SETTING UP ENVIRONMENT.

INSTALL PACKAGES.

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.2     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.2     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(data.table)
## 
## Attaching package: 'data.table'
## 
## The following objects are masked from 'package:lubridate':
## 
##     hour, isoweek, mday, minute, month, quarter, second, wday, week,
##     yday, year
## 
## The following objects are masked from 'package:dplyr':
## 
##     between, first, last
## 
## The following object is masked from 'package:purrr':
## 
##     transpose
library(hms)
## 
## Attaching package: 'hms'
## 
## The following object is masked from 'package:lubridate':
## 
##     hms
library(here)
## here() starts at C:/Users/SWill/Documents/JUL TO SEP CYCLISTIC BIKES
library(skimr)
library(janitor)
## 
## Attaching package: 'janitor'
## 
## The following objects are masked from 'package:stats':
## 
##     chisq.test, fisher.test
library(conflicted)
library(gtsummary)
library(scales)
library(RColorBrewer)
library(ggthemes)
SCIENTIFIC NOTATION RUINING YOUR GGPLOT CHARTS? TRY THE LINE OF CODE BELOW.
options(scipen = 999)
USE ‘getwd()’ FUNCTION TO DISPLAY WORKING DIRECTORY.
getwd()
## [1] "C:/Users/SWill/Documents/JUL TO SEP CYCLISTIC BIKES"
USE ‘setwd()’ FUNCTION TO SET WORKING DIRECTORY TO SIMPLIFY CALLS TO DATA.
setwd("C:/Users/SWill/Documents/JUL TO SEP CYCLISTIC BIKES")
USE ‘spec_csv()’ FUNCTION TO CHECK THE DATA TYPES BEFORE READING THE DATA.
NOTICE ‘started_at’ AND ‘ended_at’ COLUMNS ARE ‘datetime’ DATA TYPE.
spec_csv("C:/Users/SWill/Desktop/CYCLISTIC BIKES/divvy-trip-data 01-12/202107-divvy-tripdata.csv")
## cols(
##   ride_id = col_character(),
##   rideable_type = col_character(),
##   started_at = col_datetime(format = ""),
##   ended_at = col_datetime(format = ""),
##   start_station_name = col_character(),
##   start_station_id = col_character(),
##   end_station_name = col_character(),
##   end_station_id = col_character(),
##   start_lat = col_double(),
##   start_lng = col_double(),
##   end_lat = col_double(),
##   end_lng = col_double(),
##   member_casual = col_character()
## )
spec_csv("C:/Users/SWill/Desktop/CYCLISTIC BIKES/divvy-trip-data 01-12/202108-divvy-tripdata.csv")
## cols(
##   ride_id = col_character(),
##   rideable_type = col_character(),
##   started_at = col_datetime(format = ""),
##   ended_at = col_datetime(format = ""),
##   start_station_name = col_character(),
##   start_station_id = col_character(),
##   end_station_name = col_character(),
##   end_station_id = col_character(),
##   start_lat = col_double(),
##   start_lng = col_double(),
##   end_lat = col_double(),
##   end_lng = col_double(),
##   member_casual = col_character()
## )
spec_csv("C:/Users/SWill/Desktop/CYCLISTIC BIKES/divvy-trip-data 01-12/202109-divvy-tripdata.csv")
## cols(
##   ride_id = col_character(),
##   rideable_type = col_character(),
##   started_at = col_datetime(format = ""),
##   ended_at = col_datetime(format = ""),
##   start_station_name = col_character(),
##   start_station_id = col_character(),
##   end_station_name = col_character(),
##   end_station_id = col_character(),
##   start_lat = col_double(),
##   start_lng = col_double(),
##   end_lat = col_double(),
##   end_lng = col_double(),
##   member_casual = col_character()
## )
UPLOAD DATASETS divvy-trip-data.csv FILES.
