INSTALL PACKAGES.
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.2 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.2 ✔ tibble 3.2.1
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
##
## Attaching package: 'data.table'
##
## The following objects are masked from 'package:lubridate':
##
## hour, isoweek, mday, minute, month, quarter, second, wday, week,
## yday, year
##
## The following objects are masked from 'package:dplyr':
##
## between, first, last
##
## The following object is masked from 'package:purrr':
##
## transpose
##
## Attaching package: 'hms'
##
## The following object is masked from 'package:lubridate':
##
## hms
## here() starts at C:/Users/SWill/Documents/OCT TO DEC CYCLISTIC BIKES
library(skimr)
library(janitor)
##
## Attaching package: 'janitor'
##
## The following objects are masked from 'package:stats':
##
## chisq.test, fisher.test
library(conflicted)
library(gtsummary)
library(scales)
library(RColorBrewer)
library(ggthemes)
SCIENTIFIC NOTATION RUINING YOUR GGPLOT CHARTS? TRY THE LINE OF CODE
BELOW
USE ‘getwd()’ FUNCTION TO DISPLAY WORKING DIRECTORY.
## [1] "C:/Users/SWill/Documents/OCT TO DEC CYCLISTIC BIKES"
USE ‘setwd()’ FUNCTION TO SET WORKING DIRECTORY TO SIMPLIFY CALLS TO
DATA.
setwd("C:/Users/SWill/Documents/JAN TO MAR CYCLISTIC BIKES")
USE ‘spec_csv()’ FUNCTION TO CHECK THE DATA TYPES BEFORE READING THE
DATA.
NOTICE ‘started_at’ AND ‘ended_at’ COLUMNS ARE ‘datetime’ DATA
TYPE.
spec_csv("C:/Users/SWill/Desktop/CYCLISTIC BIKES/divvy-trip-data 01-12/202110-divvy-tripdata.csv")
## cols(
## ride_id = col_character(),
## rideable_type = col_character(),
## started_at = col_datetime(format = ""),
## ended_at = col_datetime(format = ""),
## start_station_name = col_character(),
## start_station_id = col_character(),
## end_station_name = col_character(),
## end_station_id = col_character(),
## start_lat = col_double(),
## start_lng = col_double(),
## end_lat = col_double(),
## end_lng = col_double(),
## member_casual = col_character()
## )
spec_csv("C:/Users/SWill/Desktop/CYCLISTIC BIKES/divvy-trip-data 01-12/202111-divvy-tripdata.csv")
## cols(
## ride_id = col_character(),
## rideable_type = col_character(),
## started_at = col_datetime(format = ""),
## ended_at = col_datetime(format = ""),
## start_station_name = col_character(),
## start_station_id = col_character(),
## end_station_name = col_character(),
## end_station_id = col_character(),
## start_lat = col_double(),
## start_lng = col_double(),
## end_lat = col_double(),
## end_lng = col_double(),
## member_casual = col_character()
## )
spec_csv("C:/Users/SWill/Desktop/CYCLISTIC BIKES/divvy-trip-data 01-12/202112-divvy-tripdata.csv")
## cols(
## ride_id = col_character(),
## rideable_type = col_character(),
## started_at = col_datetime(format = ""),
## ended_at = col_datetime(format = ""),
## start_station_name = col_character(),
## start_station_id = col_character(),
## end_station_name = col_character(),
## end_station_id = col_character(),
## start_lat = col_double(),
## start_lng = col_double(),
## end_lat = col_double(),
## end_lng = col_double(),
## member_casual = col_character()
## )
UPLOAD DATASETS divvy-trip-data.csv FILES.
df_10 <- read.csv("C:/Users/SWill/Desktop/CYCLISTIC BIKES/divvy-trip-data 01-12/202110-divvy-tripdata.csv")
df_11 <- read.csv("C:/Users/SWill/Desktop/CYCLISTIC BIKES/divvy-trip-data 01-12/202111-divvy-tripdata.csv")
df_12 <- read.csv("C:/Users/SWill/Desktop/CYCLISTIC BIKES/divvy-trip-data 01-12/202112-divvy-tripdata.csv")
USE ‘bind_rows()’ FUNCTION TO STACK DATA FRAMES INTO ONE BIG DATA
FRAME.
oct_to_dec <- bind_rows(df_10,df_11,df_12)
CHECK COLUMNS.
