SETTING UP ENVIRONMENT.

INSTALL PACKAGES.

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.2     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.2     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(data.table)
## 
## Attaching package: 'data.table'
## 
## The following objects are masked from 'package:lubridate':
## 
##     hour, isoweek, mday, minute, month, quarter, second, wday, week,
##     yday, year
## 
## The following objects are masked from 'package:dplyr':
## 
##     between, first, last
## 
## The following object is masked from 'package:purrr':
## 
##     transpose
library(hms)
## 
## Attaching package: 'hms'
## 
## The following object is masked from 'package:lubridate':
## 
##     hms
library(here)
## here() starts at C:/Users/SWill/Documents/OCT TO DEC CYCLISTIC BIKES
library(skimr)
library(janitor)
## 
## Attaching package: 'janitor'
## 
## The following objects are masked from 'package:stats':
## 
##     chisq.test, fisher.test
library(conflicted)
library(gtsummary)
library(scales)
library(RColorBrewer)
library(ggthemes)
SCIENTIFIC NOTATION RUINING YOUR GGPLOT CHARTS? TRY THE LINE OF CODE BELOW
options(scipen = 999)
USE ‘getwd()’ FUNCTION TO DISPLAY WORKING DIRECTORY.
getwd()
## [1] "C:/Users/SWill/Documents/OCT TO DEC CYCLISTIC BIKES"
USE ‘setwd()’ FUNCTION TO SET WORKING DIRECTORY TO SIMPLIFY CALLS TO DATA.
setwd("C:/Users/SWill/Documents/JAN TO MAR CYCLISTIC BIKES")
USE ‘spec_csv()’ FUNCTION TO CHECK THE DATA TYPES BEFORE READING THE DATA.
NOTICE ‘started_at’ AND ‘ended_at’ COLUMNS ARE ‘datetime’ DATA TYPE.
spec_csv("C:/Users/SWill/Desktop/CYCLISTIC BIKES/divvy-trip-data 01-12/202110-divvy-tripdata.csv")
## cols(
##   ride_id = col_character(),
##   rideable_type = col_character(),
##   started_at = col_datetime(format = ""),
##   ended_at = col_datetime(format = ""),
##   start_station_name = col_character(),
##   start_station_id = col_character(),
##   end_station_name = col_character(),
##   end_station_id = col_character(),
##   start_lat = col_double(),
##   start_lng = col_double(),
##   end_lat = col_double(),
##   end_lng = col_double(),
##   member_casual = col_character()
## )
spec_csv("C:/Users/SWill/Desktop/CYCLISTIC BIKES/divvy-trip-data 01-12/202111-divvy-tripdata.csv")
## cols(
##   ride_id = col_character(),
##   rideable_type = col_character(),
##   started_at = col_datetime(format = ""),
##   ended_at = col_datetime(format = ""),
##   start_station_name = col_character(),
##   start_station_id = col_character(),
##   end_station_name = col_character(),
##   end_station_id = col_character(),
##   start_lat = col_double(),
##   start_lng = col_double(),
##   end_lat = col_double(),
##   end_lng = col_double(),
##   member_casual = col_character()
## )
spec_csv("C:/Users/SWill/Desktop/CYCLISTIC BIKES/divvy-trip-data 01-12/202112-divvy-tripdata.csv")
## cols(
##   ride_id = col_character(),
##   rideable_type = col_character(),
##   started_at = col_datetime(format = ""),
##   ended_at = col_datetime(format = ""),
##   start_station_name = col_character(),
##   start_station_id = col_character(),
##   end_station_name = col_character(),
##   end_station_id = col_character(),
##   start_lat = col_double(),
##   start_lng = col_double(),
##   end_lat = col_double(),
##   end_lng = col_double(),
##   member_casual = col_character()
## )
UPLOAD DATASETS divvy-trip-data.csv FILES.
df_10 <- read.csv("C:/Users/SWill/Desktop/CYCLISTIC BIKES/divvy-trip-data 01-12/202110-divvy-tripdata.csv")
df_11 <- read.csv("C:/Users/SWill/Desktop/CYCLISTIC BIKES/divvy-trip-data 01-12/202111-divvy-tripdata.csv")
df_12 <- read.csv("C:/Users/SWill/Desktop/CYCLISTIC BIKES/divvy-trip-data 01-12/202112-divvy-tripdata.csv")
USE ‘bind_rows()’ FUNCTION TO STACK DATA FRAMES INTO ONE BIG DATA FRAME.
oct_to_dec <- bind_rows(df_10,df_11,df_12)
CHECK COLUMNS.
colnames(oct_to_dec)
##  [1] "ride_id"            "rideable_type"      "started_at"        
##  [4] "ended_at"           "start_station_name" "start_station_id"  
##  [7] "end_station_name"   "end_station_id"     "start_lat"         
## [10] "start_lng"          "end_lat"            "end_lng"           
## [13] "member_casual"
USE ‘glimpse()’ FUNCTION TO GET A BETTER UNDERSTANDING OF THE DATA.
Rows: 1,238,744 Columns: 13
COLUMNS ‘started_at’ AND ‘ended_at’ ARE NOW ‘character’ DATA TYPE.
COLUMNS ‘end_station_name’ AND ‘end_station_id’ HAVE BLANK ROWS THAT NEED TO BE REMOVED.
glimpse(oct_to_dec)
## Rows: 1,238,744
## Columns: 13
## $ ride_id            <chr> "620BC6107255BF4C", "4471C70731AB2E45", "26CA69D43D…
## $ rideable_type      <chr> "electric_bike", "electric_bike", "electric_bike", …
## $ started_at         <chr> "2021-10-22 12:46:42", "2021-10-21 09:12:37", "2021…
## $ ended_at           <chr> "2021-10-22 12:49:50", "2021-10-21 09:14:14", "2021…
## $ start_station_name <chr> "Kingsbury St & Kinzie St", "", "", "", "", "", "",…
## $ start_station_id   <chr> "KA1503000043", "", "", "", "", "", "", "", "", "",…
## $ end_station_name   <chr> "", "", "", "", "", "", "", "", "", "", "", "", "",…
## $ end_station_id     <chr> "", "", "", "", "", "", "", "", "", "", "", "", "",…
## $ start_lat          <dbl> 41.88919, 41.93000, 41.92000, 41.92000, 41.89000, 4…
## $ start_lng          <dbl> -87.63850, -87.70000, -87.70000, -87.69000, -87.710…
## $ end_lat            <dbl> 41.89000, 41.93000, 41.94000, 41.92000, 41.89000, 4…
## $ end_lng            <dbl> -87.63000, -87.71000, -87.72000, -87.69000, -87.690…
## $ member_casual      <chr> "member", "member", "member", "member", "member", "…
USE ‘str()’ FUNCTION TO SEE LIST OF COLUMNS AND DATA TYPES NUMERIC, CHARACTER, DATETIME ETC.
‘data.frame’: 1238744 obs. of 13 variables:
str(oct_to_dec)
## 'data.frame':    1238744 obs. of  13 variables:
##  $ ride_id           : chr  "620BC6107255BF4C" "4471C70731AB2E45" "26CA69D43D15EE14" "362947F0437E1514" ...
##  $ rideable_type     : chr  "electric_bike" "electric_bike" "electric_bike" "electric_bike" ...
##  $ started_at        : chr  "2021-10-22 12:46:42" "2021-10-21 09:12:37" "2021-10-16 16:28:39" "2021-10-16 16:17:48" ...
##  $ ended_at          : chr  "2021-10-22 12:49:50" "2021-10-21 09:14:14" "2021-10-16 16:36:26" "2021-10-16 16:19:03" ...
##  $ start_station_name: chr  "Kingsbury St & Kinzie St" "" "" "" ...
##  $ start_station_id  : chr  "KA1503000043" "" "" "" ...
##  $ end_station_name  : chr  "" "" "" "" ...
##  $ end_station_id    : chr  "" "" "" "" ...
##  $ start_lat         : num  41.9 41.9 41.9 41.9 41.9 ...
##  $ start_lng         : num  -87.6 -87.7 -87.7 -87.7 -87.7 ...
##  $ end_lat           : num  41.9 41.9 41.9 41.9 41.9 ...
##  $ end_lng           : num  -87.6 -87.7 -87.7 -87.7 -87.7 ...
##  $ member_casual     : chr  "member" "member" "member" "member" ...
USE TIDYR TO SEPARATE “started_at” COLUMN TO A NEW COLUMN CALLED “start_date” and “start_time”.
USE TIDYR TO SEPARATE “ended_at” COLUMN TO A NEW COLUMN CALLED “end_date” and “end_time”.
oct_to_dec <- tidyr::separate(oct_to_dec, started_at, c("start_date", "start_time"), sep = " ", remove = FALSE)
oct_to_dec <- tidyr::separate(oct_to_dec, ended_at, c("end_date", "end_time"), sep = " ", remove = FALSE)
CHECK NEW COLUMNS.
colnames(oct_to_dec)
##  [1] "ride_id"            "rideable_type"      "started_at"        
##  [4] "start_date"         "start_time"         "ended_at"          
##  [7] "end_date"           "end_time"           "start_station_name"
## [10] "start_station_id"   "end_station_name"   "end_station_id"    
## [13] "start_lat"          "start_lng"          "end_lat"           
## [16] "end_lng"            "member_casual"
‘data.frame’: 1238744 obs. of 17 variables:
str(oct_to_dec)
## 'data.frame':    1238744 obs. of  17 variables:
##  $ ride_id           : chr  "620BC6107255BF4C" "4471C70731AB2E45" "26CA69D43D15EE14" "362947F0437E1514" ...
##  $ rideable_type     : chr  "electric_bike" "electric_bike" "electric_bike" "electric_bike" ...
##  $ started_at        : chr  "2021-10-22 12:46:42" "2021-10-21 09:12:37" "2021-10-16 16:28:39" "2021-10-16 16:17:48" ...
##  $ start_date        : chr  "2021-10-22" "2021-10-21" "2021-10-16" "2021-10-16" ...
##  $ start_time        : chr  "12:46:42" "09:12:37" "16:28:39" "16:17:48" ...
##  $ ended_at          : chr  "2021-10-22 12:49:50" "2021-10-21 09:14:14" "2021-10-16 16:36:26" "2021-10-16 16:19:03" ...
##  $ end_date          : chr  "2021-10-22" "2021-10-21" "2021-10-16" "2021-10-16" ...
##  $ end_time          : chr  "12:49:50" "09:14:14" "16:36:26" "16:19:03" ...
##  $ start_station_name: chr  "Kingsbury St & Kinzie St" "" "" "" ...
##  $ start_station_id  : chr  "KA1503000043" "" "" "" ...
##  $ end_station_name  : chr  "" "" "" "" ...
##  $ end_station_id    : chr  "" "" "" "" ...
##  $ start_lat         : num  41.9 41.9 41.9 41.9 41.9 ...
##  $ start_lng         : num  -87.6 -87.7 -87.7 -87.7 -87.7 ...
##  $ end_lat           : num  41.9 41.9 41.9 41.9 41.9 ...
##  $ end_lng           : num  -87.6 -87.7 -87.7 -87.7 -87.7 ...
##  $ member_casual     : chr  "member" "member" "member" "member" ...