df_07 <- read.csv("C:/Users/SWill/Desktop/CYCLISTIC BIKES/divvy-trip-data 01-12/202107-divvy-tripdata.csv")
df_08 <- read.csv("C:/Users/SWill/Desktop/CYCLISTIC BIKES/divvy-trip-data 01-12/202108-divvy-tripdata.csv")
df_09 <- read.csv("C:/Users/SWill/Desktop/CYCLISTIC BIKES/divvy-trip-data 01-12/202109-divvy-tripdata.csv")
USE ‘bind_rows()’ FUNCTION TO STACK DATA FRAMES INTO ONE BIG DATA FRAME.
jul_to_sep <- bind_rows(df_07,df_08,df_09)
CHECK COLUMNS.
colnames(jul_to_sep)
##  [1] "ride_id"            "rideable_type"      "started_at"        
##  [4] "ended_at"           "start_station_name" "start_station_id"  
##  [7] "end_station_name"   "end_station_id"     "start_lat"         
## [10] "start_lng"          "end_lat"            "end_lng"           
## [13] "member_casual"
USE ‘glimpse()’ FUNCTION TO GET A BETTER UNDERSTANDING OF THE DATA.
Rows: 2,382,909 Columns: 13
COLUMNS ‘started_at’ AND ‘ended_at’ ARE NOW ‘character’ DATA TYPE.
COLUMNS ‘end_station_name’ AND ‘end_station_id’ HAVE BLANK ROWS THAT NEED TO BE REMOVED.
glimpse(jul_to_sep)
## Rows: 2,382,909
## Columns: 13
## $ ride_id            <chr> "0A1B623926EF4E16", "B2D5583A5A5E76EE", "6F264597DD…
## $ rideable_type      <chr> "docked_bike", "classic_bike", "classic_bike", "cla…
## $ started_at         <chr> "2021-07-02 14:44:36", "2021-07-07 16:57:42", "2021…
## $ ended_at           <chr> "2021-07-02 15:19:58", "2021-07-07 17:16:09", "2021…
## $ start_station_name <chr> "Michigan Ave & Washington St", "California Ave & C…
## $ start_station_id   <chr> "13001", "17660", "SL-012", "17660", "17660", "1766…
## $ end_station_name   <chr> "Halsted St & North Branch St", "Wood St & Hubbard …
## $ end_station_id     <chr> "KA1504000117", "13432", "KA1503000044", "13196", "…
## $ start_lat          <dbl> 41.88398, 41.90036, 41.86038, 41.90036, 41.90035, 4…
## $ start_lng          <dbl> -87.62468, -87.69670, -87.62581, -87.69670, -87.696…
## $ end_lat            <dbl> 41.89937, 41.88990, 41.89017, 41.89456, 41.88659, 4…
## $ end_lng            <dbl> -87.64848, -87.67147, -87.62619, -87.65345, -87.658…
## $ member_casual      <chr> "casual", "casual", "member", "member", "casual", "…
USE ‘str()’ FUNCTION TO SEE LIST OF COLUMNS AND DATA TYPES NUMERIC, CHARACTER, DATETIME ETC.
‘data.frame’: 2382909 obs. of 13 variables:
str(jul_to_sep)
## 'data.frame':    2382909 obs. of  13 variables:
##  $ ride_id           : chr  "0A1B623926EF4E16" "B2D5583A5A5E76EE" "6F264597DDBF427A" "379B58EAB20E8AA5" ...
##  $ rideable_type     : chr  "docked_bike" "classic_bike" "classic_bike" "classic_bike" ...
##  $ started_at        : chr  "2021-07-02 14:44:36" "2021-07-07 16:57:42" "2021-07-25 11:30:55" "2021-07-08 22:08:30" ...
##  $ ended_at          : chr  "2021-07-02 15:19:58" "2021-07-07 17:16:09" "2021-07-25 11:48:45" "2021-07-08 22:23:32" ...
##  $ start_station_name: chr  "Michigan Ave & Washington St" "California Ave & Cortez St" "Wabash Ave & 16th St" "California Ave & Cortez St" ...
