file.choose()
[1] "C:\\Users\\Lisbeth\\Downloads\\EnsambleRev.xlsx"
ruta_Ensamble <-"C:\\Users\\Lisbeth\\Downloads\\EnsambleRev.xlsx"
excel_sheets(ruta_Ensamble)
[1] "Hoja1"
casoDBCA1<-read_excel(ruta_Ensamble)
print(head(casoDBCA1))
View(casoDBCA1)
attach(casoDBCA1)
names(casoDBCA1)
[1] "METODO"       "OPERADORES"   "TIEMPO (min)"
summary(casoDBCA1)
    METODO           OPERADORES         TIEMPO (min)
 Length:16          Length:16          Min.   : 6   
 Class :character   Class :character   1st Qu.: 8   
 Mode  :character   Mode  :character   Median :10   
                                       Mean   :10   
                                       3rd Qu.:11   
                                       Max.   :16   
str(casoDBCA1)
tibble [16 × 3] (S3: tbl_df/tbl/data.frame)
 $ METODO      : chr [1:16] "A" "B" "C" "D" ...
 $ OPERADORES  : chr [1:16] "OP1" "OP1" "OP1" "OP1" ...
 $ TIEMPO (min): num [1:16] 6 7 10 10 9 10 16 13 7 11 ...
print(head(casoDBCA1))
MET<-factor(casoDBCA1$METODO)
OPER <-factor(casoDBCA1$OPERADORES)
TIEM<-as.vector(casoDBCA1$`TIEMPO (min)`)
TIEM1<-as.numeric(TIEM)
par(mfrow=c(1,1))
boxplot(split(TIEM1,MET),xlab="Metodo", ylab="tiempo")

resaov<-aov(TIEM1 ~ OPER + MET)
ggplot(resaov, aes(MET, TIEM, fill=MET, color=TIEM)) + geom_boxplot() +  geom_jitter() + theme(legend.position = "none")  + geom_point(color = 'red', fill = 'red', size = 5, shape = 18, alpha = 0.5) + geom_jitter(size = 2, color = 'gray', alpha = 0.8)    + geom_boxplot() + theme_bw()

anova(resaov)
Analysis of Variance Table

Response: TIEM1
          Df Sum Sq Mean Sq F value   Pr(>F)   
OPER       3   28.5     9.5    4.75 0.029846 * 
MET        3   61.5    20.5   10.25 0.002919 **
Residuals  9   18.0     2.0                    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
cv.model(resaov)
[1] 14.14214
euc.lm <- lm(TIEM1 ~ OPER + MET)
anova(euc.lm , test="F")
Analysis of Variance Table

Response: TIEM1
          Df Sum Sq Mean Sq F value   Pr(>F)   
OPER       3   28.5     9.5    4.75 0.029846 * 
MET        3   61.5    20.5   10.25 0.002919 **
Residuals  9   18.0     2.0                    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Grafica <- interactionMeans(euc.lm)
plot(Grafica)
par(mfrow=c(1,1))
shapiro.test(euc.lm$res)

    Shapiro-Wilk normality test

data:  euc.lm$res
W = 0.97299, p-value = 0.8844
qqPlot(resaov)
[1] 10 11

fitb <- fitted(resaov)
res_stb <- rstandard(resaov)
plot(fitb,res_stb,xlab="Valores predichos", ylab="Residuos estandarizados",abline(h=0))

bartlett.test(TIEM1 ~ MET)