EXPLORE AND MANIPULATE DATA FRAME OCT TO DEC.

COLUMN RIDEABLE TYPE.

EXPLORE CHARACTER VARIABLE TYPE IN “rideable_type” COLUMN.
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(oct_to_dec$rideable_type)
## [1] "character"
USE ‘unique ()’ FUNCTION TO FIND INDIVIDUAL VALUES IN COLUMN.
unique(oct_to_dec$rideable_type)
## [1] "electric_bike" "docked_bike"   "classic_bike"
HOW MANY OBSERVATIONS FALL UNDER EACH USER TYPE?
table(oct_to_dec$rideable_type)
## 
##  classic_bike   docked_bike electric_bike 
##        570813         35426        632505
sort(table(oct_to_dec$rideable_type), decreasing = TRUE)
## 
## electric_bike  classic_bike   docked_bike 
##        632505        570813         35426
BAR PLOT OF DATA DISTRIBUTION OF ‘rideable_type’ COLUMN.
barplot(sort(table(oct_to_dec$rideable_type), decreasing = TRUE))

CHANGE VARIABLE FROM CHARACTER TO FACTOR.
oct_to_dec$rideable_type <- as.factor(oct_to_dec$rideable_type)
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(oct_to_dec$rideable_type)
## [1] "factor"
USE ‘levels’ FUNCTION TO CHECK FACTOR.
levels(oct_to_dec$rideable_type)
## [1] "classic_bike"  "docked_bike"   "electric_bike"
NOTE RIDEABLE TYPE IS NOW A FACTOR.
glimpse(oct_to_dec)
## Rows: 1,238,744
## Columns: 17
## $ ride_id            <chr> "620BC6107255BF4C", "4471C70731AB2E45", "26CA69D43D…
## $ rideable_type      <fct> electric_bike, electric_bike, electric_bike, electr…
## $ started_at         <chr> "2021-10-22 12:46:42", "2021-10-21 09:12:37", "2021…
## $ start_date         <chr> "2021-10-22", "2021-10-21", "2021-10-16", "2021-10-…
## $ start_time         <chr> "12:46:42", "09:12:37", "16:28:39", "16:17:48", "23…
## $ ended_at           <chr> "2021-10-22 12:49:50", "2021-10-21 09:14:14", "2021…
## $ end_date           <chr> "2021-10-22", "2021-10-21", "2021-10-16", "2021-10-…
## $ end_time           <chr> "12:49:50", "09:14:14", "16:36:26", "16:19:03", "23…
## $ start_station_name <chr> "Kingsbury St & Kinzie St", "", "", "", "", "", "",…
## $ start_station_id   <chr> "KA1503000043", "", "", "", "", "", "", "", "", "",…
## $ end_station_name   <chr> "", "", "", "", "", "", "", "", "", "", "", "", "",…
## $ end_station_id     <chr> "", "", "", "", "", "", "", "", "", "", "", "", "",…
## $ start_lat          <dbl> 41.88919, 41.93000, 41.92000, 41.92000, 41.89000, 4…
## $ start_lng          <dbl> -87.63850, -87.70000, -87.70000, -87.69000, -87.710…
## $ end_lat            <dbl> 41.89000, 41.93000, 41.94000, 41.92000, 41.89000, 4…
## $ end_lng            <dbl> -87.63000, -87.71000, -87.72000, -87.69000, -87.690…
## $ member_casual      <chr> "member", "member", "member", "member", "member", "…

COLUMN STARTED_AT AND ENDED_AT.