## [1] "ride_id" "rideable_type" "started_at"
## [4] "ended_at" "start_station_name" "start_station_id"
## [7] "end_station_name" "end_station_id" "start_lat"
## [10] "start_lng" "end_lat" "end_lng"
## [13] "member_casual"
USE ‘glimpse()’ FUNCTION TO GET A BETTER UNDERSTANDING OF THE
DATA.
Rows: 1,238,744 Columns: 13
COLUMNS ‘started_at’ AND ‘ended_at’ ARE NOW ‘character’ DATA
TYPE.
COLUMNS ‘end_station_name’ AND ‘end_station_id’ HAVE BLANK ROWS THAT
NEED TO BE REMOVED.
## Rows: 1,238,744
## Columns: 13
## $ ride_id <chr> "620BC6107255BF4C", "4471C70731AB2E45", "26CA69D43D…
## $ rideable_type <chr> "electric_bike", "electric_bike", "electric_bike", …
## $ started_at <chr> "2021-10-22 12:46:42", "2021-10-21 09:12:37", "2021…
## $ ended_at <chr> "2021-10-22 12:49:50", "2021-10-21 09:14:14", "2021…
## $ start_station_name <chr> "Kingsbury St & Kinzie St", "", "", "", "", "", "",…
## $ start_station_id <chr> "KA1503000043", "", "", "", "", "", "", "", "", "",…
## $ end_station_name <chr> "", "", "", "", "", "", "", "", "", "", "", "", "",…
## $ end_station_id <chr> "", "", "", "", "", "", "", "", "", "", "", "", "",…
## $ start_lat <dbl> 41.88919, 41.93000, 41.92000, 41.92000, 41.89000, 4…
## $ start_lng <dbl> -87.63850, -87.70000, -87.70000, -87.69000, -87.710…
## $ end_lat <dbl> 41.89000, 41.93000, 41.94000, 41.92000, 41.89000, 4…
## $ end_lng <dbl> -87.63000, -87.71000, -87.72000, -87.69000, -87.690…
## $ member_casual <chr> "member", "member", "member", "member", "member", "…
USE ‘str()’ FUNCTION TO SEE LIST OF COLUMNS AND DATA TYPES NUMERIC,
CHARACTER, DATETIME ETC.
‘data.frame’: 1238744 obs. of 13 variables:
## 'data.frame': 1238744 obs. of 13 variables:
## $ ride_id : chr "620BC6107255BF4C" "4471C70731AB2E45" "26CA69D43D15EE14" "362947F0437E1514" ...
## $ rideable_type : chr "electric_bike" "electric_bike" "electric_bike" "electric_bike" ...
## $ started_at : chr "2021-10-22 12:46:42" "2021-10-21 09:12:37" "2021-10-16 16:28:39" "2021-10-16 16:17:48" ...
## $ ended_at : chr "2021-10-22 12:49:50" "2021-10-21 09:14:14" "2021-10-16 16:36:26" "2021-10-16 16:19:03" ...
## $ start_station_name: chr "Kingsbury St & Kinzie St" "" "" "" ...
## $ start_station_id : chr "KA1503000043" "" "" "" ...
## $ end_station_name : chr "" "" "" "" ...
## $ end_station_id : chr "" "" "" "" ...
## $ start_lat : num 41.9 41.9 41.9 41.9 41.9 ...
## $ start_lng : num -87.6 -87.7 -87.7 -87.7 -87.7 ...
## $ end_lat : num 41.9 41.9 41.9 41.9 41.9 ...
## $ end_lng : num -87.6 -87.7 -87.7 -87.7 -87.7 ...
## $ member_casual : chr "member" "member" "member" "member" ...
USE TIDYR TO SEPARATE “started_at” COLUMN TO A NEW COLUMN CALLED
“start_date” and “start_time”.
