John Slough
August 15, 2015
Project for Coursera: Developing Data Products
Enter some data:
Then you are given a probability of diabetes diagnosis!
Pima Indian dataset from UCI Machine Learning Repository
A visualization of the logistic regression model using the Plasma Glucose variable. The plot shows a dot plot of the data with a box plot for positive and negative diabetes diagnoses, and the prediction line.
Below is a summary of the final model:
Estimate Std. Error Pr(>|z|)
(Intercept) -9.7210 1.3777 0.0000
times_pregnant 0.1286 0.0656 0.0500
plasma_glucose 0.0430 0.0071 0.0000
diastolic_BP -0.0031 0.0139 0.8249
tri_skin_fold 0.0260 0.0192 0.1753
insulin -0.0010 0.0014 0.4845
BMI 0.0479 0.0314 0.1270
d_ped 0.9843 0.4807 0.0406
age 0.0160 0.0201 0.4251
Go here to access the shiny app:
https://sloughje.shinyapps.io/extra
and here for the code:
https://github.com/SloughJE/Coursera-Developing-Data-Products