EXPLORE…CHARACTER VARIABLE TYPE IN “started_at” AND ended_at” COLUMN.
DATA TYPE IN COLUMN “started_at” AND “end_at” WAS DATETIME BEFORE UPLOADING.
CONVERT “started_at” AND “ended_at” COLUMN FROM CHARACTER TO DATETIME
oct_to_dec$started_at <- as.POSIXlt(oct_to_dec$started_at, format="%Y-%m-%d %H:%M:%S", tz="UTC")
oct_to_dec$ended_at <- as.POSIXlt(oct_to_dec$ended_at, format="%Y-%m-%d %H:%M:%S", tz="UTC")
CONVERT “start_date” COLUMN FROM CHARACTER TO DATE FORMAT.
oct_to_dec$start_date <- as.POSIXlt(oct_to_dec$start_date)
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(oct_to_dec$start_date) 
## [1] "POSIXlt" "POSIXt"
CONVERT “end_date” COLUMN FROM CHARACTER TO DATE FORMAT.
oct_to_dec$end_date <- as.POSIXlt(oct_to_dec$end_date)
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(oct_to_dec$end_date) 
## [1] "POSIXlt" "POSIXt"
USE ‘str()’ FUNCTION TO SEE LIST OF COLUMNS AND DATA TYPES NUMERIC, CHARACTER, DATETIME ETC.
‘started_at’AND ’ended_at’ CHARACTER DATA TYPE IS NOW POSIXlt.
‘data.frame’: 1238744 obs. of 17 variables:
str(oct_to_dec)
## 'data.frame':    1238744 obs. of  17 variables:
##  $ ride_id           : chr  "620BC6107255BF4C" "4471C70731AB2E45" "26CA69D43D15EE14" "362947F0437E1514" ...
##  $ rideable_type     : Factor w/ 3 levels "classic_bike",..: 3 3 3 3 3 3 3 3 3 3 ...
##  $ started_at        : POSIXlt, format: "2021-10-22 12:46:42" "2021-10-21 09:12:37" ...
##  $ start_date        : POSIXlt, format: "2021-10-22" "2021-10-21" ...
##  $ start_time        : chr  "12:46:42" "09:12:37" "16:28:39" "16:17:48" ...
##  $ ended_at          : POSIXlt, format: "2021-10-22 12:49:50" "2021-10-21 09:14:14" ...
##  $ end_date          : POSIXlt, format: "2021-10-22" "2021-10-21" ...
##  $ end_time          : chr  "12:49:50" "09:14:14" "16:36:26" "16:19:03" ...
##  $ start_station_name: chr  "Kingsbury St & Kinzie St" "" "" "" ...
##  $ start_station_id  : chr  "KA1503000043" "" "" "" ...
##  $ end_station_name  : chr  "" "" "" "" ...
##  $ end_station_id    : chr  "" "" "" "" ...
##  $ start_lat         : num  41.9 41.9 41.9 41.9 41.9 ...
##  $ start_lng         : num  -87.6 -87.7 -87.7 -87.7 -87.7 ...
##  $ end_lat           : num  41.9 41.9 41.9 41.9 41.9 ...
##  $ end_lng           : num  -87.6 -87.7 -87.7 -87.7 -87.7 ...
##  $ member_casual     : chr  "member" "member" "member" "member" ...

COLUMN START_STATION_NAME START_STATION_ID END_STATION_NAME AND END_STATION_ID.

EXPLORE…CHARACTER VARIABLE TYPE IN “start_staion_name” AND “end_staion_name”
REPLACE ALL BLANK VALUES IN “start_station_name” COLUMN WITH NA VALUES.
oct_to_dec$start_station_name[oct_to_dec$start_station_name==""] <- NA
REPLACE ALL BLANK VALUES IN “start_station_id” COLUMN WITH NA VALUES.
oct_to_dec$start_station_id[oct_to_dec$start_station_id==""] <- NA
REPLACE ALL BLANK VALUES IN “end_station_name” COLUMN WITH NA VALUES.
oct_to_dec$end_station_name[oct_to_dec$end_station_name==""] <- NA
REPLACE ALL BLANK VALUES IN “end_station_id” COLUMN WITH NA VALUES.
oct_to_dec$end_station_id[oct_to_dec$end_station_id==""] <- NA
glimpse(oct_to_dec)
## Rows: 1,238,744
## Columns: 17
## $ ride_id            <chr> "620BC6107255BF4C", "4471C70731AB2E45", "26CA69D43D…
## $ rideable_type      <fct> electric_bike, electric_bike, electric_bike, electr…
## $ started_at         <dttm> 2021-10-22 12:46:42, 2021-10-21 09:12:37, 2021-10-…
## $ start_date         <dttm> 2021-10-22, 2021-10-21, 2021-10-16, 2021-10-16, 20…
## $ start_time         <chr> "12:46:42", "09:12:37", "16:28:39", "16:17:48", "23…
## $ ended_at           <dttm> 2021-10-22 12:49:50, 2021-10-21 09:14:14, 2021-10-…
## $ end_date           <dttm> 2021-10-22, 2021-10-21, 2021-10-16, 2021-10-16, 20…
## $ end_time           <chr> "12:49:50", "09:14:14", "16:36:26", "16:19:03", "23…
## $ start_station_name <chr> "Kingsbury St & Kinzie St", NA, NA, NA, NA, NA, NA,…
## $ start_station_id   <chr> "KA1503000043", NA, NA, NA, NA, NA, NA, NA, NA, NA,…
## $ end_station_name   <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
## $ end_station_id     <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
## $ start_lat          <dbl> 41.88919, 41.93000, 41.92000, 41.92000, 41.89000, 4…
## $ start_lng          <dbl> -87.63850, -87.70000, -87.70000, -87.69000, -87.710…
## $ end_lat            <dbl> 41.89000, 41.93000, 41.94000, 41.92000, 41.89000, 4…
## $ end_lng            <dbl> -87.63000, -87.71000, -87.72000, -87.69000, -87.690…
## $ member_casual      <chr> "member", "member", "member", "member", "member", "…
REMOVE ROWS WITH NA VALUES IN ALL COLUMNS.
oct_to_dec <- oct_to_dec %>% drop_na()
‘data.frame’: 910247 obs. of 17 variables:
str(oct_to_dec)
## 'data.frame':    910247 obs. of  17 variables:
##  $ ride_id           : chr  "614B15BC42810184" "ADCC6E3CF9C04688" "6184CC57243AEF3C" "DE02D027BAC5C820" ...
##  $ rideable_type     : Factor w/ 3 levels "classic_bike",..: 2 1 2 2 1 1 2 1 1 3 ...
##  $ started_at        : POSIXlt, format: "2021-10-05 10:56:05" "2021-10-06 13:55:33" ...
##  $ start_date        : POSIXlt, format: "2021-10-05" "2021-10-06" ...
##  $ start_time        : chr  "10:56:05" "13:55:33" "10:19:43" "11:03:34" ...
##  $ ended_at          : POSIXlt, format: "2021-10-05 11:38:48" "2021-10-06 13:58:16" ...
##  $ end_date          : POSIXlt, format: "2021-10-05" "2021-10-06" ...
##  $ end_time          : chr  "11:38:48" "13:58:16" "12:01:20" "13:10:01" ...
##  $ start_station_name: chr  "Michigan Ave & Oak St" "Desplaines St & Kinzie St" "Michigan Ave & Oak St" "Michigan Ave & Oak St" ...
##  $ start_station_id  : chr  "13042" "TA1306000003" "13042" "13042" ...
##  $ end_station_name  : chr  "Michigan Ave & Oak St" "Kingsbury St & Kinzie St" "Michigan Ave & Oak St" "Michigan Ave & Oak St" ...
##  $ end_station_id    : chr  "13042" "KA1503000043" "13042" "13042" ...
##  $ start_lat         : num  41.9 41.9 41.9 41.9 41.9 ...
##  $ start_lng         : num  -87.6 -87.6 -87.6 -87.6 -87.6 ...
##  $ end_lat           : num  41.9 41.9 41.9 41.9 41.9 ...
##  $ end_lng           : num  -87.6 -87.6 -87.6 -87.6 -87.6 ...
##  $ member_casual     : chr  "casual" "member" "casual" "casual" ...