USE TIDYR TO SEPARATE “ended_at” COLUMN TO A NEW COLUMN CALLED
“end_date” and “end_time”.
oct_to_dec <- tidyr::separate(oct_to_dec, started_at, c("start_date", "start_time"), sep = " ", remove = FALSE)
oct_to_dec <- tidyr::separate(oct_to_dec, ended_at, c("end_date", "end_time"), sep = " ", remove = FALSE)
CHECK NEW COLUMNS.
## [1] "ride_id" "rideable_type" "started_at"
## [4] "start_date" "start_time" "ended_at"
## [7] "end_date" "end_time" "start_station_name"
## [10] "start_station_id" "end_station_name" "end_station_id"
## [13] "start_lat" "start_lng" "end_lat"
## [16] "end_lng" "member_casual"
‘data.frame’: 1238744 obs. of 17 variables:
## 'data.frame': 1238744 obs. of 17 variables:
## $ ride_id : chr "620BC6107255BF4C" "4471C70731AB2E45" "26CA69D43D15EE14" "362947F0437E1514" ...
## $ rideable_type : chr "electric_bike" "electric_bike" "electric_bike" "electric_bike" ...
## $ started_at : chr "2021-10-22 12:46:42" "2021-10-21 09:12:37" "2021-10-16 16:28:39" "2021-10-16 16:17:48" ...
## $ start_date : chr "2021-10-22" "2021-10-21" "2021-10-16" "2021-10-16" ...
## $ start_time : chr "12:46:42" "09:12:37" "16:28:39" "16:17:48" ...
## $ ended_at : chr "2021-10-22 12:49:50" "2021-10-21 09:14:14" "2021-10-16 16:36:26" "2021-10-16 16:19:03" ...
## $ end_date : chr "2021-10-22" "2021-10-21" "2021-10-16" "2021-10-16" ...
## $ end_time : chr "12:49:50" "09:14:14" "16:36:26" "16:19:03" ...
## $ start_station_name: chr "Kingsbury St & Kinzie St" "" "" "" ...
## $ start_station_id : chr "KA1503000043" "" "" "" ...
## $ end_station_name : chr "" "" "" "" ...
## $ end_station_id : chr "" "" "" "" ...
## $ start_lat : num 41.9 41.9 41.9 41.9 41.9 ...
## $ start_lng : num -87.6 -87.7 -87.7 -87.7 -87.7 ...
## $ end_lat : num 41.9 41.9 41.9 41.9 41.9 ...
## $ end_lng : num -87.6 -87.7 -87.7 -87.7 -87.7 ...
## $ member_casual : chr "member" "member" "member" "member" ...
COLUMN RIDEABLE TYPE.
EXPLORE CHARACTER VARIABLE TYPE IN “rideable_type” COLUMN.
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(oct_to_dec$rideable_type)
## [1] "character"
USE ‘unique ()’ FUNCTION TO FIND INDIVIDUAL VALUES IN COLUMN.
unique(oct_to_dec$rideable_type)
## [1] "electric_bike" "docked_bike" "classic_bike"
HOW MANY OBSERVATIONS FALL UNDER EACH USER TYPE?
table(oct_to_dec$rideable_type)
##
## classic_bike docked_bike electric_bike
## 570813 35426 632505
sort(table(oct_to_dec$rideable_type), decreasing = TRUE)
##
## electric_bike classic_bike docked_bike
## 632505 570813 35426
BAR PLOT OF DATA DISTRIBUTION OF ‘rideable_type’ COLUMN.
barplot(sort(table(oct_to_dec$rideable_type), decreasing = TRUE))

CHANGE VARIABLE FROM CHARACTER TO FACTOR.
oct_to_dec$rideable_type <- as.factor(oct_to_dec$rideable_type)
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(oct_to_dec$rideable_type)
## [1] "factor"
USE ‘levels’ FUNCTION TO CHECK FACTOR.
levels(oct_to_dec$rideable_type)
## [1] "classic_bike" "docked_bike" "electric_bike"
NOTE RIDEABLE TYPE IS NOW A FACTOR.
