*JOHANNA AGUILAR
*JOSE BAÑO
*SAYRI MENDOZA
*JAIME PAREDES
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.2.3
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
head(iris)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
head(mtcars)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
head(select(mtcars, 1:3))
## mpg cyl disp
## Mazda RX4 21.0 6 160
## Mazda RX4 Wag 21.0 6 160
## Datsun 710 22.8 4 108
## Hornet 4 Drive 21.4 6 258
## Hornet Sportabout 18.7 8 360
## Valiant 18.1 6 225
?select_helpers
## starting httpd help server ... done
head(select(mtcars, starts_with("d")))
## disp drat
## Mazda RX4 160 3.90
## Mazda RX4 Wag 160 3.90
## Datsun 710 108 3.85
## Hornet 4 Drive 258 3.08
## Hornet Sportabout 360 3.15
## Valiant 225 2.76
head(select(mtcars, ends_with("p")))
## disp hp
## Mazda RX4 160 110
## Mazda RX4 Wag 160 110
## Datsun 710 108 93
## Hornet 4 Drive 258 110
## Hornet Sportabout 360 175
## Valiant 225 105
head(select(mtcars, -drat, -am))
## mpg cyl disp hp wt qsec vs gear carb
## Mazda RX4 21.0 6 160 110 2.620 16.46 0 4 4
## Mazda RX4 Wag 21.0 6 160 110 2.875 17.02 0 4 4
## Datsun 710 22.8 4 108 93 2.320 18.61 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.215 19.44 1 3 1
## Hornet Sportabout 18.7 8 360 175 3.440 17.02 0 3 2
## Valiant 18.1 6 225 105 3.460 20.22 1 3 1
head(select(mtcars,contains("a")))
## drat am gear carb
## Mazda RX4 3.90 1 4 4
## Mazda RX4 Wag 3.90 1 4 4
## Datsun 710 3.85 1 4 1
## Hornet 4 Drive 3.08 0 3 1
## Hornet Sportabout 3.15 0 3 2
## Valiant 2.76 0 3 1
head(filter(mtcars,mpg>20,gear==4))
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
head(filter(mtcars, am==1, cyl<=6))
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
head(filter(mtcars, (mpg<21 | carb<3) & gear<4))
## mpg cyl disp hp drat wt qsec vs am gear carb
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
select(mtcars,cyl ,disp, everything())
## cyl disp mpg hp drat wt qsec vs am gear carb
## Mazda RX4 6 160.0 21.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 6 160.0 21.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 4 108.0 22.8 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 6 258.0 21.4 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 8 360.0 18.7 175 3.15 3.440 17.02 0 0 3 2
## Valiant 6 225.0 18.1 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 8 360.0 14.3 245 3.21 3.570 15.84 0 0 3 4
## Merc 240D 4 146.7 24.4 62 3.69 3.190 20.00 1 0 4 2
## Merc 230 4 140.8 22.8 95 3.92 3.150 22.90 1 0 4 2
## Merc 280 6 167.6 19.2 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 6 167.6 17.8 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 8 275.8 16.4 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 8 275.8 17.3 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 8 275.8 15.2 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 8 472.0 10.4 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 8 460.0 10.4 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 8 440.0 14.7 230 3.23 5.345 17.42 0 0 3 4
## Fiat 128 4 78.7 32.4 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 4 75.7 30.4 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 4 71.1 33.9 65 4.22 1.835 19.90 1 1 4 1
## Toyota Corona 4 120.1 21.5 97 3.70 2.465 20.01 1 0 3 1
## Dodge Challenger 8 318.0 15.5 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 8 304.0 15.2 150 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 8 350.0 13.3 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 8 400.0 19.2 175 3.08 3.845 17.05 0 0 3 2
## Fiat X1-9 4 79.0 27.3 66 4.08 1.935 18.90 1 1 4 1
## Porsche 914-2 4 120.3 26.0 91 4.43 2.140 16.70 0 1 5 2
## Lotus Europa 4 95.1 30.4 113 3.77 1.513 16.90 1 1 5 2
## Ford Pantera L 8 351.0 15.8 264 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 6 145.0 19.7 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 8 301.0 15.0 335 3.54 3.570 14.60 0 1 5 8
## Volvo 142E 4 121.0 21.4 109 4.11 2.780 18.60 1 1 4 2
lb<-mtcars
lb$Libras<-lb$wt*0.45
lb
## mpg cyl disp hp drat wt qsec vs am gear carb Libras
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 1.17900
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 1.29375
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 1.04400
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 1.44675
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 1.54800
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 1.55700
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 1.60650
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 1.43550
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 1.41750
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 1.54800
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 1.54800
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 1.83150
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 1.67850
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 1.70100
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 2.36250
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 2.44080
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 2.40525
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 0.99000
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 0.72675
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 0.82575
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 1.10925
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 1.58400
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 1.54575
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 1.72800
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 1.73025
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 0.87075
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 0.96300
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 0.68085
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 1.42650
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 1.24650
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 1.60650
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 1.25100
summarise(mtcars,mean(disp))
## mean(disp)
## 1 230.7219
summarise(group_by(mtcars, cyl), max = max(disp))