COLUMN MEMBER_CASUAL.

EXPLORE CHARACTER VARIABLE TYPE IN “member_casual” COLUMN.
USE ‘unique()’ FUNCTION TO FIND INDIVIDUAL VALUES IN COLUMN.
unique(oct_to_dec$member_casual)
## [1] "casual" "member"
HOW MANY OBSERVATIONS FALL UNDER EACH USER TYPE?
table(oct_to_dec$member_casual)
## 
## casual member 
## 304171 606076
sort(table(oct_to_dec$member_casual), decreasing = TRUE)
## 
## member casual 
## 606076 304171
BAR PLOT OF DATA DISTRIBUTION OF ‘member_casual’ COLUMN.
barplot(sort(table(oct_to_dec$member_casual), decreasing = TRUE))

CHANGE VARIABLE FROM CHARACTER TO FACTOR.
oct_to_dec$member_casual <- as.factor(oct_to_dec$member_casual)
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(oct_to_dec$member_casual)
## [1] "factor"
USE ‘levels’ FUNCTION TO CHECK FACTOR.
levels(oct_to_dec$member_casual)
## [1] "casual" "member"
NOTE MEMBER CASUAL IS NOW A FACTOR.
glimpse(oct_to_dec)
## Rows: 910,247
## Columns: 17
## $ ride_id            <chr> "614B15BC42810184", "ADCC6E3CF9C04688", "6184CC5724…
## $ rideable_type      <fct> docked_bike, classic_bike, docked_bike, docked_bike…
## $ started_at         <dttm> 2021-10-05 10:56:05, 2021-10-06 13:55:33, 2021-10-…
## $ start_date         <dttm> 2021-10-05, 2021-10-06, 2021-10-16, 2021-10-24, 20…
## $ start_time         <chr> "10:56:05", "13:55:33", "10:19:43", "11:03:34", "23…
## $ ended_at           <dttm> 2021-10-05 11:38:48, 2021-10-06 13:58:16, 2021-10-…
## $ end_date           <dttm> 2021-10-05, 2021-10-06, 2021-10-16, 2021-10-24, 20…
## $ end_time           <chr> "11:38:48", "13:58:16", "12:01:20", "13:10:01", "23…
## $ start_station_name <chr> "Michigan Ave & Oak St", "Desplaines St & Kinzie St…
## $ start_station_id   <chr> "13042", "TA1306000003", "13042", "13042", "KA15030…
## $ end_station_name   <chr> "Michigan Ave & Oak St", "Kingsbury St & Kinzie St"…
## $ end_station_id     <chr> "13042", "KA1503000043", "13042", "13042", "TA13060…
## $ start_lat          <dbl> 41.90096, 41.88872, 41.90096, 41.90096, 41.88918, 4…
## $ start_lng          <dbl> -87.62378, -87.64445, -87.62378, -87.62378, -87.638…
## $ end_lat            <dbl> 41.90096, 41.88918, 41.90096, 41.90096, 41.88872, 4…
## $ end_lng            <dbl> -87.62378, -87.63851, -87.62378, -87.62378, -87.644…
## $ member_casual      <fct> casual, member, casual, casual, member, member, cas…
ADD A CALCULATED FIELD FOR NEW COLUMN “ride_length_secs”.
oct_to_dec$ride_length_secs <- difftime(oct_to_dec$ended_at,oct_to_dec$started_at)
CHECK DATA TYPE.
is.numeric(oct_to_dec$ride_length_secs)
## [1] FALSE
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(oct_to_dec$ride_length_secs)
## [1] "difftime"
CONVERT “ride_length_secs” FROM DIFFTIME TO NUMERIC TO RUN CALCULATIONS ON THE DATA.
oct_to_dec$ride_length_secs <- as.numeric(as.character(oct_to_dec$ride_length_secs))
CHECK DATA TYPE.
is.numeric(oct_to_dec$ride_length_secs)
## [1] TRUE
CREATE NEW COLUMN “ride_length_total” USING MUTATE FUNCTION.
oct_to_dec <- mutate(oct_to_dec, ride_length_total = ride_length_secs/60)
CHECK DATA TYPE.
is.numeric(oct_to_dec$ride_length_total)
## [1] TRUE

ADD COLUMN FOR DAY OF WEEK.