## Rows: 1,238,744
## Columns: 17
## $ ride_id <chr> "620BC6107255BF4C", "4471C70731AB2E45", "26CA69D43D…
## $ rideable_type <fct> electric_bike, electric_bike, electric_bike, electr…
## $ started_at <chr> "2021-10-22 12:46:42", "2021-10-21 09:12:37", "2021…
## $ start_date <chr> "2021-10-22", "2021-10-21", "2021-10-16", "2021-10-…
## $ start_time <chr> "12:46:42", "09:12:37", "16:28:39", "16:17:48", "23…
## $ ended_at <chr> "2021-10-22 12:49:50", "2021-10-21 09:14:14", "2021…
## $ end_date <chr> "2021-10-22", "2021-10-21", "2021-10-16", "2021-10-…
## $ end_time <chr> "12:49:50", "09:14:14", "16:36:26", "16:19:03", "23…
## $ start_station_name <chr> "Kingsbury St & Kinzie St", "", "", "", "", "", "",…
## $ start_station_id <chr> "KA1503000043", "", "", "", "", "", "", "", "", "",…
## $ end_station_name <chr> "", "", "", "", "", "", "", "", "", "", "", "", "",…
## $ end_station_id <chr> "", "", "", "", "", "", "", "", "", "", "", "", "",…
## $ start_lat <dbl> 41.88919, 41.93000, 41.92000, 41.92000, 41.89000, 4…
## $ start_lng <dbl> -87.63850, -87.70000, -87.70000, -87.69000, -87.710…
## $ end_lat <dbl> 41.89000, 41.93000, 41.94000, 41.92000, 41.89000, 4…
## $ end_lng <dbl> -87.63000, -87.71000, -87.72000, -87.69000, -87.690…
## $ member_casual <chr> "member", "member", "member", "member", "member", "…
COLUMN START_STATION_NAME START_STATION_ID END_STATION_NAME AND
END_STATION_ID.
EXPLORE…CHARACTER VARIABLE TYPE IN “start_staion_name” AND
“end_staion_name”
REPLACE ALL BLANK VALUES IN “start_station_name” COLUMN WITH NA
VALUES.
oct_to_dec$start_station_name[oct_to_dec$start_station_name==""] <- NA
REPLACE ALL BLANK VALUES IN “start_station_id” COLUMN WITH NA
VALUES.
oct_to_dec$start_station_id[oct_to_dec$start_station_id==""] <- NA
REPLACE ALL BLANK VALUES IN “end_station_name” COLUMN WITH NA
VALUES.
oct_to_dec$end_station_name[oct_to_dec$end_station_name==""] <- NA
REPLACE ALL BLANK VALUES IN “end_station_id” COLUMN WITH NA
VALUES.
oct_to_dec$end_station_id[oct_to_dec$end_station_id==""] <- NA
## Rows: 1,238,744
## Columns: 17
## $ ride_id <chr> "620BC6107255BF4C", "4471C70731AB2E45", "26CA69D43D…
## $ rideable_type <fct> electric_bike, electric_bike, electric_bike, electr…
## $ started_at <dttm> 2021-10-22 12:46:42, 2021-10-21 09:12:37, 2021-10-…
## $ start_date <dttm> 2021-10-22, 2021-10-21, 2021-10-16, 2021-10-16, 20…
## $ start_time <chr> "12:46:42", "09:12:37", "16:28:39", "16:17:48", "23…
## $ ended_at <dttm> 2021-10-22 12:49:50, 2021-10-21 09:14:14, 2021-10-…
## $ end_date <dttm> 2021-10-22, 2021-10-21, 2021-10-16, 2021-10-16, 20…
## $ end_time <chr> "12:49:50", "09:14:14", "16:36:26", "16:19:03", "23…
## $ start_station_name <chr> "Kingsbury St & Kinzie St", NA, NA, NA, NA, NA, NA,…
## $ start_station_id <chr> "KA1503000043", NA, NA, NA, NA, NA, NA, NA, NA, NA,…
## $ end_station_name <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
## $ end_station_id <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
## $ start_lat <dbl> 41.88919, 41.93000, 41.92000, 41.92000, 41.89000, 4…
## $ start_lng <dbl> -87.63850, -87.70000, -87.70000, -87.69000, -87.710…
## $ end_lat <dbl> 41.89000, 41.93000, 41.94000, 41.92000, 41.89000, 4…
## $ end_lng <dbl> -87.63000, -87.71000, -87.72000, -87.69000, -87.690…
## $ member_casual <chr> "member", "member", "member", "member", "member", "…
REMOVE ROWS WITH NA VALUES IN ALL COLUMNS.
