Model 4)
## Sample Size : 209 (99 missing observations deleted)
## Random Seed : set.seed(1223)
## Simulations : 2000 (Bootstrap)
## 
## Running 2000 simulations...
## Indirect Path: "coachingV" (X) ==> "pychcapitalV" (M) ==> "creativityV" (Y)
## ─────────────────────────────────────────────────────────────
##                Effect    S.E.     z     p       [Boot 95% CI]
## ─────────────────────────────────────────────────────────────
## Indirect (ab)   0.059 (0.041) 1.423  .155     [-0.003, 0.158]
## Direct (c')     0.143 (0.076) 1.870  .061 .   [-0.025, 0.267]
## Total (c)       0.202 (0.058) 3.492 <.001 *** [ 0.083, 0.310]
## ─────────────────────────────────────────────────────────────
## Percentile Bootstrap Confidence Interval
## (SE and CI are estimated based on 2000 Bootstrap samples.)
## 
## Note. The results based on bootstrapping or other random processes
## are unlikely identical to other statistical software (e.g., SPSS).
## To make results reproducible, you need to set a seed (any number).
## Please see the help page for details: help(PROCESS)
## Ignore this note if you have already set a seed. :)

2.3 Model 1

## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : creativityV
## -  Predictor (X) : coachingV
## -  Mediators (M) : -
## - Moderators (W) : trustV
## - Covariates (C) : YG1_a, YG2_a, LD3
## -   HLM Clusters : -
## 
## All numeric predictors have been grand-mean centered.
## (For details, please see the help page of PROCESS.)
## 
## Formula of Outcome:
## -    creativityV ~ YG1_a + YG2_a + LD3 + coachingV*trustV
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ──────────────────────────────────────────────────
##                   (1) creativityV  (2) creativityV
## ──────────────────────────────────────────────────
## (Intercept)         4.790 ***        4.835 ***    
##                    (0.050)          (0.060)       
## YG1_a              -0.341 **        -0.338 **     
##                    (0.128)          (0.127)       
## YG2_a              -0.009           -0.008        
##                    (0.008)          (0.008)       
## LD3                -0.154           -0.166 *      
##                    (0.084)          (0.084)       
## coachingV           0.202 ***        0.322 **     
##                    (0.060)          (0.098)       
## trustV                              -0.214 *      
##                                     (0.097)       
## coachingV:trustV                    -0.081        
##                                     (0.063)       
## ──────────────────────────────────────────────────
## R^2                 0.100            0.123        
## Adj. R^2            0.082            0.097        
## Num. obs.         209              209            
## ──────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 209 (99 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "creativityV" (Y)
## ──────────────────────────────────────────
##                        F df1 df2     p    
## ──────────────────────────────────────────
## coachingV * trustV  1.66   1 202  .199    
## ──────────────────────────────────────────
## 
## Simple Slopes: "coachingV" (X) ==> "creativityV" (Y)
## ───────────────────────────────────────────────────────────
##  "trustV"     Effect    S.E.     t     p           [95% CI]
## ───────────────────────────────────────────────────────────
##  4.116 (- SD)  0.391 (0.102) 3.838 <.001 *** [0.190, 0.592]
##  4.966 (Mean)  0.322 (0.098) 3.288  .001 **  [0.129, 0.516]
##  5.816 (+ SD)  0.253 (0.121) 2.098  .037 *   [0.015, 0.491]
## ───────────────────────────────────────────────────────────