## # A tibble: 3 × 2
## cyl max
## <dbl> <dbl>
## 1 4 147.
## 2 6 258
## 3 8 472
mtcars%>% select(mpg:disp) %>% head
## mpg cyl disp
## Mazda RX4 21.0 6 160
## Mazda RX4 Wag 21.0 6 160
## Datsun 710 22.8 4 108
## Hornet 4 Drive 21.4 6 258
## Hornet Sportabout 18.7 8 360
## Valiant 18.1 6 225
head(select(select(mtcars,contains("a")),-drat, -am))
## gear carb
## Mazda RX4 4 4
## Mazda RX4 Wag 4 4
## Datsun 710 4 1
## Hornet 4 Drive 3 1
## Hornet Sportabout 3 2
## Valiant 3 1
mtcars %>%
head %>%
select(-drat, -am) %>%
select(contains("a"))
## gear carb
## Mazda RX4 4 4
## Mazda RX4 Wag 4 4
## Datsun 710 4 1
## Hornet 4 Drive 3 1
## Hornet Sportabout 3 2
## Valiant 3 1
mtcars_filtered = filter(mtcars, wt > 1.5)
mtcars_grouped = group_by(mtcars_filtered, cyl)
summarise(mtcars_grouped, mn = mean(mpg), sd = sd(mpg))
## # A tibble: 3 × 3
## cyl mn sd
## <dbl> <dbl> <dbl>
## 1 4 26.7 4.51
## 2 6 19.7 1.45
## 3 8 15.1 2.56
mtcars %>%
filter(wt>1.5) %>%
group_by(cyl) %>%
summarise(mn = mean(mpg), sd = sd(mpg))
## # A tibble: 3 × 3
## cyl mn sd
## <dbl> <dbl> <dbl>
## 1 4 26.7 4.51
## 2 6 19.7 1.45
## 3 8 15.1 2.56
library(dplyr)
fichero<-"https://gauss.inf.um.es/datos/vuelos.csv"
download.file(fichero, "vuelos.csv")
vuelos<- read.table(fichero, header = TRUE, sep = ",")
vuelos_destino<- filter(vuelos, dest=="SFO" | dest=="OAK")
head(vuelos_destino)
## date hour minute dep arr dep_delay arr_delay carrier flight dest
## 373 2011-01-31 8 51 851 1052 1 -27 CO 170 SFO
## 389 2011-01-31 11 29 1129 1351 4 1 CO 270 SFO
## 402 2011-01-31 14 32 1432 1656 7 5 CO 370 SFO
## 436 2011-01-31 17 48 1748 2001 3 -4 CO 570 SFO
## 467 2011-01-31 21 43 2143 2338 50 24 CO 770 SFO
## 468 2011-01-31 7 29 729 1002 -1 2 CO 771 SFO
## plane cancelled time dist
## 373 N35407 0 225 1635
## 389 N37420 0 228 1635
## 402 N27213 0 229 1635
## 436 N75436 0 236 1635
## 467 N37281 0 224 1635
## 468 N26226 0 237 1635
nrow(vuelos_destino)
## [1] 1121
vuelos_destino %>%
select(arr_delay, dest) %>%
filter(arr_delay>60)
## arr_delay dest
## 1030 102 SFO
## 1048 77 SFO
## 3867 75 SFO
## 3897 69 SFO
## 3945 90 SFO
## 3963 86 SFO
## 3977 64 SFO
## 4717 70 SFO
## 5523 124 SFO
## 6033 87 SFO
## 6068 114 SFO
## 6105 117 SFO
## 6120 144 SFO
## 6138 118 SFO
## 9455 93 OAK
## 11264 99 OAK
## 12107 82 OAK
## 19893 130 SFO
## 20103 82 SFO
## 20118 95 SFO
## 20136 72 SFO
## 21242 64 SFO
## 21277 86 SFO
## 21293 69 SFO
## 21325 98 SFO
## 21452 191 SFO
## 21487 117 SFO
## 21502 173 SFO
## 21520 80 SFO
## 21534 104 SFO
## 21869 72 SFO
## 21997 68 SFO
## 22013 80 SFO
## 22026 89 SFO
## 22060 137 SFO
## 22105 116 SFO
## 22688 75 SFO
## 23378 159 SFO
## 23999 95 SFO
## 26224 207 OAK
## 26809 113 OAK
## 34496 88 SFO
## 34936 88 OAK
## 36519 69 SFO
## 37794 116 SFO
## 37810 146 SFO
## 37875 88 SFO
## 37938 105 SFO
## 38013 75 SFO
## 38044 79 SFO
## 38059 101 SFO
## 38949 177 SFO
## 38965 159 SFO
## 39013 140 SFO
## 39029 