# Read in data
baseball = read.csv("baseball.csv")
str(baseball)
'data.frame': 1232 obs. of 15 variables:
$ Team : chr "ARI" "ATL" "BAL" "BOS" ...
$ League : chr "NL" "NL" "AL" "AL" ...
$ Year : int 2012 2012 2012 2012 2012 2012 2012 2012 2012 2012 ...
$ RS : int 734 700 712 734 613 748 669 667 758 726 ...
$ RA : int 688 600 705 806 759 676 588 845 890 670 ...
$ W : int 81 94 93 69 61 85 97 68 64 88 ...
$ OBP : num 0.328 0.32 0.311 0.315 0.302 0.318 0.315 0.324 0.33 0.335 ...
$ SLG : num 0.418 0.389 0.417 0.415 0.378 0.422 0.411 0.381 0.436 0.422 ...
$ BA : num 0.259 0.247 0.247 0.26 0.24 0.255 0.251 0.251 0.274 0.268 ...
$ Playoffs : int 0 1 1 0 0 0 1 0 0 1 ...
$ RankSeason : int NA 4 5 NA NA NA 2 NA NA 6 ...
$ RankPlayoffs: int NA 5 4 NA NA NA 4 NA NA 2 ...
$ G : int 162 162 162 162 162 162 162 162 162 162 ...
$ OOBP : num 0.317 0.306 0.315 0.331 0.335 0.319 0.305 0.336 0.357 0.314 ...
$ OSLG : num 0.415 0.378 0.403 0.428 0.424 0.405 0.39 0.43 0.47 0.402 ...
# Subset to only include moneyball years
moneyball = subset(baseball, Year < 2002)
str(moneyball)
'data.frame': 902 obs. of 15 variables:
$ Team : chr "ANA" "ARI" "ATL" "BAL" ...
$ League : chr "AL" "NL" "NL" "AL" ...
$ Year : int 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 ...
$ RS : int 691 818 729 687 772 777 798 735 897 923 ...
$ RA : int 730 677 643 829 745 701 795 850 821 906 ...
$ W : int 75 92 88 63 82 88 83 66 91 73 ...
$ OBP : num 0.327 0.341 0.324 0.319 0.334 0.336 0.334 0.324 0.35 0.354 ...
$ SLG : num 0.405 0.442 0.412 0.38 0.439 0.43 0.451 0.419 0.458 0.483 ...
$ BA : num 0.261 0.267 0.26 0.248 0.266 0.261 0.268 0.262 0.278 0.292 ...
$ Playoffs : int 0 1 1 0 0 0 0 0 1 0 ...
$ RankSeason : int NA 5 7 NA NA NA NA NA 6 NA ...
$ RankPlayoffs: int NA 1 3 NA NA NA NA NA 4 NA ...
$ G : int 162 162 162 162 161 162 162 162 162 162 ...
$ OOBP : num 0.331 0.311 0.314 0.337 0.329 0.321 0.334 0.341 0.341 0.35 ...
$ OSLG : num 0.412 0.404 0.384 0.439 0.393 0.398 0.427 0.455 0.417 0.48 ...
# Compute Run Difference
moneyball$RD = moneyball$RS - moneyball$RA
str(moneyball)
'data.frame': 902 obs. of 16 variables:
$ Team : chr "ANA" "ARI" "ATL" "BAL" ...
$ League : chr "AL" "NL" "NL" "AL" ...
$ Year : int 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 ...
$ RS : int 691 818 729 687 772 777 798 735 897 923 ...
$ RA : int 730 677 643 829 745 701 795 850 821 906 ...
$ W : int 75 92 88 63 82 88 83 66 91 73 ...
$ OBP : num 0.327 0.341 0.324 0.319 0.334 0.336 0.334 0.324 0.35 0.354 ...
$ SLG : num 0.405 0.442 0.412 0.38 0.439 0.43 0.451 0.419 0.458 0.483 ...
$ BA : num 0.261 0.267 0.26 0.248 0.266 0.261 0.268 0.262 0.278 0.292 ...
$ Playoffs : int 0 1 1 0 0 0 0 0 1 0 ...
$ RankSeason : int NA 5 7 NA NA NA NA NA 6 NA ...
$ RankPlayoffs: int NA 1 3 NA NA NA NA NA 4 NA ...
$ G : int 162 162 162 162 161 162 162 162 162 162 ...