2.4 Model 7

## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 7 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Moderated Mediation
## -    Outcome (Y) : creativityV
## -  Predictor (X) : coachingV
## -  Mediators (M) : pychcapitalV
## - Moderators (W) : trustV
## - Covariates (C) : YG1_a, YG2_a, LD3
## -   HLM Clusters : -
## 
## All numeric predictors have been grand-mean centered.
## (For details, please see the help page of PROCESS.)
## 
## Formula of Mediator:
## -    pychcapitalV ~ YG1_a + YG2_a + LD3 + coachingV*trustV
## Formula of Outcome:
## -    creativityV ~ YG1_a + YG2_a + LD3 + coachingV + trustV + pychcapitalV
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ────────────────────────────────────────────────────────────────────
##                   (1) creativityV  (2) pychcapitalV  (3) creativityV
## ────────────────────────────────────────────────────────────────────
## (Intercept)         4.790 ***        5.023 ***         4.790 ***    
##                    (0.050)          (0.035)           (0.049)       
## YG1_a              -0.341 **        -0.049            -0.334 **     
##                    (0.128)          (0.074)           (0.127)       
## YG2_a              -0.009            0.008            -0.011        
##                    (0.008)          (0.005)           (0.008)       
## LD3                -0.154           -0.015            -0.150        
##                    (0.084)          (0.049)           (0.083)       
## coachingV           0.202 ***        0.360 ***         0.285 **     
##                    (0.060)          (0.057)           (0.104)       
## trustV                              -0.024            -0.171        
##                                     (0.057)           (0.094)       
## coachingV:trustV                     0.077 *                        
##                                     (0.037)                         
## pychcapitalV                                           0.186        
##                                                       (0.119)       
## ────────────────────────────────────────────────────────────────────
## R^2                 0.100            0.283             0.126        
## Adj. R^2            0.082            0.262             0.100        
## Num. obs.         209              209               209            
## ────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘mediation’ (v4.5.0), ‘interactions’ (v1.1.5)
## Effect Type : Moderated Mediation (Model 7)
## Sample Size : 209 (99 missing observations deleted)
## Random Seed : set.seed(1223)
## Simulations : 2000 (Bootstrap)
## 
## Direct Effect: "coachingV" (X) ==> "creativityV" (Y)
## ──────────────────────────────────────────────────────────
##              Effect    S.E.     t     p           [95% CI]
## ──────────────────────────────────────────────────────────
## Direct (c')   0.285 (0.104) 2.741  .007 **  [0.080, 0.490]
## ──────────────────────────────────────────────────────────
## 
## Interaction Effect on "pychcapitalV" (M)
## ──────────────────────────────────────────
##                        F df1 df2     p    
## ──────────────────────────────────────────
## coachingV * trustV  4.34   1 202  .039 *  
## ──────────────────────────────────────────
## 
## Simple Slopes: "coachingV" (X) ==> "pychcapitalV" (M)
## (Conditional Effects [a] of X on M)
## ───────────────────────────────────────────────────────────
##  "trustV"     Effect    S.E.     t     p           [95% CI]
## ───────────────────────────────────────────────────────────
##  4.116 (- SD)  0.295 (0.060) 4.943 <.001 *** [0.177, 0.412]
##  4.966 (Mean)  0.360 (0.057) 6.279 <.001 *** [0.247, 0.473]
##  5.816 (+ SD)  0.425 (0.071) 6.025 <.001 *** [0.286, 0.564]
## ───────────────────────────────────────────────────────────
## 
## Running 2000 * 3 simulations...
## Indirect Path: "coachingV" (X) ==> "pychcapitalV" (M) ==> "creativityV" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ────────────────────────────────────────────────────────────
##  "trustV"     Effect    S.E.     z     p       [Boot 95% CI]
## ────────────────────────────────────────────────────────────
##  4.116 (- SD)  0.055 (0.044) 1.241  .214     [-0.008, 0.166]
##  4.966 (Mean)  0.067 (0.051) 1.324  .186     [-0.009, 0.190]
##  5.816 (+ SD)  0.079 (0.059) 1.342  .180     [-0.012, 0.217]
## ────────────────────────────────────────────────────────────
## Percentile Bootstrap Confidence Interval
## (SE and CI are estimated based on 2000 Bootstrap samples.)
## 
## Note. The results based on bootstrapping or other random processes
## are unlikely identical to other statistical software (e.g., SPSS).
## To make results reproducible, you need to set a seed (any number).
## Please see the help page for details: help(PROCESS)
## Ignore this note if you have already set a seed. :)
##  [1] "BMDM"              "creativityV"       "coachingV"        
##  [4] "pychcapitalV"      "trustV"            "YG1_a"            
##  [7] "YG2_a"             "LD3"               "creativityV_mean" 
## [10] "creativityV.GroC"  "coachingV_mean"    "coachingV.GroC"   
## [13] "pychcapitalV_mean" "pychcapitalV.GroC" "trustV_mean"      
## [16] "trustV.GroC"       "YG1_a_mean"        "YG1_a.GroC"       
## [19] "YG2_a_mean"        "YG2_a.GroC"        "LD3_mean"         
## [22] "LD3.GroC"