NUMERIC VALUE DAY OF WEEK SUNDAY = 1 MONDAY = 2 TUESDAY = 3 ETC, ETC…
oct_to_dec$weekday <- lubridate::wday(oct_to_dec$start_date)
CHARACTER DAY OF WEEK USING ABBREVIATED LABELS MON,TUE,WED ETC ETC…
oct_to_dec$weekday. <- lubridate::wday(oct_to_dec$start_date, label = TRUE)
CHANGE ‘weekday’ DATA TYPE.
oct_to_dec$weekday. <- as.factor(oct_to_dec$weekday.)
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(oct_to_dec$weekday.)
## [1] "ordered" "factor"
USE ‘levels’ FUNCTION TO CHECK FACTOR.
levels(oct_to_dec$weekday.)
## [1] "Sun" "Mon" "Tue" "Wed" "Thu" "Fri" "Sat"
NOTE WEEKDAY. IS AN ORDERED FACTOR.
glimpse(oct_to_dec)
## Rows: 910,247
## Columns: 21
## $ ride_id            <chr> "614B15BC42810184", "ADCC6E3CF9C04688", "6184CC5724…
## $ rideable_type      <fct> docked_bike, classic_bike, docked_bike, docked_bike…
## $ started_at         <dttm> 2021-10-05 10:56:05, 2021-10-06 13:55:33, 2021-10-…
## $ start_date         <dttm> 2021-10-05, 2021-10-06, 2021-10-16, 2021-10-24, 20…
## $ start_time         <chr> "10:56:05", "13:55:33", "10:19:43", "11:03:34", "23…
## $ ended_at           <dttm> 2021-10-05 11:38:48, 2021-10-06 13:58:16, 2021-10-…
## $ end_date           <dttm> 2021-10-05, 2021-10-06, 2021-10-16, 2021-10-24, 20…
## $ end_time           <chr> "11:38:48", "13:58:16", "12:01:20", "13:10:01", "23…
## $ start_station_name <chr> "Michigan Ave & Oak St", "Desplaines St & Kinzie St…
## $ start_station_id   <chr> "13042", "TA1306000003", "13042", "13042", "KA15030…
## $ end_station_name   <chr> "Michigan Ave & Oak St", "Kingsbury St & Kinzie St"…
## $ end_station_id     <chr> "13042", "KA1503000043", "13042", "13042", "TA13060…
## $ start_lat          <dbl> 41.90096, 41.88872, 41.90096, 41.90096, 41.88918, 4…
## $ start_lng          <dbl> -87.62378, -87.64445, -87.62378, -87.62378, -87.638…
## $ end_lat            <dbl> 41.90096, 41.88918, 41.90096, 41.90096, 41.88872, 4…
## $ end_lng            <dbl> -87.62378, -87.63851, -87.62378, -87.62378, -87.644…
## $ member_casual      <fct> casual, member, casual, casual, member, member, cas…
## $ ride_length_secs   <dbl> 2563, 163, 6097, 7587, 125, 3075, 5150, 1223, 1364,…
## $ ride_length_total  <dbl> 42.7166667, 2.7166667, 101.6166667, 126.4500000, 2.…
## $ weekday            <dbl> 3, 4, 7, 1, 7, 2, 6, 5, 6, 1, 2, 6, 1, 2, 3, 7, 7, …
## $ weekday.           <ord> Tue, Wed, Sat, Sun, Sat, Mon, Fri, Thu, Fri, Sun, M…
EXPLORE NUMERIC VARIABLE TYPE IN “weekday” COLUMN.
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(oct_to_dec$weekday)
## [1] "numeric"
USE ‘summary()’ FUNCTION TO SUMMARIZE VALUES IN DATA FRAME.
summary(oct_to_dec$weekday)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   2.000   4.000   4.129   6.000   7.000
BOX PLOT AKA IS A GRAPHICAL REPRESENTATION TO SUMMARIZE DATA AND IDENTIFY OUTLIERS.
boxplot(oct_to_dec$weekday, col = 'blue') 

HISTOGRAM TO VIZUALIZE DISTRIBUTION OF VALUES IN WEEKDAY COLUMN.
hist(oct_to_dec$weekday, col='green') 

NOTE WEEKDAY IS NOW A ‘dbl’.
glimpse(oct_to_dec)
## Rows: 910,247
## Columns: 21
## $ ride_id            <chr> "614B15BC42810184", "ADCC6E3CF9C04688", "6184CC5724…
## $ rideable_type      <fct> docked_bike, classic_bike, docked_bike, docked_bike…
## $ started_at         <dttm> 2021-10-05 10:56:05, 2021-10-06 13:55:33, 2021-10-…
## $ start_date         <dttm> 2021-10-05, 2021-10-06, 2021-10-16, 2021-10-24, 20…
## $ start_time         <chr> "10:56:05", "13:55:33", "10:19:43", "11:03:34", "23…
## $ ended_at           <dttm> 2021-10-05 11:38:48, 2021-10-06 13:58:16, 2021-10-…
## $ end_date           <dttm> 2021-10-05, 2021-10-06, 2021-10-16, 2021-10-24, 20…
## $ end_time           <chr> "11:38:48", "13:58:16", "12:01:20", "13:10:01", "23…
## $ start_station_name <chr> "Michigan Ave & Oak St", "Desplaines St & Kinzie St…
## $ start_station_id   <chr> "13042", "TA1306000003", "13042", "13042", "KA15030…
## $ end_station_name   <chr> "Michigan Ave & Oak St", "Kingsbury St & Kinzie St"…
## $ end_station_id     <chr> "13042", "KA1503000043", "13042", "13042", "TA13060…
## $ start_lat          <dbl> 41.90096, 41.88872, 41.90096, 41.90096, 41.88918, 4…
## $ start_lng          <dbl> -87.62378, -87.64445, -87.62378, -87.62378, -87.638…
## $ end_lat            <dbl> 41.90096, 41.88918, 41.90096, 41.90096, 41.88872, 4…
## $ end_lng            <dbl> -87.62378, -87.63851, -87.62378, -87.62378, -87.644…
## $ member_casual      <fct> casual, member, casual, casual, member, member, cas…
## $ ride_length_secs   <dbl> 2563, 163, 6097, 7587, 125, 3075, 5150, 1223, 1364,…
## $ ride_length_total  <dbl> 42.7166667, 2.7166667, 101.6166667, 126.4500000, 2.…
## $ weekday            <dbl> 3, 4, 7, 1, 7, 2, 6, 5, 6, 1, 2, 6, 1, 2, 3, 7, 7, …
## $ weekday.           <ord> Tue, Wed, Sat, Sun, Sat, Mon, Fri, Thu, Fri, Sun, M…
NOTE WEEKDAY IS NOW NUMERIC.
str(oct_to_dec)
## 'data.frame':    910247 obs. of  21 variables:
##  $ ride_id           : chr  "614B15BC42810184" "ADCC6E3CF9C04688" "6184CC57243AEF3C" "DE02D027BAC5C820" ...
##  $ rideable_type     : Factor w/ 3 levels "classic_bike",..: 2 1 2 2 1 1 2 1 1 3 ...
##  $ started_at        : POSIXlt, format: "2021-10-05 10:56:05" "2021-10-06 13:55:33" ...
##  $ start_date        : POSIXlt, format: "2021-10-05" "2021-10-06" ...
##  $ start_time        : chr  "10:56:05" "13:55:33" "10:19:43" "11:03:34" ...
##  $ ended_at          : POSIXlt, format: "2021-10-05 11:38:48" "2021-10-06 13:58:16" ...
##  $ end_date          : POSIXlt, format: "2021-10-05" "2021-10-06" ...
##  $ end_time          : chr  "11:38:48" "13:58:16" "12:01:20" "13:10:01" ...
##  $ start_station_name: chr  "Michigan Ave & Oak St" "Desplaines St & Kinzie St" "Michigan Ave & Oak St" "Michigan Ave & Oak St" ...
##  $ start_station_id  : chr  "13042" "TA1306000003" "13042" "13042" ...
##  $ end_station_name  : chr  "Michigan Ave & Oak St" "Kingsbury St & Kinzie St" "Michigan Ave & Oak St" "Michigan Ave & Oak St" ...
##  $ end_station_id    : chr  "13042" "KA1503000043" "13042" "13042" ...
##  $ start_lat         : num  41.9 41.9 41.9 41.9 41.9 ...
##  $ start_lng         : num  -87.6 -87.6 -87.6 -87.6 -87.6 ...
##  $ end_lat           : num  41.9 41.9 41.9 41.9 41.9 ...
##  $ end_lng           : num  -87.6 -87.6 -87.6 -87.6 -87.6 ...
##  $ member_casual     : Factor w/ 2 levels "casual","member": 1 2 1 1 2 2 1 2 2 2 ...
##  $ ride_length_secs  : num  2563 163 6097 7587 125 ...
##  $ ride_length_total : num  42.72 2.72 101.62 126.45 2.08 ...
##  $ weekday           : num  3 4 7 1 7 2 6 5 6 1 ...
##  $ weekday.          : Ord.factor w/ 7 levels "Sun"<"Mon"<"Tue"<..: 3 4 7 1 7 2 6 5 6 1 ...