$ OOBP : num 0.331 0.311 0.314 0.337 0.329 0.321 0.334 0.341 0.341 0.35 ...
$ OSLG : num 0.412 0.404 0.384 0.439 0.393 0.398 0.427 0.455 0.417 0.48 ...
$ RD : int -39 141 86 -142 27 76 3 -115 76 17 ...
# Scatterplot to check for linear relationship
plot(moneyball$RD, moneyball$W)
# Regression model to predict wins
WinsReg = lm(W ~ RD, data=moneyball)
summary(WinsReg)
Call:
lm(formula = W ~ RD, data = moneyball)
Residuals:
Min 1Q Median 3Q Max
-14.2662 -2.6509 0.1234 2.9364 11.6570
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 80.881375 0.131157 616.67 <2e-16 ***
RD 0.105766 0.001297 81.55 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 3.939 on 900 degrees of freedom
Multiple R-squared: 0.8808, Adjusted R-squared: 0.8807
F-statistic: 6651 on 1 and 900 DF, p-value: < 2.2e-16
If a baseball team scores 763 runs and allows 614 runs, how many games do we expect the team to win?
Using the linear regression model constructed during the lecture, enter the number of games we expect the team to win:
763-614
[1] 149
wins=80.88+0.105766*(149)
wins
[1] 96.63913
If a baseball team has an RD of 149, we expect the team would win approximately 97 games.
str(moneyball)
'data.frame': 902 obs. of 16 variables:
$ Team : chr "ANA" "ARI" "ATL" "BAL" ...
$ League : chr "AL" "NL" "NL" "AL" ...
$ Year : int 2001 2001 2001 2001 2001 2001 2001 2001 2001 2001 ...
$ RS : int 691 818 729 687 772 777 798 735 897 923 ...
$ RA : int 730 677 643 829 745 701 795 850 821 906 ...
$ W : int 75 92 88 63 82 88 83 66 91 73 ...
$ OBP : num 0.327 0.341 0.324 0.319 0.334 0.336 0.334 0.324 0.35 0.354 ...
$ SLG : num 0.405 0.442 0.412 0.38 0.439 0.43 0.451 0.419 0.458 0.483 ...
$ BA : num 0.261 0.267 0.26 0.248 0.266 0.261 0.268 0.262 0.278 0.292 ...
$ Playoffs : int 0 1 1 0 0 0 0 0 1 0 ...
$ RankSeason : int NA 5 7 NA NA NA NA NA 6 NA ...
$ RankPlayoffs: int NA 1 3 NA NA NA NA NA 4 NA ...
$ G : int 162 162 162 162 161 162 162 162 162 162 ...
$ OOBP : num 0.331 0.311 0.314 0.337 0.329 0.321 0.334 0.341 0.341 0.35 ...
$ OSLG : num 0.412 0.404 0.384 0.439 0.393 0.398 0.427 0.455 0.417 0.48 ...
$ RD : int -39 141 86 -142 27 76 3 -115 76 17 ...
# Regression model to predict runs scored
RunsReg = lm(RS ~ OBP + SLG + BA, data=moneyball)
summary(RunsReg)
Call:
lm(formula = RS ~ OBP + SLG + BA, data = moneyball)
Residuals:
Min 1Q Median 3Q Max
-70.941 -17.247 -0.621 16.754 90.998
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -788.46 19.70 -40.029 < 2e-16 ***
OBP 2917.42 110.47 26.410 < 2e-16 ***
SLG 1637.93 45.99 35.612 < 2e-16 ***
BA -368.97 130.58 -2.826 0.00482 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 24.69 on 898 degrees of freedom
Multiple R-squared: 0.9302, Adjusted R-squared: 0.93
F-statistic: 3989 on 3 and 898 DF, p-value: < 2.2e-16
Exercise 1 If a baseball team’s OBP is 0.361, SLG is 0.409, and BA is 0.257, how many runs do we expect the team to score? Using the linear regression model constructed during the lecture (the one that uses OBP, SLG, and BA as independent variables), find the number of runs we expect the team to score:
RunsScored=-788.46+2917.42*(0.361)+1637.93*(0.409)-368.97*(0.257)
RunsScored
[1] 839.8167
The number of runs we expect the team to score is approximately 840
# Regression model to predict runs allowed
RunsReg = lm(RA ~ OOBP + OSLG, data=moneyball)
summary(RunsReg)
Call:
lm(formula = RA ~ OOBP + OSLG, data = moneyball)
Residuals:
Min 1Q Median 3Q Max
-82.397 -15.178 -0.129 17.679 60.955
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -837.38 60.26 -13.897 < 2e-16 ***
OOBP 2913.60 291.97 9.979 4.46e-16 ***
OSLG 1514.29 175.43 8.632 2.55e-13 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 25.67 on 87 degrees of freedom
(812 observations deleted due to missingness)
Multiple R-squared: 0.9073, Adjusted R-squared: 0.9052
F-statistic: 425.8 on 2 and 87 DF, p-value: < 2.2e-16
Exercise 2
If a baseball team’s opponents OBP (OOBP) is 0.267 and opponents SLG (OSLG) is 0.392, how many runs do we expect the team to allow? Using the linear regression model discussed during the lecture (the one on the last slide of the previous video), find the number of runs we expect the team to allow.