3 MULTILEVEL ANALYSIS

3.1 Model 58

## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 58 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Moderated Mediation
## -    Outcome (Y) : creativityV
## -  Predictor (X) : coachingV.GroC
## -  Mediators (M) : pychcapitalV.GroC
## - Moderators (W) : trustV.GroC
## - Covariates (C) : YG1_a, YG2_a, LD3
## -   HLM Clusters : BMDM
## 
## Formula of Mediator:
## -    pychcapitalV.GroC ~ YG1_a + YG2_a + LD3 + coachingV.GroC*trustV.GroC + (1|BMDM)
## Formula of Outcome:
## -    creativityV ~ YG1_a + YG2_a + LD3 + coachingV.GroC + pychcapitalV.GroC*trustV.GroC + (1|BMDM)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────────────
##                                (1) creativityV  (2) pychcapitalV.GroC  (3) creativityV
## ──────────────────────────────────────────────────────────────────────────────────────
## (Intercept)                      4.933 ***       -0.150                  4.936 ***    
##                                 (0.353)          (0.165)                (0.355)       
## YG1_a                           -0.214 *         -0.010                 -0.212 *      
##                                 (0.100)          (0.060)                (0.100)       
## YG2_a                            0.005            0.006                  0.003        
##                                 (0.007)          (0.004)                (0.007)       
## LD3                             -0.039           -0.015                 -0.025        
##                                 (0.152)          (0.039)                (0.151)       
## coachingV.GroC                   0.093            0.290 ***              0.050        
##                                 (0.052)          (0.052)                (0.082)       
## trustV.GroC                                       0.037                 -0.055        
##                                                  (0.052)                (0.077)       
## coachingV.GroC:trustV.GroC                        0.013                               
##                                                  (0.042)                              
## pychcapitalV.GroC                                                        0.280 *      
##                                                                         (0.112)       
## pychcapitalV.GroC:trustV.GroC                                            0.168        
##                                                                         (0.137)       
## ──────────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                     0.022            0.279                  0.038        
## Conditional R^2                  0.645            0.279                  0.652        
## AIC                            416.402          180.353                423.722        
## BIC                            439.798          210.434                457.145        
## Num. obs.                      209              209                    209            
## Num. groups: BMDM               59               59                     59            
## Var: BMDM (Intercept)            0.386            0.000                  0.380        
## Var: Residual                    0.220            0.110                  0.215        
## ──────────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘mediation’ (v4.5.0), ‘interactions’ (v1.1.5)
## Effect Type : Moderated