##  $ start_station_id  : chr  "13001" "17660" "SL-012" "17660" ...
##  $ end_station_name  : chr  "Halsted St & North Branch St" "Wood St & Hubbard St" "Rush St & Hubbard St" "Carpenter St & Huron St" ...
##  $ end_station_id    : chr  "KA1504000117" "13432" "KA1503000044" "13196" ...
##  $ start_lat         : num  41.9 41.9 41.9 41.9 41.9 ...
##  $ start_lng         : num  -87.6 -87.7 -87.6 -87.7 -87.7 ...
##  $ end_lat           : num  41.9 41.9 41.9 41.9 41.9 ...
##  $ end_lng           : num  -87.6 -87.7 -87.6 -87.7 -87.7 ...
##  $ member_casual     : chr  "casual" "casual" "member" "member" ...
USE TIDYR TO SEPARATE “started_at” COLUMN TO A NEW COLUMN CALLED “start_date” and “start_time”.
USE TIDYR TO SEPARATE “ended_at” COLUMN TO A NEW COLUMN CALLED “end_date” and “end_time”.
jul_to_sep <- tidyr::separate(jul_to_sep, started_at, c("start_date", "start_time"), sep = " ", remove = FALSE)
jul_to_sep <- tidyr::separate(jul_to_sep, ended_at, c("end_date", "end_time"), sep = " ", remove = FALSE)
CHECK NEW COLUMNS.
colnames(jul_to_sep)
##  [1] "ride_id"            "rideable_type"      "started_at"        
##  [4] "start_date"         "start_time"         "ended_at"          
##  [7] "end_date"           "end_time"           "start_station_name"
## [10] "start_station_id"   "end_station_name"   "end_station_id"    
## [13] "start_lat"          "start_lng"          "end_lat"           
## [16] "end_lng"            "member_casual"
‘data.frame’: 2382909 obs. of 17 variables:
str(jul_to_sep)
## 'data.frame':    2382909 obs. of  17 variables:
##  $ ride_id           : chr  "0A1B623926EF4E16" "B2D5583A5A5E76EE" "6F264597DDBF427A" "379B58EAB20E8AA5" ...
##  $ rideable_type     : chr  "docked_bike" "classic_bike" "classic_bike" "classic_bike" ...
##  $ started_at        : chr  "2021-07-02 14:44:36" "2021-07-07 16:57:42" "2021-07-25 11:30:55" "2021-07-08 22:08:30" ...
##  $ start_date        : chr  "2021-07-02" "2021-07-07" "2021-07-25" "2021-07-08" ...
##  $ start_time        : chr  "14:44:36" "16:57:42" "11:30:55" "22:08:30" ...
##  $ ended_at          : chr  "2021-07-02 15:19:58" "2021-07-07 17:16:09" "2021-07-25 11:48:45" "2021-07-08 22:23:32" ...
##  $ end_date          : chr  "2021-07-02" "2021-07-07" "2021-07-25" "2021-07-08" ...
##  $ end_time          : chr  "15:19:58" "17:16:09" "11:48:45" "22:23:32" ...
##  $ start_station_name: chr  "Michigan Ave & Washington St" "California Ave & Cortez St" "Wabash Ave & 16th St" "California Ave & Cortez St" ...
##  $ start_station_id  : chr  "13001" "17660" "SL-012" "17660" ...
##  $ end_station_name  : chr  "Halsted St & North Branch St" "Wood St & Hubbard St" "Rush St & Hubbard St" "Carpenter St & Huron St" ...
##  $ end_station_id    : chr  "KA1504000117" "13432" "KA1503000044" "13196" ...
##  $ start_lat         : num  41.9 41.9 41.9 41.9 41.9 ...
##  $ start_lng         : num  -87.6 -87.7 -87.6 -87.7 -87.7 ...
##  $ end_lat           : num  41.9 41.9 41.9 41.9 41.9 ...
##  $ end_lng           : num  -87.6 -87.7 -87.6 -87.7 -87.7 ...
##  $ member_casual     : chr  "casual" "casual" "member" "member" ...