oct_to_dec <- oct_to_dec %>% drop_na()
‘data.frame’: 910247 obs. of 17 variables:
## 'data.frame': 910247 obs. of 17 variables:
## $ ride_id : chr "614B15BC42810184" "ADCC6E3CF9C04688" "6184CC57243AEF3C" "DE02D027BAC5C820" ...
## $ rideable_type : Factor w/ 3 levels "classic_bike",..: 2 1 2 2 1 1 2 1 1 3 ...
## $ started_at : POSIXlt, format: "2021-10-05 10:56:05" "2021-10-06 13:55:33" ...
## $ start_date : POSIXlt, format: "2021-10-05" "2021-10-06" ...
## $ start_time : chr "10:56:05" "13:55:33" "10:19:43" "11:03:34" ...
## $ ended_at : POSIXlt, format: "2021-10-05 11:38:48" "2021-10-06 13:58:16" ...
## $ end_date : POSIXlt, format: "2021-10-05" "2021-10-06" ...
## $ end_time : chr "11:38:48" "13:58:16" "12:01:20" "13:10:01" ...
## $ start_station_name: chr "Michigan Ave & Oak St" "Desplaines St & Kinzie St" "Michigan Ave & Oak St" "Michigan Ave & Oak St" ...
## $ start_station_id : chr "13042" "TA1306000003" "13042" "13042" ...
## $ end_station_name : chr "Michigan Ave & Oak St" "Kingsbury St & Kinzie St" "Michigan Ave & Oak St" "Michigan Ave & Oak St" ...
## $ end_station_id : chr "13042" "KA1503000043" "13042" "13042" ...
## $ start_lat : num 41.9 41.9 41.9 41.9 41.9 ...
## $ start_lng : num -87.6 -87.6 -87.6 -87.6 -87.6 ...
## $ end_lat : num 41.9 41.9 41.9 41.9 41.9 ...
## $ end_lng : num -87.6 -87.6 -87.6 -87.6 -87.6 ...
## $ member_casual : chr "casual" "member" "casual" "casual" ...
COLUMN MEMBER_CASUAL.
EXPLORE CHARACTER VARIABLE TYPE IN “member_casual” COLUMN.
USE ‘unique()’ FUNCTION TO FIND INDIVIDUAL VALUES IN COLUMN.
unique(oct_to_dec$member_casual)
## [1] "casual" "member"
HOW MANY OBSERVATIONS FALL UNDER EACH USER TYPE?
table(oct_to_dec$member_casual)
##
## casual member
## 304171 606076
sort(table(oct_to_dec$member_casual), decreasing = TRUE)
##
## member casual
## 606076 304171
BAR PLOT OF DATA DISTRIBUTION OF ‘member_casual’ COLUMN.
barplot(sort(table(oct_to_dec$member_casual), decreasing = TRUE))

CHANGE VARIABLE FROM CHARACTER TO FACTOR.
oct_to_dec$member_casual <- as.factor(oct_to_dec$member_casual)
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(oct_to_dec$member_casual)
## [1] "factor"
USE ‘levels’ FUNCTION TO CHECK FACTOR.
levels(oct_to_dec$member_casual)
## [1] "casual" "member"
NOTE MEMBER CASUAL IS NOW A FACTOR.