Mediation (Model 58)
## Sample Size : 209 (99 missing observations deleted)
## Random Seed : set.seed(1223)
## Simulations : 2000 (Monte Carlo)
## 
## Direct Effect: "coachingV.GroC" (X) ==> "creativityV" (Y)
## ────────────────────────────────────────────────────────────
##              Effect    S.E.     t     p             [95% CI]
## ────────────────────────────────────────────────────────────
## Direct (c')   0.050 (0.082) 0.604  .547     [-0.110,  0.209]
## ────────────────────────────────────────────────────────────
## 
## Interaction Effect on "pychcapitalV.GroC" (M)
## ────────────────────────────────────────────────────
##                                  F df1 df2     p    
## ────────────────────────────────────────────────────
## coachingV.GroC * trustV.GroC  0.10   1 202  .757    
## ────────────────────────────────────────────────────
## 
## Simple Slopes: "coachingV.GroC" (X) ==> "pychcapitalV.GroC" (M)
## (Conditional Effects [a] of X on M)
## ────────────────────────────────────────────────────────────
##  "trustV.GroC" Effect    S.E.     t     p           [95% CI]
## ────────────────────────────────────────────────────────────
##  -0.625 (- SD)  0.282 (0.054) 5.186 <.001 *** [0.175, 0.389]
##  0.015 (Mean)   0.290 (0.052) 5.552 <.001 *** [0.188, 0.393]
##  0.656 (+ SD)   0.299 (0.063) 4.739 <.001 *** [0.175, 0.422]
## ────────────────────────────────────────────────────────────
## 
## Interaction Effect on "creativityV" (Y)
## ───────────────────────────────────────────────────────
##                                     F df1 df2     p    
## ───────────────────────────────────────────────────────
## pychcapitalV.GroC * trustV.GroC  1.51   1 165  .221    
## ───────────────────────────────────────────────────────
## 
## Simple Slopes: "pychcapitalV.GroC" (M) ==> "creativityV" (Y)
## (Conditional Effects [b] of M on Y)
## ─────────────────────────────────────────────────────────────
##  "trustV.GroC" Effect    S.E.     t     p            [95% CI]
## ─────────────────────────────────────────────────────────────
##  -0.625 (- SD)  0.175 (0.117) 1.499  .136     [-0.054, 0.404]
##  0.015 (Mean)   0.283 (0.113) 2.510  .013 *   [ 0.062, 0.504]
##  0.656 (+ SD)   0.391 (0.165) 2.370  .019 *   [ 0.068, 0.714]
## ─────────────────────────────────────────────────────────────
## 
## Running 2000 * 3 simulations...
## Indirect Path: "coachingV.GroC" (X) ==> "pychcapitalV.GroC" (M) ==> "creativityV" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ─────────────────────────────────────────────────────────────
##  "trustV.GroC" Effect    S.E.     z     p       [MCMC 95% CI]
## ─────────────────────────────────────────────────────────────
##  -0.625 (- SD)  0.048 (0.035) 1.365  .172     [-0.016, 0.125]
##  0.015 (Mean)   0.081 (0.036) 2.276  .023 *   [ 0.018, 0.155]
##  0.656 (+ SD)   0.117 (0.054) 2.144  .032 *   [ 0.017, 0.233]
## ─────────────────────────────────────────────────────────────
## Monte Carlo (Quasi-Bayesian) Confidence Interval
## (Effect, SE, and CI are estimated based on 2000 Monte Carlo samples.)
## 
## Note. The results based on bootstrapping or other random processes
## are unlikely identical to other statistical software (e.g., SPSS).
## To make results reproducible, you need to set a seed (any number).
## Please see the help page for details: help(PROCESS)
## Ignore this note if you have already set a seed. :)