NEW COLUMN RIDE_LENGTH_SECS

DELETE RIDES UNDER 2 MINUTES (> 120) 882790 ROWS REMAIN.
oct_to_dec <- subset(oct_to_dec, ride_length_secs > 120)
‘data.frame’: 882790 obs. of 21 variables:
str(oct_to_dec)
## 'data.frame':    882790 obs. of  21 variables:
##  $ ride_id           : chr  "614B15BC42810184" "ADCC6E3CF9C04688" "6184CC57243AEF3C" "DE02D027BAC5C820" ...
##  $ rideable_type     : Factor w/ 3 levels "classic_bike",..: 2 1 2 2 1 1 2 1 1 3 ...
##  $ started_at        : POSIXlt, format: "2021-10-05 10:56:05" "2021-10-06 13:55:33" ...
##  $ start_date        : POSIXlt, format: "2021-10-05" "2021-10-06" ...
##  $ start_time        : chr  "10:56:05" "13:55:33" "10:19:43" "11:03:34" ...
##  $ ended_at          : POSIXlt, format: "2021-10-05 11:38:48" "2021-10-06 13:58:16" ...
##  $ end_date          : POSIXlt, format: "2021-10-05" "2021-10-06" ...
##  $ end_time          : chr  "11:38:48" "13:58:16" "12:01:20" "13:10:01" ...
##  $ start_station_name: chr  "Michigan Ave & Oak St" "Desplaines St & Kinzie St" "Michigan Ave & Oak St" "Michigan Ave & Oak St" ...
##  $ start_station_id  : chr  "13042" "TA1306000003" "13042" "13042" ...
##  $ end_station_name  : chr  "Michigan Ave & Oak St" "Kingsbury St & Kinzie St" "Michigan Ave & Oak St" "Michigan Ave & Oak St" ...
##  $ end_station_id    : chr  "13042" "KA1503000043" "13042" "13042" ...
##  $ start_lat         : num  41.9 41.9 41.9 41.9 41.9 ...
##  $ start_lng         : num  -87.6 -87.6 -87.6 -87.6 -87.6 ...
##  $ end_lat           : num  41.9 41.9 41.9 41.9 41.9 ...
##  $ end_lng           : num  -87.6 -87.6 -87.6 -87.6 -87.6 ...
##  $ member_casual     : Factor w/ 2 levels "casual","member": 1 2 1 1 2 2 1 2 2 2 ...
##  $ ride_length_secs  : num  2563 163 6097 7587 125 ...
##  $ ride_length_total : num  42.72 2.72 101.62 126.45 2.08 ...
##  $ weekday           : num  3 4 7 1 7 2 6 5 6 1 ...
##  $ weekday.          : Ord.factor w/ 7 levels "Sun"<"Mon"<"Tue"<..: 3 4 7 1 7 2 6 5 6 1 ...
DELETE RIDES OVER 24 HOURS (> 86400) 882631 ROWS REMAIN.
oct_to_dec <- subset(oct_to_dec, ride_length_secs < 86400)
‘data.frame’: 882631 obs. of 21 variables:
str(oct_to_dec)
## 'data.frame':    882631 obs. of  21 variables:
##  $ ride_id           : chr  "614B15BC42810184" "ADCC6E3CF9C04688" "6184CC57243AEF3C" "DE02D027BAC5C820" ...
##  $ rideable_type     : Factor w/ 3 levels "classic_bike",..: 2 1 2 2 1 1 2 1 1 3 ...
##  $ started_at        : POSIXlt, format: "2021-10-05 10:56:05" "2021-10-06 13:55:33" ...
##  $ start_date        : POSIXlt, format: "2021-10-05" "2021-10-06" ...
##  $ start_time        : chr  "10:56:05" "13:55:33" "10:19:43" "11:03:34" ...
##  $ ended_at          : POSIXlt, format: "2021-10-05 11:38:48" "2021-10-06 13:58:16" ...
##  $ end_date          : POSIXlt, format: "2021-10-05" "2021-10-06" ...
##  $ end_time          : chr  "11:38:48" "13:58:16" "12:01:20" "13:10:01" ...
##  $ start_station_name: chr  "Michigan Ave & Oak St" "Desplaines St & Kinzie St" "Michigan Ave & Oak St" "Michigan Ave & Oak St" ...
##  $ start_station_id  : chr  "13042" "TA1306000003" "13042" "13042" ...
##  $ end_station_name  : chr  "Michigan Ave & Oak St" "Kingsbury St & Kinzie St" "Michigan Ave & Oak St" "Michigan Ave & Oak St" ...
##  $ end_station_id    : chr  "13042" "KA1503000043" "13042" "13042" ...
##  $ start_lat         : num  41.9 41.9 41.9 41.9 41.9 ...
##  $ start_lng         : num  -87.6 -87.6 -87.6 -87.6 -87.6 ...
##  $ end_lat           : num  41.9 41.9 41.9 41.9 41.9 ...
##  $ end_lng           : num  -87.6 -87.6 -87.6 -87.6 -87.6 ...
##  $ member_casual     : Factor w/ 2 levels "casual","member": 1 2 1 1 2 2 1 2 2 2 ...
##  $ ride_length_secs  : num  2563 163 6097 7587 125 ...
##  $ ride_length_total : num  42.72 2.72 101.62 126.45 2.08 ...
##  $ weekday           : num  3 4 7 1 7 2 6 5 6 1 ...
##  $ weekday.          : Ord.factor w/ 7 levels "Sun"<"Mon"<"Tue"<..: 3 4 7 1 7 2 6 5 6 1 ...

SORT DATA FRAME BY DATE AND TIMES

oct_to_dec <- oct_to_dec %>% arrange(ymd_hms(oct_to_dec$started_at))

CREATE NEW DATA FRAME (oct_to_dec_v2) FROM DATA FRAME (oct_to_dec).

oct_to_dec_v2 <- oct_to_dec[c('rideable_type', 'started_at', 'start_date', 'member_casual', 'ride_length_secs', 'ride_length_total', 'weekday', 'weekday.')]