168 SFO
## 39093 87 SFO
## 39594 71 SFO
## 39609 73 SFO
## 39621 115 SFO
## 39753 66 SFO
## 39786 102 SFO
## 39801 81 SFO
## 39816 61 SFO
## 39988 89 SFO
## 40003 87 SFO
## 40018 100 SFO
## 40331 91 SFO
## 41355 108 SFO
## 41370 90 SFO
## 41385 96 SFO
## 41497 82 SFO
## 41569 134 SFO
## 42108 90 SFO
## 42139 123 SFO
## 42154 160 SFO
## 42169 93 SFO
## 42181 150 SFO
## 44858 185 SFO
## 44860 74 SFO
## 44862 62 SFO
## 44864 82 SFO
## 44871 164 SFO
## 44874 516 SFO
## 44875 72 SFO
## 44881 83 SFO
## 44883 205 SFO
## 48540 188 OAK
## 49076 157 OAK
## 56802 91 SFO
## 56847 88 SFO
## 56860 70 SFO
## 56941 88 SFO
## 57067 87 SFO
## 57306 80 SFO
## 57626 64 SFO
## 58036 143 SFO
## 58636 67 SFO
## 59037 170 SFO
## 60699 79 SFO
## 60729 83 SFO
## 63091 114 OAK
## 63979 79 OAK
## 64379 65 OAK
## 72018 63 SFO
## 72019 474 SFO
## 72942 303 OAK
head(select(vuelos_destino, contains("delay")))
## dep_delay arr_delay
## 373 1 -27
## 389 4 1
## 402 7 5
## 436 3 -4
## 467 50 24
## 468 -1 2
head(select(vuelos_destino, -c(dep_delay)))
## date hour minute dep arr arr_delay carrier flight dest plane
## 373 2011-01-31 8 51 851 1052 -27 CO 170 SFO N35407
## 389 2011-01-31 11 29 1129 1351 1 CO 270 SFO N37420
## 402 2011-01-31 14 32 1432 1656 5 CO 370 SFO N27213
## 436 2011-01-31 17 48 1748 2001 -4 CO 570 SFO N75436
## 467 2011-01-31 21 43 2143 2338 24 CO 770 SFO N37281
## 468 2011-01-31 7 29 729 1002 2 CO 771 SFO N26226
## cancelled time dist
## 373 0 225 1635
## 389 0 228 1635
## 402 0 229 1635
## 436 0 236 1635
## 467 0 224 1635
## 468 0 237 1635
head(select(vuelos_destino, -c(arr_delay)))
## date hour minute dep arr dep_delay carrier flight dest plane
## 373 2011-01-31 8 51 851 1052 1 CO 170 SFO N35407
## 389 2011-01-31 11 29 1129 1351 4 CO 270 SFO N37420
## 402 2011-01-31 14 32 1432 1656 7 CO 370 SFO N27213
## 436 2011-01-31 17 48 1748 2001 3 CO 570 SFO N75436
## 467 2011-01-31 21 43 2143 2338 50 CO 770 SFO N37281
## 468 2011-01-31 7 29 729 1002 -1 CO 771 SFO N26226
## cancelled time dist
## 373 0 225 1635
## 389 0 228 1635
## 402 0 229 1635
## 436 0 236 1635
## 467 0 224 1635
## 468 0 237 1635
head(select(vuelos_destino, dep_delay, everything()))
## dep_delay date hour minute dep arr arr_delay carrier flight dest
## 373 1 2011-01-31 8 51 851 1052 -27 CO 170 SFO
## 389 4 2011-01-31 11 29 1129 1351 1 CO 270 SFO
## 402 7 2011-01-31 14 32 1432 1656 5 CO 370 SFO
## 436 3 2011-01-31 17 48 1748 2001 -4 CO 570 SFO
## 467 50 2011-01-31 21 43 2143 2338 24 CO 770 SFO
## 468 -1 2011-01-31 7 29 729 1002 2 CO 771 SFO
## plane cancelled time dist
## 373 N35407 0 225 1635
## 389 N37420 0 228 1635
## 402 N27213 0 229 1635
## 436 N75436 0 236 1635
## 467 N37281 0 224 1635
## 468 N26226 0 237 1635
vuelos_destino %>% select(date,hour, dep_delay) %>% group_by(date) %>% summarise(media=mean(dep_delay, na.rm=T), mediana= median(dep_delay, na.rm = T), cuartil=quantile(dep_delay,0.75, na.rm=T))