3.2 Model 4

## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 4 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Mediation
## -    Outcome (Y) : creativityV
## -  Predictor (X) : coachingV.GroC
## -  Mediators (M) : pychcapitalV.GroC
## - Moderators (W) : -
## - Covariates (C) : YG1_a, YG2_a, LD3
## -   HLM Clusters : BMDM
## 
## Formula of Mediator:
## -    pychcapitalV.GroC ~ YG1_a + YG2_a + LD3 + coachingV.GroC + (1 | BMDM)
## Formula of Outcome:
## -    creativityV ~ YG1_a + YG2_a + LD3 + coachingV.GroC + pychcapitalV.GroC + (1|BMDM)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ──────────────────────────────────────────────────────────────────────────────
##                        (1) creativityV  (2) pychcapitalV.GroC  (3) creativityV
## ──────────────────────────────────────────────────────────────────────────────
## (Intercept)              4.933 ***       -0.146                  5.000 ***    
##                         (0.353)          (0.164)                (0.352)       
## YG1_a                   -0.214 *         -0.015                 -0.207 *      
##                         (0.100)          (0.059)                (0.099)       
## YG2_a                    0.005            0.006                  0.002        
##                         (0.007)          (0.004)                (0.007)       
## LD3                     -0.039           -0.015                 -0.040        
##                         (0.152)          (0.039)                (0.151)       
## coachingV.GroC           0.093            0.314 ***              0.017        
##                         (0.052)          (0.036)                (0.062)       
## pychcapitalV.GroC                                                0.235 *      
##                                                                 (0.106)       
## ──────────────────────────────────────────────────────────────────────────────
## Marginal R^2             0.022            0.279                  0.031        
## Conditional R^2          0.645            0.279                  0.653        
## AIC                    416.402          168.374                416.186        
## BIC                    439.798          191.770                442.925        
## Num. obs.              209              209                    209            
## Num. groups: BMDM       59               59                     59            
## Var: BMDM (Intercept)    0.386            0.000                  0.384        
## Var: Residual            0.220            0.110                  0.215        
## ──────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘mediation’ (v4.5.0)
## Effect Type : Simple Mediation (Model 4)
## Sample Size : 209 (99 missing observations deleted)
## Random Seed : set.seed(1223)
## Simulations : 2000 (Monte Carlo)
## 
## Running 2000 simulations...
## Indirect Path: "coachingV.GroC" (X) ==> "pychcapitalV.GroC" (M) ==> "creativityV" (Y)
## ─────────────────────────────────────────────────────────────
##                Effect    S.E.     z     p       [MCMC 95% CI]
## ─────────────────────────────────────────────────────────────
## Indirect (ab)   0.073 (0.034) 2.167  .030 *   [ 0.010, 0.140]
## Direct (c')     0.016 (0.060) 0.265  .791     [-0.102, 0.134]
## Total (c)       0.089 (0.051) 1.738  .082 .   [-0.009, 0.190]
## ─────────────────────────────────────────────────────────────
## Monte Carlo (Quasi-Bayesian) Confidence Interval
## (Effect, SE, and CI are estimated based on 2000 Monte Carlo samples.)
## 
## Note. The results based on bootstrapping or other random processes
## are unlikely identical to other statistical software (e.g., SPSS).
## To make results reproducible, you need to set a seed (any number).
## Please see the help page for details: help(PROCESS)
## Ignore this note if you have already set a seed. :)

