#Question 1
factorial <- 1
for (n in 1:12){
factorial <- factorial * n
}
print(factorial)
## [1] 479001600
sprintf('The roots of %.0fx^2 + %.0fx + %.0f are:', 1, 1, 1)
## [1] "The roots of 1x^2 + 1x + 1 are:"
#Question 2
num_vec <- as.numeric(5*(4:10))
print(num_vec)
## [1] 20 25 30 35 40 45 50
#Question 3
quad <- function(a, b, c){
if (is.numeric(a) & is.numeric(b) & is.numeric(c)) {
#define discriminant
discriminant <- b^2 - 4 * a * c
sqrt_num <- 0
#if root is complex
if (discriminant < 0){
sqrt_num <- sqrt(as.complex(discriminant))/2
#root is real
}
else{
sqrt_num <- sqrt(discriminant)
}
x1 <- (-b + sqrt_num)/2
x2 <- (-b - sqrt_num)/2
print(x1)
print(x2)
}
}
quad(1, 6, 5)
## [1] -1
## [1] -5