## Rows: 910,247
## Columns: 17
## $ ride_id <chr> "614B15BC42810184", "ADCC6E3CF9C04688", "6184CC5724…
## $ rideable_type <fct> docked_bike, classic_bike, docked_bike, docked_bike…
## $ started_at <dttm> 2021-10-05 10:56:05, 2021-10-06 13:55:33, 2021-10-…
## $ start_date <dttm> 2021-10-05, 2021-10-06, 2021-10-16, 2021-10-24, 20…
## $ start_time <chr> "10:56:05", "13:55:33", "10:19:43", "11:03:34", "23…
## $ ended_at <dttm> 2021-10-05 11:38:48, 2021-10-06 13:58:16, 2021-10-…
## $ end_date <dttm> 2021-10-05, 2021-10-06, 2021-10-16, 2021-10-24, 20…
## $ end_time <chr> "11:38:48", "13:58:16", "12:01:20", "13:10:01", "23…
## $ start_station_name <chr> "Michigan Ave & Oak St", "Desplaines St & Kinzie St…
## $ start_station_id <chr> "13042", "TA1306000003", "13042", "13042", "KA15030…
## $ end_station_name <chr> "Michigan Ave & Oak St", "Kingsbury St & Kinzie St"…
## $ end_station_id <chr> "13042", "KA1503000043", "13042", "13042", "TA13060…
## $ start_lat <dbl> 41.90096, 41.88872, 41.90096, 41.90096, 41.88918, 4…
## $ start_lng <dbl> -87.62378, -87.64445, -87.62378, -87.62378, -87.638…
## $ end_lat <dbl> 41.90096, 41.88918, 41.90096, 41.90096, 41.88872, 4…
## $ end_lng <dbl> -87.62378, -87.63851, -87.62378, -87.62378, -87.644…
## $ member_casual <fct> casual, member, casual, casual, member, member, cas…
ADD A CALCULATED FIELD FOR NEW COLUMN “ride_length_secs”.
oct_to_dec$ride_length_secs <- difftime(oct_to_dec$ended_at,oct_to_dec$started_at)
CHECK DATA TYPE.
is.numeric(oct_to_dec$ride_length_secs)
## [1] FALSE
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(oct_to_dec$ride_length_secs)
## [1] "difftime"
CONVERT “ride_length_secs” FROM DIFFTIME TO NUMERIC TO RUN
CALCULATIONS ON THE DATA.
oct_to_dec$ride_length_secs <- as.numeric(as.character(oct_to_dec$ride_length_secs))
CHECK DATA TYPE.
is.numeric(oct_to_dec$ride_length_secs)
## [1] TRUE
CREATE NEW COLUMN “ride_length_total” USING MUTATE FUNCTION.
oct_to_dec <- mutate(oct_to_dec, ride_length_total = ride_length_secs/60)
CHECK DATA TYPE.
is.numeric(oct_to_dec$ride_length_total)
## [1] TRUE
ADD COLUMN FOR DAY OF WEEK.
NUMERIC VALUE DAY OF WEEK SUNDAY = 1 MONDAY = 2 TUESDAY = 3 ETC,
ETC…
oct_to_dec$weekday <- lubridate::wday(oct_to_dec$start_date)
CHARACTER DAY OF WEEK USING ABBREVIATED LABELS MON,TUE,WED ETC
ETC…
oct_to_dec$weekday. <- lubridate::wday(oct_to_dec$start_date, label = TRUE)
CHANGE ‘weekday’ DATA TYPE.
oct_to_dec$weekday. <- as.factor(oct_to_dec$weekday.)
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(oct_to_dec$weekday.)
## [1] "ordered" "factor"
USE ‘levels’ FUNCTION TO CHECK FACTOR.
levels(oct_to_dec$weekday.)
## [1] "Sun" "Mon" "Tue" "Wed" "Thu" "Fri" "Sat"
NOTE WEEKDAY. IS AN ORDERED FACTOR.