RunsScored1=-837.38+2913.60*(0.267)+1514.29*(0.392)
RunsScored1
[1] 534.1529
The number of runs we expect the team to allow is 534
baseball
cor(baseball$RA, baseball$OBP)
[1] 0.3263595
cor(baseball$RA, baseball$SLG)
[1] 0.436527
cor(baseball$RS, baseball$OBP)
[1] 0.9004922
cor(baseball$RS, baseball$SLG)
[1] 0.91874
cor(baseball$RA, baseball$W)
[1] -0.5323938
cor(baseball$RS, baseball$W)
[1] 0.5117447
# Regression model to predict runs allowed
RunsReg = lm(RS ~ OBP + SLG, data=moneyball)
summary(RunsReg)
Call:
lm(formula = RS ~ OBP + SLG, data = moneyball)
Residuals:
Min 1Q Median 3Q Max
-70.838 -17.174 -1.108 16.770 90.036
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -804.63 18.92 -42.53 <2e-16 ***
OBP 2737.77 90.68 30.19 <2e-16 ***
SLG 1584.91 42.16 37.60 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 24.79 on 899 degrees of freedom
Multiple R-squared: 0.9296, Adjusted R-squared: 0.9294
F-statistic: 5934 on 2 and 899 DF, p-value: < 2.2e-16
Suppose you are the General Manager of a baseball team, and you are selecting two players for your team. You have a budget of $10,500,000, and you have the choice between the following players:
| Player Name | OBP | SLG | Salary |
|---|---|---|---|
| Yandy Diaz | 0.403 | 0.511 | $8,000,000 |
| Joey Meneses | 0.320 | 0.366 | $723,600 |
| Jose Abreu | 0.292 | 0.358 | $19,500,000 |
| Ryan Noda | 0.384 | 0.400 | $720,000 |
| Nate Lowe | 0.365 | 0.426 | $4,050,000 |
Given your budget and the player statistics, which two players would you select?
# Create a data frame with player statistics
players <- data.frame(
name = c("Yandy Diaz", "Joey Meneses", "Jose Abreu", "Ryan Noda", "Nate Lowe"),
OBP = c(0.403, 0.320, 0.292, 0.384, 0.365),
SLG = c(0.511, 0.366, 0.358, 0.400, 0.426),
salary = c(8000000, 723600, 19500000, 720000, 4050000)
)
# Calculate expected runs for each player using the regression model
players$expected_runs <- predict(RunsReg, newdata = players)
# Filter players within budget
players <- players[players$salary <= 10500000, ]
# Calculate all combinations of 2 players
combinations <- combn(nrow(players), 2)
# Initialize variables to store the best combination
max_runs <- 0
best_combination <- NULL
# Loop through each combination
for (i in 1:ncol(combinations)) {
# Get the indices of the players in this combination
indices <- combinations[, i]
# Calculate the total salary and expected runs for this combination
total_salary <- sum(players$salary[indices])
total_runs <- sum(players$expected_runs[indices])
# If this combination is within budget and has a higher expected runs than the current best, update the best combination
if (total_salary <= 10500000 && total_runs > max_runs) {
max_runs <- total_runs
best_combination <- indices
}
}
# Print the best combination
best_players <- players[best_combination, ]
print(best_players)
NA
We can see that Yandy Diaz and Ryan Noda are the best picks given our budget and our model predicting Runs Scored from a players on base percentage and slugging percentage. It makes sense that it would that these two players are the recommendation since they fairly have the top sums of OBP and SLG. Noda is particularly Inexpensive of a player.