DESCRIPTIVE ANALYSIS ON RIDE LENGTH.

MINIMUM TRIP TIME.
min(oct_to_dec_v2$ride_length_secs)
## [1] 121
MIDDLE VALUE IN OCT TO DEC DATASET.
median(oct_to_dec_v2$ride_length_secs)
## [1] 598
MAXIMUM TRIP TIME.
max(oct_to_dec_v2$ride_length_secs)
## [1] 86052
AVERAGE TRIP.
mean(oct_to_dec_v2$ride_length_secs)
## [1] 936.8422
THE DIFFERENCE BETWEEN MAXIMUM AND MINIMUM TRIP.
range(oct_to_dec_v2$ride_length_secs)
## [1]   121 86052
DIFFERENCE BETWEEN THE FIRST QUARTILE AND THIRD QUARTILE OF OCT TO DEC.
IQR(oct_to_dec_v2$ride_length_secs)
## [1] 679

COMPARE MEMBERS AND CASUAL RIDERS.

MEMBERS Vs CASUAL MINIMUM TRIP TIME.
aggregate(oct_to_dec_v2$ride_length_secs ~ oct_to_dec_v2$member_casual, FUN = min)
##   oct_to_dec_v2$member_casual oct_to_dec_v2$ride_length_secs
## 1                      casual                            121
## 2                      member                            121
MEMBERS Vs CASUAL MIDDLE VALUE IN OCT TO DEC DATASET.
aggregate(oct_to_dec_v2$ride_length_secs ~ oct_to_dec_v2$member_casual, FUN = median)
##   oct_to_dec_v2$member_casual oct_to_dec_v2$ride_length_secs
## 1                      casual                            813
## 2                      member                            518
MEMBERS Vs CASUAL MAXIMUM TRIP TIME.
aggregate(oct_to_dec_v2$ride_length_secs ~ oct_to_dec_v2$member_casual, FUN = max)
##   oct_to_dec_v2$member_casual oct_to_dec_v2$ride_length_secs
## 1                      casual                          86052
## 2                      member                          85594
MEMBERS Vs CASUAL AVERAGE TRIP.
aggregate(oct_to_dec_v2$ride_length_secs ~ oct_to_dec_v2$member_casual, FUN = mean)
##   oct_to_dec_v2$member_casual oct_to_dec_v2$ride_length_secs
## 1                      casual                      1388.5809
## 2                      member                       705.6799
AVERAGE RIDE TIME FOR EACH DAY FOR MEMBERS Vs CASUAL RIDERS.
aggregate(oct_to_dec_v2$ride_length_total ~ oct_to_dec_v2$member_casual + oct_to_dec_v2$weekday., FUN = mean)
##    oct_to_dec_v2$member_casual oct_to_dec_v2$weekday.
## 1                       casual                    Sun
## 2                       member                    Sun
## 3                       casual                    Mon
## 4                       member                    Mon
## 5                       casual                    Tue
## 6                       member                    Tue
## 7                       casual                    Wed
## 8                       member                    Wed
## 9                       casual                    Thu
## 10                      member                    Thu
## 11                      casual                    Fri
## 12                      member                    Fri
## 13                      casual                    Sat
## 14                      member                    Sat
##    oct_to_dec_v2$ride_length_total
## 1                         27.71726
## 2                         13.34213
## 3                         21.87272
## 4                         11.20230
## 5                         19.65998
## 6                         11.17301
## 7                         19.25087
## 8                         11.29488
## 9                         18.27964
## 10                        11.00383
## 11                        22.04564
## 12                        11.55413
## 13                        26.06247
## 14                        13.31127
oct_to_dec_v2 %>% 
  group_by(member_casual, weekday.) %>%  
  summarise(number_of_rides = n(),average_duration = mean(ride_length_total)) %>%       
  arrange(member_casual, weekday.)  
## `summarise()` has grouped output by 'member_casual'. You can override using the
## `.groups` argument.
## # A tibble: 14 × 4
## # Groups:   member_casual [2]
##    member_casual weekday. number_of_rides average_duration
##    <fct>         <ord>              <int>            <dbl>
##  1 casual        Sun                57018             27.7
##  2 casual        Mon                29313             21.9
##  3 casual        Tue                32453             19.7
##  4 casual        Wed                33402             19.3
##  5 casual        Thu                29601             18.3
##  6 casual        Fri                44340             22.0
##  7 casual        Sat                72644             26.1
##  8 member        Sun                64549             13.3
##  9 member        Mon                79895             11.2
## 10 member        Tue                96841             11.2
## 11 member        Wed                96161             11.3
## 12 member        Thu                81186             11.0
## 13 member        Fri                85446             11.6
## 14 member        Sat                79782             13.3

DATA VISUALIZATIONS AND SUMMARY

COUNT ‘member_casual’ FOR PIE CHART
CREATE DATA FRAME FOR PIE CHART
MEMBER Vs CASUAL OCT TO DEC PIE CHART
oct_to_dec_v2_tot <- oct_to_dec_v2 %>% 
  group_by(member_casual) %>% 
  summarise(number_of_rides = n()) 

pie_cvm <- data.frame(group = c("casual", "member"), value = c(298771, 583860))

ggplot(pie_cvm, aes(x = "", y = value, fill = group)) +
  geom_col(width = 1) +
  coord_polar("y") +
  geom_text(aes(label = round(value, 3)), position = position_stack(vjust = 0.5))+
  scale_fill_brewer(palette = "Accent")+
  labs(title = "October to December 2021 Totals.")+
  theme_economist()

MEMBER Vs CASUAL OCT TO DEC DAILY TOTALS.
oct_to_dec_v2 %>% 
  group_by(member_casual, weekday.) %>% 
  summarise(number_of_rides = n()) %>% 
  arrange(member_casual, weekday.)  %>% 
  ggplot(aes(x = weekday., y = number_of_rides, fill = member_casual)) +
  scale_fill_brewer(palette = "Accent")+
  labs(title = "October to December 2021 Daily Totals.",
       x = "Weekday",
       y = "Number of Rides")+
  geom_col(position = "dodge")+
  theme_economist()
## `summarise()` has grouped output by 'member_casual'. You can override using the
## `.groups` argument.

SUMMARY MEMBER Vs CASUAL OCT TO DEC DAILY TOTALS.
oct_to_dec_v2 %>% select(!c(ride_length_secs, ride_length_total ,started_at, start_date, weekday, rideable_type)) %>% tbl_summary(by = member_casual)
Characteristic casual, N = 298,7711 member, N = 583,8601
weekday.
    Sun 57,018 (19%) 64,549 (11%)
    Mon 29,313 (9.8%) 79,895 (14%)
    Tue 32,453 (11%) 96,841 (17%)
    Wed 33,402 (11%) 96,161 (16%)
    Thu 29,601 (9.9%) 81,186 (14%)
    Fri 44,340 (15%) 85,446 (15%)
    Sat 72,644 (24%) 79,782 (14%)
1 n (%)
MEMBER Vs CASUAL OCT TO DEC RIDEABLE TYPE.
oct_to_dec_v2 %>% 
  group_by(member_casual, rideable_type) %>% 
  summarise(number_of_rides = n()) %>% 
  arrange(member_casual, rideable_type)  %>% 
  ggplot(aes(x = rideable_type, y = number_of_rides, fill = member_casual)) +
  scale_fill_brewer(palette = "Accent")+
  labs(title = "October to December 2021 Rideable Type.",
       x = "Rideable Type",
       y = "Number of Bikes")+
  geom_col(position = "dodge")+
  theme_economist()
## `summarise()` has grouped output by 'member_casual'. You can override using the
## `.groups` argument.