## Rows: 910,247
## Columns: 21
## $ ride_id <chr> "614B15BC42810184", "ADCC6E3CF9C04688", "6184CC5724…
## $ rideable_type <fct> docked_bike, classic_bike, docked_bike, docked_bike…
## $ started_at <dttm> 2021-10-05 10:56:05, 2021-10-06 13:55:33, 2021-10-…
## $ start_date <dttm> 2021-10-05, 2021-10-06, 2021-10-16, 2021-10-24, 20…
## $ start_time <chr> "10:56:05", "13:55:33", "10:19:43", "11:03:34", "23…
## $ ended_at <dttm> 2021-10-05 11:38:48, 2021-10-06 13:58:16, 2021-10-…
## $ end_date <dttm> 2021-10-05, 2021-10-06, 2021-10-16, 2021-10-24, 20…
## $ end_time <chr> "11:38:48", "13:58:16", "12:01:20", "13:10:01", "23…
## $ start_station_name <chr> "Michigan Ave & Oak St", "Desplaines St & Kinzie St…
## $ start_station_id <chr> "13042", "TA1306000003", "13042", "13042", "KA15030…
## $ end_station_name <chr> "Michigan Ave & Oak St", "Kingsbury St & Kinzie St"…
## $ end_station_id <chr> "13042", "KA1503000043", "13042", "13042", "TA13060…
## $ start_lat <dbl> 41.90096, 41.88872, 41.90096, 41.90096, 41.88918, 4…
## $ start_lng <dbl> -87.62378, -87.64445, -87.62378, -87.62378, -87.638…
## $ end_lat <dbl> 41.90096, 41.88918, 41.90096, 41.90096, 41.88872, 4…
## $ end_lng <dbl> -87.62378, -87.63851, -87.62378, -87.62378, -87.644…
## $ member_casual <fct> casual, member, casual, casual, member, member, cas…
## $ ride_length_secs <dbl> 2563, 163, 6097, 7587, 125, 3075, 5150, 1223, 1364,…
## $ ride_length_total <dbl> 42.7166667, 2.7166667, 101.6166667, 126.4500000, 2.…
## $ weekday <dbl> 3, 4, 7, 1, 7, 2, 6, 5, 6, 1, 2, 6, 1, 2, 3, 7, 7, …
## $ weekday. <ord> Tue, Wed, Sat, Sun, Sat, Mon, Fri, Thu, Fri, Sun, M…
EXPLORE NUMERIC VARIABLE TYPE IN “weekday” COLUMN.
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(oct_to_dec$weekday)
## [1] "numeric"
USE ‘summary()’ FUNCTION TO SUMMARIZE VALUES IN DATA FRAME.
summary(oct_to_dec$weekday)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.000 2.000 4.000 4.129 6.000 7.000
BOX PLOT AKA IS A GRAPHICAL REPRESENTATION TO SUMMARIZE DATA AND
IDENTIFY OUTLIERS.
boxplot(oct_to_dec$weekday, col = 'blue')

HISTOGRAM TO VIZUALIZE DISTRIBUTION OF VALUES IN WEEKDAY
COLUMN.
hist(oct_to_dec$weekday, col='green')

NOTE WEEKDAY IS NOW A ‘dbl’.