3.3 Model 1

## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 1 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Simple Moderation
## -    Outcome (Y) : creativityV
## -  Predictor (X) : coachingV.GroC
## -  Mediators (M) : -
## - Moderators (W) : trustV.GroC
## - Covariates (C) : YG1_a, YG2_a, LD3
## -   HLM Clusters : BMDM
## 
## Formula of Outcome:
## -    creativityV ~ YG1_a + YG2_a + LD3 + coachingV.GroC*trustV.GroC + (1|BMDM)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ────────────────────────────────────────────────────────────
##                             (1) creativityV  (2) creativityV
## ────────────────────────────────────────────────────────────
## (Intercept)                   4.933 ***        4.948 ***    
##                              (0.353)          (0.353)       
## YG1_a                        -0.214 *         -0.222 *      
##                              (0.100)          (0.102)       
## YG2_a                         0.005            0.005        
##                              (0.007)          (0.007)       
## LD3                          -0.039           -0.042        
##                              (0.152)          (0.150)       
## coachingV.GroC                0.093            0.106        
##                              (0.052)          (0.078)       
## trustV.GroC                                   -0.048        
##                                               (0.077)       
## coachingV.GroC:trustV.GroC                    -0.081        
##                                               (0.073)       
## ────────────────────────────────────────────────────────────
## Marginal R^2                  0.022            0.025        
## Conditional R^2               0.645            0.639        
## AIC                         416.402          425.504        
## BIC                         439.798          455.585        
## Num. obs.                   209              209            
## Num. groups: BMDM            59               59            
## Var: BMDM (Intercept)         0.386            0.377        
## Var: Residual                 0.220            0.222        
## ────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘interactions’ (v1.1.5)
## Effect Type : Simple Moderation (Model 1)
## Sample Size : 209 (99 missing observations deleted)
## Random Seed : -
## Simulations : -
## 
## Interaction Effect on "creativityV" (Y)
## ────────────────────────────────────────────────────
##                                  F df1 df2     p    
## ────────────────────────────────────────────────────
## coachingV.GroC * trustV.GroC  1.23   1 165  .270    
## ────────────────────────────────────────────────────
## 
## Simple Slopes: "coachingV.GroC" (X) ==> "creativityV" (Y)
## ─────────────────────────────────────────────────────────────
##  "trustV.GroC" Effect    S.E.     t     p            [95% CI]
## ─────────────────────────────────────────────────────────────
##  -0.625 (- SD)  0.156 (0.081) 1.922  .056 .   [-0.003, 0.316]
##  0.015 (Mean)   0.104 (0.079) 1.327  .187     [-0.050, 0.259]
##  0.656 (+ SD)   0.052 (0.101) 0.520  .604     [-0.145, 0.250]
## ─────────────────────────────────────────────────────────────
## Descriptive Statistics:
## ───────────────────────────────────────────────────────────────────────────────
##                      N (NA)  Mean    SD | Median    Min   Max Skewness Kurtosis
## ───────────────────────────────────────────────────────────────────────────────
## BMDM*              308      34.28 18.91 |  35.50   1.00 65.00    -0.11    -1.21
## creativityV        303    5  4.79  0.74 |   4.92   1.85  6.00    -0.74     0.52
## coachingV          308       5.01  0.86 |   5.20   1.96  6.00    -1.09     1.00
## pychcapitalV       308       5.01  0.49 |   5.08   2.83  6.00    -1.04     2.31
## trustV             305    3  4.96  0.84 |   5.11   1.67  6.00    -1.05     1.06
## YG1_a              239   69  1.21  0.40 |   1.00   1.00  2.00     1.45     0.11
## YG2_a              224   84 32.12  6.42 |  31.00  20.00 48.00     0.45    -0.83
## LD3                296   12  1.41  0.57 |   1.00   1.00  3.00     1.02     0.03
## creativityV_mean   308       4.77  0.59 |   4.82   3.18  5.92    -0.62     0.02
## creativityV.GroC   303    5 -0.00  0.45 |   0.00  -1.87  1.67    -0.11     1.57
## coachingV_mean     308       5.01  0.55 |   5.14   3.02  5.96    -0.55     0.63
## coachingV.GroC     308       0.00  0.66 |   0.05  -3.11  1.52    -0.92     2.47
## pychcapitalV_mean  308       5.01  0.27 |   5.03   3.75  5.52    -0.75     2.03
## pychcapitalV.GroC  308      -0.00  0.40 |   0.02  -1.68  1.24    -0.49     1.48
## trustV_mean        308       4.96  0.53 |   4.96   2.39  5.94    -0.92     2.54
## trustV.GroC        305    3  0.00  0.65 |   0.09  -2.31  1.78    -0.78     1.14
## YG1_a_mean         302    6  1.20  0.26 |   1.00   1.00  2.00     1.25     0.85
## YG1_a.GroC         239   69  0.00  0.32 |   0.00  -0.67  0.86     0.65     0.69
## YG2_a_mean         302    6 32.74  4.99 |  31.25  22.00 43.33     0.58    -0.61
## YG2_a.GroC         224   84  0.00  4.44 |  -0.08 -10.60 15.75     0.50     0.29
## LD3_mean           296   12  1.41  0.57 |   1.00   1.00  3.00     1.02     0.03
## LD3.GroC           296   12  0.00  0.00 |   0.00   0.00  0.00      NaN      NaN
## ───────────────────────────────────────────────────────────────────────────────
## 
## NOTE: `BMDM` transformed to numeric.
## Error: Confidence intervals could not be computed.