    Bartlett test of homogeneity of variances

data:  TIEM1 by MET
Bartlett's K-squared = 1.5989, df = 3, p-value = 0.6596
leveneTest(TIEM1 ~ MET, center = "median")
Levene's Test for Homogeneity of Variance (center = "median")
      Df F value Pr(>F)
group  3  1.8667  0.189
      12               
LS0tDQp0aXRsZTogIkxleWRpIExpc2JldGggQmVsaXphcmlvIFlhbnF1aSINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCmBgYHtyfQ0KZmlsZS5jaG9vc2UoKQ0KYGBgDQoNCmBgYHtyfQ0KcnV0YV9FbnNhbWJsZSA8LSJDOlxcVXNlcnNcXExpc2JldGhcXERvd25sb2Fkc1xcRW5zYW1ibGVSZXYueGxzeCINCmBgYA0KDQpgYGB7cn0NCmV4Y2VsX3NoZWV0cyhydXRhX0Vuc2FtYmxlKQ0KYGBgDQoNCmBgYHtyfQ0KY2Fzb0RCQ0ExPC1yZWFkX2V4Y2VsKHJ1dGFfRW5zYW1ibGUpDQpgYGANCg0KYGBge3J9DQpwcmludChoZWFkKGNhc29EQkNBMSkpDQpgYGANCg0KYGBge3J9DQpWaWV3KGNhc29EQkNBMSkNCmBgYA0KDQpgYGB7cn0NCmF0dGFjaChjYXNvREJDQTEpDQpgYGANCg0KYGBge3J9DQpuYW1lcyhjYXNvREJDQTEpDQpgYGANCg0KYGBge3J9DQpzdW1tYXJ5KGNhc29EQkNBMSkNCmBgYA0KDQpgYGB7cn0NCnN0cihjYXNvREJDQTEpDQpgYGANCg0KYGBge3J9DQpwcmludChoZWFkKGNhc29EQkNBMSkpDQpgYGANCg0KYGBge3J9DQpNRVQ8LWZhY3RvcihjYXNvREJDQTEkTUVUT0RPKQ0KYGBgDQoNCmBgYHtyfQ0KT1BFUiA8LWZhY3RvcihjYXNvREJDQTEkT1BFUkFET1JFUykNCmBgYA0KDQpgYGB7cn0NClRJRU08LWFzLnZlY3RvcihjYXNvREJDQTEkYFRJRU1QTyAobWluKWApDQpgYGANCg0KYGBge3J9DQpUSUVNMTwtYXMubnVtZXJpYyhUSUVNKQ0KYGBgDQoNCmBgYHtyfQ0KcGFyKG1mcm93PWMoMSwxKSkNCmBgYA0KDQpgYGB7cn0NCmJveHBsb3Qoc3BsaXQoVElFTTEsTUVUKSx4bGFiPSJNZXRvZG8iLCB5bGFiPSJ0aWVtcG8iKQ0KYGBgDQoNCg0KYGBge3J9DQpyZXNhb3Y8LWFvdihUSUVNMSB+IE9QRVIgKyBNRVQpDQpgYGANCg0KYGBge3J9DQpnZ3Bsb3QocmVzYW92LCBhZXMoTUVULCBUSUVNLCBmaWxsPU1FVCwgY29sb3I9VElFTSkpICsgZ2VvbV9ib3hwbG90KCkgKyAgZ2VvbV9qaXR0ZXIoKSArIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbiA9ICJub25lIikgICsgZ2VvbV9wb2ludChjb2xvciA9ICdyZWQnLCBmaWxsID0gJ3JlZCcsIHNpemUgPSA1LCBzaGFwZSA9IDE4LCBhbHBoYSA9IDAuNSkgKyBnZW9tX2ppdHRlcihzaXplID0gMiwgY29sb3IgPSAnZ3JheScsIGFscGhhID0gMC44KSAgICArIGdlb21fYm94cGxvdCgpICsgdGhlbWVfYncoKQ0KYGBgDQoNCmBgYHtyfQ0KYW5vdmEocmVzYW92KQ0KYGBgDQoNCmBgYHtyfQ0KY3YubW9kZWwocmVzYW92KQ0KYGBgDQoNCmBgYHtyfQ0KZXVjLmxtIDwtIGxtKFRJRU0xIH4gT1BFUiArIE1FVCkNCmBgYA0KDQpgYGB7cn0NCmFub3ZhKGV1Yy5sbSAsIHRlc3Q9IkYiKQ0KYGBgDQoNCmBgYHtyfQ0KR3JhZmljYSA8LSBpbnRlcmFjdGlvbk1lYW5zKGV1Yy5sbSkNCnBsb3QoR3JhZmljYSkNCnBhcihtZnJvdz1jKDEsMSkpDQpgYGANCg0KDQoNCmBgYHtyfQ0Kc2hhcGlyby50ZXN0KGV1Yy5sbSRyZXMpDQpgYGANCg0KYGBge3J9DQpxcVBsb3QocmVzYW92KQ0KYGBgDQoNCmBgYHtyfQ0KZml0YiA8LSBmaXR0ZWQocmVzYW92KQ0KYGBgDQoNCmBgYHtyfQ0KcmVzX3N0YiA8LSByc3RhbmRhcmQocmVzYW92KQ0KYGBgDQoNCmBgYHtyfQ0KcGxvdChmaXRiLHJlc19zdGIseGxhYj0iVmFsb3JlcyBwcmVkaWNob3MiLCB5bGFiPSJSZXNpZHVvcyBlc3RhbmRhcml6YWRvcyIsYWJsaW5lKGg9MCkpDQpgYGANCg0KYGBge3J9DQpiYXJ0bGV0dC50ZXN0KFRJRU0xIH4gTUVUKQ0KYGBgDQoNCmBgYHtyfQ0KbGV2ZW5lVGVzdChUSUVNMSB+IE1FVCwgY2VudGVyID0gIm1lZGlhbiIpDQpgYGANCg0KDQoNCg==