EXPLORE AND MANIPULATE DATA FRAME JUL TO SEP.

COLUMN RIDEABLE TYPE.

EXPLORE CHARACTER VARIABLE TYPE IN “rideable_type” COLUMN.
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(jul_to_sep$rideable_type)
## [1] "character"
USE ‘unique ()’ FUNCTION TO FIND INDIVIDUAL VALUES IN COLUMN.
unique(jul_to_sep$rideable_type)
## [1] "docked_bike"   "classic_bike"  "electric_bike"
HOW MANY OBSERVATIONS FALL UNDER EACH USER TYPE?
table(jul_to_sep$rideable_type)
## 
##  classic_bike   docked_bike electric_bike 
##       1472226        138100        772583
sort(table(jul_to_sep$rideable_type), decreasing = TRUE)
## 
##  classic_bike electric_bike   docked_bike 
##       1472226        772583        138100
BAR PLOT OF DATA DISTRIBUTION OF ‘rideable_type’ COLUMN.
barplot(sort(table(jul_to_sep$rideable_type), decreasing = TRUE))

CHANGE VARIABLE FROM CHARACTER TO FACTOR.
jul_to_sep$rideable_type <- as.factor(jul_to_sep$rideable_type)
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(jul_to_sep$rideable_type)
## [1] "factor"
USE ‘levels’ FUNCTION TO CHECK FACTOR.
levels(jul_to_sep$rideable_type)
## [1] "classic_bike"  "docked_bike"   "electric_bike"
NOTE RIDEABLE TYPE IS NOW A FACTOR.
glimpse(jul_to_sep)
## Rows: 2,382,909
## Columns: 17
## $ ride_id            <chr> "0A1B623926EF4E16", "B2D5583A5A5E76EE", "6F264597DD…
## $ rideable_type      <fct> docked_bike, classic_bike, classic_bike, classic_bi…
## $ started_at         <chr> "2021-07-02 14:44:36", "2021-07-07 16:57:42", "2021…
## $ start_date         <chr> "2021-07-02", "2021-07-07", "2021-07-25", "2021-07-…
## $ start_time         <chr> "14:44:36", "16:57:42", "11:30:55", "22:08:30", "16…
## $ ended_at           <chr> "2021-07-02 15:19:58", "2021-07-07 17:16:09", "2021…
## $ end_date           <chr> "2021-07-02", "2021-07-07", "2021-07-25", "2021-07-…
## $ end_time           <chr> "15:19:58", "17:16:09", "11:48:45", "22:23:32", "16…
## $ start_station_name <chr> "Michigan Ave & Washington St", "California Ave & C…
## $ start_station_id   <chr> "13001", "17660", "SL-012", "17660", "17660", "1766…
## $ end_station_name   <chr> "Halsted St & North Branch St", "Wood St & Hubbard …
## $ end_station_id     <chr> "KA1504000117", "13432", "KA1503000044", "13196", "…
## $ start_lat          <dbl> 41.88398, 41.90036, 41.86038, 41.90036, 41.90035, 4…
## $ start_lng          <dbl> -87.62468, -87.69670, -87.62581, -87.69670, -87.696…
## $ end_lat            <dbl> 41.89937, 41.88990, 41.89017, 41.89456, 41.88659, 4…
## $ end_lng            <dbl> -87.64848, -87.67147, -87.62619, -87.65345, -87.658…
## $ member_casual      <chr> "casual", "casual", "member", "member", "casual", "…

COLUMN STARTED_AT AND ENDED_AT.