## # A tibble: 120 × 4
## date media mediana cuartil
## <chr> <dbl> <dbl> <dbl>
## 1 2011-01-01 21.2 19 35
## 2 2011-01-02 63.7 57.5 118.
## 3 2011-01-03 17.9 13 20
## 4 2011-01-04 22.5 13.5 37.5
## 5 2011-01-05 27.7 15 17
## 6 2011-01-06 17.7 17.5 19
## 7 2011-01-07 15.4 10 19.5
## 8 2011-01-08 17 11 29
## 9 2011-01-09 22.7 18 23
## 10 2011-01-10 15.6 15 18
## # ℹ 110 more rows
View(vuelos_destino)
vuelos_destino%>%select(dep_delay, date, hour, flight)%>%
filter(flight>10)%>%
group_by(date)%>%
summarise(m_retraso= mean(dep_delay, na.rm=T),c_vuelos_dia=n_distinct(flight))
## # A tibble: 120 × 3
## date m_retraso c_vuelos_dia
## <chr> <dbl> <int>
## 1 2011-01-01 21.2 8
## 2 2011-01-02 63.7 10
## 3 2011-01-03 19.9 8
## 4 2011-01-04 25.1 7
## 5 2011-01-05 27.7 9
## 6 2011-01-06 17.7 10
## 7 2011-01-07 15.4 10
## 8 2011-01-08 17 9
## 9 2011-01-09 22.7 10
## 10 2011-01-10 15.6 9
## # ℹ 110 more rows
1.-Primero se instala la libreria RODBC para establecer la conección entre MySQL y rstudio.
2.-En el buscar de tu ordenador se busca origenes de datos ODBC y se busca el servidor Mysql connector odbc y finalizamos.
3.-se estable una variable y utilizamos la funcion odbcConnect que actúa como una interfaz entre la base de datos y el rstudio, se coloca el nombre del servidor que nosotros registramos con su contraseña.
4.-Con otra variable utilizamos el comando sqlQuery que es para hacer consultas y solo seleccionamos lo que queremos ver de la tabla importada de vuelos.
5.- Para visualizar la cabecera de nuestra tabla utilizamos head y eso es todo y ejecutamos.
#install.packages("RODBC")
library("RODBC")
conexvuelos <- odbcConnect("MySQL Connection1", uid = "root", pwd = "1725385981")
vuelos <- sqlQuery(conexvuelos, "SELECT * FROM vuelos.vuelos")
head(vuelos)
## date hour minute dep arr dep_delay arr_delay carrier flight dest
## 1 1 01/01/2011 14 0 1400 1500 0 -10 AA 428
## 2 2 02/01/2011 14 1 1401 1501 1 -9 AA 428
## 3 3 03/01/2011 13 52 1352 1502 -8 -8 AA 428
## 4 4 04/01/2011 14 3 1403 1513 3 3 AA 428
## 5 5 05/01/2011 14 5 1405 1507 5 -3 AA 428
## 6 6 06/01/2011 13 59 1359 1503 -1 -7 AA 428
## plane cancelled time dist MyUnknownColumn
## 1 DFW N576AA 0 40 224
## 2 DFW N557AA 0 45 224
## 3 DFW N541AA 0 48 224
## 4 DFW N403AA 0 39 224
## 5 DFW N492AA 0 44 224
## 6 DFW N262AA 0 45 224