## Rows: 910,247
## Columns: 21
## $ ride_id <chr> "614B15BC42810184", "ADCC6E3CF9C04688", "6184CC5724…
## $ rideable_type <fct> docked_bike, classic_bike, docked_bike, docked_bike…
## $ started_at <dttm> 2021-10-05 10:56:05, 2021-10-06 13:55:33, 2021-10-…
## $ start_date <dttm> 2021-10-05, 2021-10-06, 2021-10-16, 2021-10-24, 20…
## $ start_time <chr> "10:56:05", "13:55:33", "10:19:43", "11:03:34", "23…
## $ ended_at <dttm> 2021-10-05 11:38:48, 2021-10-06 13:58:16, 2021-10-…
## $ end_date <dttm> 2021-10-05, 2021-10-06, 2021-10-16, 2021-10-24, 20…
## $ end_time <chr> "11:38:48", "13:58:16", "12:01:20", "13:10:01", "23…
## $ start_station_name <chr> "Michigan Ave & Oak St", "Desplaines St & Kinzie St…
## $ start_station_id <chr> "13042", "TA1306000003", "13042", "13042", "KA15030…
## $ end_station_name <chr> "Michigan Ave & Oak St", "Kingsbury St & Kinzie St"…
## $ end_station_id <chr> "13042", "KA1503000043", "13042", "13042", "TA13060…
## $ start_lat <dbl> 41.90096, 41.88872, 41.90096, 41.90096, 41.88918, 4…
## $ start_lng <dbl> -87.62378, -87.64445, -87.62378, -87.62378, -87.638…
## $ end_lat <dbl> 41.90096, 41.88918, 41.90096, 41.90096, 41.88872, 4…
## $ end_lng <dbl> -87.62378, -87.63851, -87.62378, -87.62378, -87.644…
## $ member_casual <fct> casual, member, casual, casual, member, member, cas…
## $ ride_length_secs <dbl> 2563, 163, 6097, 7587, 125, 3075, 5150, 1223, 1364,…
## $ ride_length_total <dbl> 42.7166667, 2.7166667, 101.6166667, 126.4500000, 2.…
## $ weekday <dbl> 3, 4, 7, 1, 7, 2, 6, 5, 6, 1, 2, 6, 1, 2, 3, 7, 7, …
## $ weekday. <ord> Tue, Wed, Sat, Sun, Sat, Mon, Fri, Thu, Fri, Sun, M…
NOTE WEEKDAY IS NOW NUMERIC.
## 'data.frame': 910247 obs. of 21 variables:
## $ ride_id : chr "614B15BC42810184" "ADCC6E3CF9C04688" "6184CC57243AEF3C" "DE02D027BAC5C820" ...
## $ rideable_type : Factor w/ 3 levels "classic_bike",..: 2 1 2 2 1 1 2 1 1 3 ...
## $ started_at : POSIXlt, format: "2021-10-05 10:56:05" "2021-10-06 13:55:33" ...
## $ start_date : POSIXlt, format: "2021-10-05" "2021-10-06" ...
## $ start_time : chr "10:56:05" "13:55:33" "10:19:43" "11:03:34" ...
## $ ended_at : POSIXlt, format: "2021-10-05 11:38:48" "2021-10-06 13:58:16" ...
## $ end_date : POSIXlt, format: "2021-10-05" "2021-10-06" ...
## $ end_time : chr "11:38:48" "13:58:16" "12:01:20" "13:10:01" ...
## $ start_station_name: chr "Michigan Ave & Oak St" "Desplaines St & Kinzie St" "Michigan Ave & Oak St" "Michigan Ave & Oak St" ...
## $ start_station_id : chr "13042" "TA1306000003" "13042" "13042" ...
## $ end_station_name : chr "Michigan Ave & Oak St" "Kingsbury St & Kinzie St" "Michigan Ave & Oak St" "Michigan Ave & Oak St" ...
## $ end_station_id : chr "13042" "KA1503000043" "13042" "13042" ...
## $ start_lat : num 41.9 41.9 41.9 41.9 41.9 ...
## $ start_lng : num -87.6 -87.6 -87.6 -87.6 -87.6 ...
## $ end_lat : num 41.9 41.9 41.9 41.9 41.9 ...
## $ end_lng : num -87.6 -87.6 -87.6 -87.6 -87.6 ...
## $ member_casual : Factor w/ 2 levels "casual","member": 1 2 1 1 2 2 1 2 2 2 ...
## $ ride_length_secs : num 2563 163 6097 7587 125 ...
## $ ride_length_total : num 42.72 2.72 101.62 126.45 2.08 ...
## $ weekday : num 3 4 7 1 7 2 6 5 6 1 ...
## $ weekday. : Ord.factor w/ 7 levels "Sun"<"Mon"<"Tue"<..: 3 4 7 1 7 2 6 5 6 1 ...