EXPLORE CHARACTER VARIABLE TYPE IN “started_at” AND ended_at” COLUMN.
DATA TYPE IN COLUMN “started_at” AND “end_at” WAS DATETIME BEFORE UPLOADING.
CONVERT “started_at” AND “ended_at” COLUMN FROM CHARACTER TO DATETIME.
jul_to_sep$started_at <- as.POSIXlt(jul_to_sep$started_at, format="%Y-%m-%d %H:%M:%S", tz="UTC")
jul_to_sep$ended_at <- as.POSIXlt(jul_to_sep$ended_at, format="%Y-%m-%d %H:%M:%S", tz="UTC")
CONVERT “start_date” AND “end_date” COLUMN FROM CHARACTER TO DATE FORMAT.
jul_to_sep$start_date <- as.POSIXlt(jul_to_sep$start_date)
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(jul_to_sep$start_date)
## [1] "POSIXlt" "POSIXt"
CONVERT “end_date” COLUMN FROM CHARACTER TO DATE FORMAT.
jul_to_sep$end_date <- as.POSIXlt(jul_to_sep$end_date)
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(jul_to_sep$end_date)
## [1] "POSIXlt" "POSIXt"
USE ‘str()’ FUNCTION TO SEE LIST OF COLUMNS AND DATA TYPES NUMERIC, CHARACTER, DATETIME ETC.
‘started_at’AND ’ended_at’ CHARACTER DATA TYPE IS NOW POSIXlt.
str(jul_to_sep)
## 'data.frame':    2382909 obs. of  17 variables:
##  $ ride_id           : chr  "0A1B623926EF4E16" "B2D5583A5A5E76EE" "6F264597DDBF427A" "379B58EAB20E8AA5" ...
##  $ rideable_type     : Factor w/ 3 levels "classic_bike",..: 2 1 1 1 3 3 1 1 1 1 ...
##  $ started_at        : POSIXlt, format: "2021-07-02 14:44:36" "2021-07-07 16:57:42" ...
##  $ start_date        : POSIXlt, format: "2021-07-02" "2021-07-07" ...
##  $ start_time        : chr  "14:44:36" "16:57:42" "11:30:55" "22:08:30" ...
##  $ ended_at          : POSIXlt, format: "2021-07-02 15:19:58" "2021-07-07 17:16:09" ...
##  $ end_date          : POSIXlt, format: "2021-07-02" "2021-07-07" ...
##  $ end_time          : chr  "15:19:58" "17:16:09" "11:48:45" "22:23:32" ...
##  $ start_station_name: chr  "Michigan Ave & Washington St" "California Ave & Cortez St" "Wabash Ave & 16th St" "California Ave & Cortez St" ...
##  $ start_station_id  : chr  "13001" "17660" "SL-012" "17660" ...
##  $ end_station_name  : chr  "Halsted St & North Branch St" "Wood St & Hubbard St" "Rush St & Hubbard St" "Carpenter St & Huron St" ...
##  $ end_station_id    : chr  "KA1504000117" "13432" "KA1503000044" "13196" ...
##  $ start_lat         : num  41.9 41.9 41.9 41.9 41.9 ...
##  $ start_lng         : num  -87.6 -87.7 -87.6 -87.7 -87.7 ...
##  $ end_lat           : num  41.9 41.9 41.9 41.9 41.9 ...
##  $ end_lng           : num  -87.6 -87.7 -87.6 -87.7 -87.7 ...
##  $ member_casual     : chr  "casual" "casual" "member" "member" ...

COLUMN START_STATION_NAME START_STATION_ID END_STATION_NAME AND END_STATION_ID.

