Neste tutorial vamos ter uma introdução sobre análises básicas de diversidade em comunidades ecológicas utilizando o pacote vegan.
## Carregando pacotes exigidos: permute
## Carregando pacotes exigidos: lattice
## This is vegan 2.6-4
## Carregando pacotes exigidos: viridisLite
Diversidade Alfa: A diversidade de uma comunidade local (um único sitio ou amostra)
Beta diversidade: A diversidade entre comunidades locais. Pode ser descrita como a relação entre a diversidade alfa e gama (gama diversidade dividida pela diversidade alfa).
Diversidade Gama A diversidade total de um ecossistema (todos os locais ou amostras)
BCI é um dataset de 225 espécies de árvores (nas colunas) e 50 locais diferentes (linhas) (plots de 1-hectare)
Este tipo de configuração dos dados é o mais usado para este tipo de análises
BCI.env é um dataset com dados ambientais com 9 variáveis dos 50 locais (linhas):
- [,1]coordenadas E-W
- [,2]coordenadas N-S
- [,3]precipitação (mm por ano)
- [,4]elevação (m)
- [,5]idade da floresta (categoria)
- [,6]geologia (formação geológica)
- [,7]Tipo de habitat dominante
- [,8]Rio (sim ou não)
- [,9]Heterogeneidade ambiental
Estes são bons exemplos de variáveis que podem influenciar a diversidade de espécies de um local. As variáveis a serem coletadas sempre vão depender de uma hipótese prévia.
Diversidade Alfa
A métrica padrão desta função é o índice de shannon. Mas este argumento pode ser mudado para simpson” ou “invsimpson”:
div1 <- diversity(BCI, index = “simpsion”) div2 <- diversity(BCI, index = “invsimpson”,)
Ambas variantes do índice de Simpson são baseadas na Diversidade = soma (abundâncias proporcionais)²
simpson= 1-Diversidade invsimpson= 1/Diversidade
## 1 2 3 4 5 6
## 4.018412 3.848471 3.814060 3.976563 3.969940 3.776575
Índice de Equidade/Equitabilidade (Pielou’s Evenness)
Valor referente à distribuição dos indivíduos entre as espécies, sendo proporcional à diversidade e inversamente proporcional a dominância.
Criando dados de alfa-diversidade juntamente com os dados ambientais
##
## 1 function (colour, alpha = NA)
## 2 {
## 3 if (length(colour) != length(alpha)) {
## 4 if (length(colour) > 1 && length(alpha) > 1) {
## 5 stop("Only one of colour and alpha can be vectorised")
## 6 }
Temos agora um conjunto de dados com as (possíveis) variáveis resposta (diversidade, riqueza e equidade) e todas as possíveis variáveis preditoras para cada localidade
Temos a possibilidade de plotar e analisar estes dados, testando a diferença significativa entre as localidades e as variáveis que influenciam a diversidade.
Exemplos rápidos para testes de correlação entre as variáveis ambientaos e a diversidade:
- Regressões - utilizando modelos lineares simples:
reg<-lm(shannon ~ Precipitation , alfa) #testando se a precipitação apresenta influencia na diversidade
summary(reg)##
## Call:
## lm(formula = shannon ~ Precipitation, data = alfa)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.17898 -0.07669 0.02919 0.14826 0.25649
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.82084 0.03311 115.4 <2e-16 ***
## Precipitation NA NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2341 on 49 degrees of freedom
O mesmo pode ser aplicado a outras variáveis contínuas.
- Análise de variância (ANOVA) para variáveis categóricas
## Df Sum Sq Mean Sq F value Pr(>F)
## Habitat 4 1.125 0.2812 8.105 5.2e-05 ***
## Residuals 45 1.561 0.0347
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Diversidade Beta
Calculando a dissimilaridade pareada
BCI_mat <- as.matrix.data.frame(BCI) #transformamos primeiro nossos dados em uma matriz
rownames(BCI_mat) <- rownames(BCI.env)A função vegdist calcula os índices de dissimilaridade entre todos as localidades. O resultado correspondem a uma matriz. O método (por ex. manhattan, euclidean, bray, etc) pode ser mudado (todas as opções estão em ?vegdist).
SIMPER (Bray-Curtis dissimilarity)
SIMPER é um método capaz de identificar quais espécies contribuem mais para a beta diversidade.
sim <- simper(BCI, permutations = 99) #mostra a importancia cumulativa de cada espécie.
Diversidade Gama
A forma mais simples de calcular a diversidade gama é somar todas as colunas (abundância total das espécies):
## [1] 4.270409
## 1
## 4.270409
Lembrando que o método de cálculo da diversidade pode ser mudado utilizando o parâmetro index.