3.4 Model 7

## 
## ****************** PART 1. Regression Model Summary ******************
## 
## PROCESS Model Code : 7 (Hayes, 2018; www.guilford.com/p/hayes3)
## PROCESS Model Type : Moderated Mediation
## -    Outcome (Y) : creativityV
## -  Predictor (X) : coachingV.GroC
## -  Mediators (M) : pychcapitalV.GroC
## - Moderators (W) : trustV.GroC
## - Covariates (C) : YG1_a, YG2_a, LD3
## -   HLM Clusters : BMDM
## 
## Formula of Mediator:
## -    pychcapitalV.GroC ~ YG1_a + YG2_a + LD3 + coachingV.GroC*trustV.GroC + (1 | BMDM)
## Formula of Outcome:
## -    creativityV ~ YG1_a + YG2_a + LD3 + coachingV.GroC + trustV.GroC + pychcapitalV.GroC + (1|BMDM)
## 
## CAUTION:
##   Fixed effect (coef.) of a predictor involved in an interaction
##   denotes its "simple effect/slope" at the other predictor = 0.
##   Only when all predictors in an interaction are mean-centered
##   can the fixed effect denote the "main effect"!
##   
## Model Summary
## 
## ───────────────────────────────────────────────────────────────────────────────────
##                             (1) creativityV  (2) pychcapitalV.GroC  (3) creativityV
## ───────────────────────────────────────────────────────────────────────────────────
## (Intercept)                   4.933 ***       -0.150                  4.995 ***    
##                              (0.353)          (0.165)                (0.352)       
## YG1_a                        -0.214 *         -0.010                 -0.217 *      
##                              (0.100)          (0.060)                (0.100)       
## YG2_a                         0.005            0.006                  0.003        
##                              (0.007)          (0.004)                (0.007)       
## LD3                          -0.039           -0.015                 -0.039        
##                              (0.152)          (0.039)                (0.151)       
## coachingV.GroC                0.093            0.290 ***              0.051        
##                              (0.052)          (0.052)                (0.083)       
## trustV.GroC                                    0.037                 -0.049        
##                                               (0.052)                (0.076)       
## coachingV.GroC:trustV.GroC                     0.013                               
##                                               (0.042)                              
## pychcapitalV.GroC                                                     0.236 *      
##                                                                      (0.106)       
## ───────────────────────────────────────────────────────────────────────────────────
## Marginal R^2                  0.022            0.279                  0.032        
## Conditional R^2               0.645            0.279                  0.650        
## AIC                         416.402          180.353                421.092        
## BIC                         439.798          210.434                451.173        
## Num. obs.                   209              209                    209            
## Num. groups: BMDM            59               59                     59            
## Var: BMDM (Intercept)         0.386            0.000                  0.382        
## Var: Residual                 0.220            0.110                  0.216        
## ───────────────────────────────────────────────────────────────────────────────────
## Note. * p < .05, ** p < .01, *** p < .001.
## 
## ************ PART 2. Mediation/Moderation Effect Estimate ************
## 
## Package Use : ‘mediation’ (v4.5.0), ‘interactions’ (v1.1.5)
## Effect Type : Moderated Mediation (Model 7)
## Sample Size : 209 (99 missing observations deleted)
## Random Seed : set.seed(1223)
## Simulations : 2000 (Monte Carlo)
## 
## Direct Effect: "coachingV.GroC" (X) ==> "creativityV" (Y)
## ────────────────────────────────────────────────────────────
##              Effect    S.E.     t     p             [95% CI]
## ────────────────────────────────────────────────────────────
## Direct (c')   0.051 (0.083) 0.618  .537     [-0.109,  0.211]
## ────────────────────────────────────────────────────────────
## 
## Interaction Effect on "pychcapitalV.GroC" (M)
## ────────────────────────────────────────────────────
##                                  F df1 df2     p    
## ────────────────────────────────────────────────────
## coachingV.GroC * trustV.GroC  0.10   1 202  .757    
## ────────────────────────────────────────────────────
## 
## Simple Slopes: "coachingV.GroC" (X) ==> "pychcapitalV.GroC" (M)
## (Conditional Effects [a] of X on M)
## ────────────────────────────────────────────────────────────
##  "trustV.GroC" Effect    S.E.     t     p           [95% CI]
## ────────────────────────────────────────────────────────────
##  -0.625 (- SD)  0.282 (0.054) 5.186 <.001 *** [0.175, 0.389]
##  0.015 (Mean)   0.290 (0.052) 5.552 <.001 *** [0.188, 0.393]
##  0.656 (+ SD)   0.299 (0.063) 4.739 <.001 *** [0.175, 0.422]
## ────────────────────────────────────────────────────────────
## 
## Running 2000 * 3 simulations...
## Indirect Path: "coachingV.GroC" (X) ==> "pychcapitalV.GroC" (M) ==> "creativityV" (Y)
## (Conditional Indirect Effects [ab] of X through M on Y)
## ─────────────────────────────────────────────────────────────
##  "trustV.GroC" Effect    S.E.     z     p       [MCMC 95% CI]
## ─────────────────────────────────────────────────────────────
##  -0.625 (- SD)  0.065 (0.032) 2.034  .042 *   [ 0.008, 0.133]
##  0.015 (Mean)   0.067 (0.033) 2.068  .039 *   [ 0.008, 0.135]
##  0.656 (+ SD)   0.069 (0.034) 2.018  .044 *   [ 0.007, 0.142]
## ─────────────────────────────────────────────────────────────
## Monte Carlo (Quasi-Bayesian) Confidence Interval
## (Effect, SE, and CI are estimated based on 2000 Monte Carlo samples.)
## 
## Note. The results based on bootstrapping or other random processes
## are unlikely identical to other statistical software (e.g., SPSS).
## To make results reproducible, you need to set a seed (any number).
## Please see the help page for details: help(PROCESS)
## Ignore this note if you have already set a seed. :)