SUMMARY MEMBER Vs CASUAL OCT TO DEC RIDEABLE TYPE.
oct_to_dec_v2 %>% select(!c(ride_length_secs,ride_length_total ,started_at, start_date, weekday, weekday.)) %>% tbl_summary(by = member_casual)
Characteristic casual, N = 298,7711 member, N = 583,8601
rideable_type
    classic_bike 154,033 (52%) 398,720 (68%)
    docked_bike 34,661 (12%) 0 (0%)
    electric_bike 110,077 (37%) 185,140 (32%)
1 n (%)
RIDEABLE TYPE OCT TO DEC DAILY TOTALS.
oct_to_dec_v2 %>% 
  group_by(weekday., rideable_type) %>% 
  summarise(number_of_rides = n()) %>% 
  arrange(weekday.)  %>% 
  ggplot(aes(x = weekday., y = number_of_rides, fill = rideable_type)) +
  scale_fill_brewer(palette = "Accent")+
  facet_wrap(~rideable_type)+
  labs(title = "Rideable Type October to December 2021 Daily Totals.",
       x = "Day Of Week",
       y = "Number of Bikes")+
  geom_col(position = "dodge")+
  theme_economist()
## `summarise()` has grouped output by 'weekday.'. You can override using the
## `.groups` argument.

RIDEABLE TYPE OCT TO DEC DAILY TOTALS.
oct_to_dec_v2 %>% 
  group_by(weekday., rideable_type) %>% 
  summarise(number_of_rides = n()) %>% 
  arrange(weekday.)  %>% 
  ggplot(aes(x = weekday., y = number_of_rides, fill = rideable_type)) +
  scale_fill_brewer(palette = "Accent")+
  labs(title = "Rideable Type October to December 2021 Daily Totals.",
       x = "Day Of Week",
       y = "Number of Bikes")+
  geom_col(position = "dodge")+
  theme_economist()
## `summarise()` has grouped output by 'weekday.'. You can override using the
## `.groups` argument.

SUMMARY RIDEABLE TYPE OCT TO DEC DAILY TOTALS.
oct_to_dec_v2 %>% select(!c(ride_length_secs,ride_length_total ,started_at, start_date, weekday, member_casual )) %>% tbl_summary(by = rideable_type)
Characteristic classic_bike, N = 552,7531 docked_bike, N = 34,6611 electric_bike, N = 295,2171
weekday.
    Sun 78,780 (14%) 8,195 (24%) 34,592 (12%)
    Mon 68,928 (12%) 3,296 (9.5%) 36,984 (13%)
    Tue 81,113 (15%) 2,835 (8.2%) 45,346 (15%)
    Wed 80,269 (15%) 2,941 (8.5%) 46,353 (16%)
    Thu 67,163 (12%) 2,536 (7.3%) 41,088 (14%)
    Fri 80,369 (15%) 4,895 (14%) 44,522 (15%)
    Sat 96,131 (17%) 9,963 (29%) 46,332 (16%)
1 n (%)
RIDEABLE TYPE OCT TO DEC TOTALS.
oct_to_dec_v2 %>% 
  group_by(rideable_type) %>% 
  summarise(number_of_rides = n()) %>% 
  arrange(rideable_type)  %>% 
  ggplot(aes(x = rideable_type, y = number_of_rides, fill = rideable_type)) +
  scale_fill_brewer(palette = "Accent")+
  labs(title = "Rideable Type October to December 2021 Totals.",
       x = "Rideable Type",
       y = "Number of Bikes")+
  geom_col(position = "dodge")+
  theme_economist()

SUMMARY RIDEABLE TYPE OCT TO DEC TOTALS.
oct_to_dec_v2 %>% select(!c(ride_length_secs,ride_length_total ,started_at, start_date, weekday, weekday., member_casual)) %>% tbl_summary()
Characteristic N = 882,6311
rideable_type
    classic_bike 552,753 (63%)
    docked_bike 34,661 (3.9%)
    electric_bike 295,217 (33%)
1 n (%)

MORE TO LEARN

SESSION INFORMATION

sessionInfo()
## R version 4.2.3 (2023-03-15 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 22621)
## 
## Matrix products: default
## 
## locale:
## [1] LC_COLLATE=English_United Kingdom.utf8 
## [2] LC_CTYPE=English_United Kingdom.utf8   
## [3] LC_MONETARY=English_United Kingdom.utf8
## [4] LC_NUMERIC=C                           
## [5] LC_TIME=English_United Kingdom.utf8    
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] ggthemes_4.2.4     RColorBrewer_1.1-3 scales_1.2.1       gtsummary_1.7.1   
##  [5] conflicted_1.2.0   janitor_2.2.0      skimr_2.1.5        here_1.0.1        
##  [9] hms_1.1.3          data.table_1.14.8  lubridate_1.9.2    forcats_1.0.0     
## [13] stringr_1.5.0      dplyr_1.1.2        purrr_1.0.1        readr_2.1.4       
## [17] tidyr_1.3.0        tibble_3.2.1       ggplot2_3.4.2      tidyverse_2.0.0   
## 
## loaded via a namespace (and not attached):
##  [1] rprojroot_2.0.3      digest_0.6.29        utf8_1.2.2          
##  [4] R6_2.5.1             repr_1.1.6           evaluate_0.16       
##  [7] highr_0.9            pillar_1.9.0         rlang_1.1.0         
## [10] rstudioapi_0.14      jquerylib_0.1.4      rmarkdown_2.22      
## [13] labeling_0.4.2       munsell_0.5.0        compiler_4.2.3      
## [16] xfun_0.38            pkgconfig_2.0.3      base64enc_0.1-3     
## [19] htmltools_0.5.5      tidyselect_1.2.0     fansi_1.0.3         
## [22] crayon_1.5.1         tzdb_0.3.0           withr_2.5.0         
## [25] commonmark_1.9.0     grid_4.2.3           jsonlite_1.8.4      
## [28] gtable_0.3.0         lifecycle_1.0.3      magrittr_2.0.3      
## [31] cli_3.6.1            stringi_1.7.8        cachem_1.0.6        
## [34] farver_2.1.1         broom.helpers_1.13.0 snakecase_0.11.0    
## [37] xml2_1.3.3           bslib_0.4.0          generics_0.1.3      
## [40] vctrs_0.6.1          tools_4.2.3          glue_1.6.2          
## [43] markdown_1.5         fastmap_1.1.0        yaml_2.3.5          
## [46] timechange_0.1.1     colorspace_2.0-3     gt_0.9.0            
## [49] memoise_2.0.1        knitr_1.39           sass_0.4.6