EXPLORE…CHARACTER VARIABLE TYPE IN “start_staion_name” AND “end_staion_name”
REPLACE ALL BLANK VALUES IN “start_station_name” COLUMN WITH NA VALUES.
jul_to_sep$start_station_name[jul_to_sep$start_station_name==""] <- NA
REPLACE ALL BLANK VALUES IN “start_station_id” COLUMN WITH NA VALUES.
jul_to_sep$start_station_id[jul_to_sep$start_station_id==""] <- NA
REPLACE ALL BLANK VALUES IN “end_station_name” COLUMN WITH NA VALUES.
jul_to_sep$end_station_name[jul_to_sep$end_station_name==""] <- NA
REPLACE ALL BLANK VALUES IN “end_station_id” COLUMN WITH NA VALUES.
jul_to_sep$end_station_id[jul_to_sep$end_station_id==""] <- NA
glimpse(jul_to_sep)
## Rows: 2,382,909
## Columns: 17
## $ ride_id            <chr> "0A1B623926EF4E16", "B2D5583A5A5E76EE", "6F264597DD…
## $ rideable_type      <fct> docked_bike, classic_bike, classic_bike, classic_bi…
## $ started_at         <dttm> 2021-07-02 14:44:36, 2021-07-07 16:57:42, 2021-07-…
## $ start_date         <dttm> 2021-07-02, 2021-07-07, 2021-07-25, 2021-07-08, 20…
## $ start_time         <chr> "14:44:36", "16:57:42", "11:30:55", "22:08:30", "16…
## $ ended_at           <dttm> 2021-07-02 15:19:58, 2021-07-07 17:16:09, 2021-07-…
## $ end_date           <dttm> 2021-07-02, 2021-07-07, 2021-07-25, 2021-07-08, 20…
## $ end_time           <chr> "15:19:58", "17:16:09", "11:48:45", "22:23:32", "16…
## $ start_station_name <chr> "Michigan Ave & Washington St", "California Ave & C…
## $ start_station_id   <chr> "13001", "17660", "SL-012", "17660", "17660", "1766…
## $ end_station_name   <chr> "Halsted St & North Branch St", "Wood St & Hubbard …
## $ end_station_id     <chr> "KA1504000117", "13432", "KA1503000044", "13196", "…
## $ start_lat          <dbl> 41.88398, 41.90036, 41.86038, 41.90036, 41.90035, 4…
## $ start_lng          <dbl> -87.62468, -87.69670, -87.62581, -87.69670, -87.696…
## $ end_lat            <dbl> 41.89937, 41.88990, 41.89017, 41.89456, 41.88659, 4…
## $ end_lng            <dbl> -87.64848, -87.67147, -87.62619, -87.65345, -87.658…
## $ member_casual      <chr> "casual", "casual", "member", "member", "casual", "…
REMOVE ROWS WITH NA VALUES IN ALL COLUMNS.
jul_to_sep <- jul_to_sep %>% drop_na()
‘data.frame’: 1987880 obs. of 17 variables:
str(jul_to_sep)
## 'data.frame':    1987880 obs. of  17 variables:
##  $ ride_id           : chr  "0A1B623926EF4E16" "B2D5583A5A5E76EE" "6F264597DDBF427A" "379B58EAB20E8AA5" ...
##  $ rideable_type     : Factor w/ 3 levels "classic_bike",..: 2 1 1 1 3 3 1 1 1 1 ...
##  $ started_at        : POSIXlt, format: "2021-07-02 14:44:36" "2021-07-07 16:57:42" ...
##  $ start_date        : POSIXlt, format: "2021-07-02" "2021-07-07" ...
##  $ start_time        : chr  "14:44:36" "16:57:42" "11:30:55" "22:08:30" ...
##  $ ended_at          : POSIXlt, format: "2021-07-02 15:19:58" "2021-07-07 17:16:09" ...
##  $ end_date          : POSIXlt, format: "2021-07-02" "2021-07-07" ...
##  $ end_time          : chr  "15:19:58" "17:16:09" "11:48:45" "22:23:32" ...
##  $ start_station_name: chr  "Michigan Ave & Washington St" "California Ave & Cortez St" "Wabash Ave & 16th St" "California Ave & Cortez St" ...
##  $ start_station_id  : chr  "13001" "17660" "SL-012" "17660" ...
##  $ end_station_name  : chr  "Halsted St & North Branch St" "Wood St & Hubbard St" "Rush St & Hubbard St" "Carpenter St & Huron St" ...
##  $ end_station_id    : chr  "KA1504000117" "13432" "KA1503000044" "13196" ...
##  $ start_lat         : num  41.9 41.9 41.9 41.9 41.9 ...
##  $ start_lng         : num  -87.6 -87.7 -87.6 -87.7 -87.7 ...
##  $ end_lat           : num  41.9 41.9 41.9 41.9 41.9 ...
##  $ end_lng           : num  -87.6 -87.7 -87.6 -87.7 -87.7 ...
##  $ member_casual     : chr  "casual" "casual" "member" "member" ...

COLUMN MEMBER_CASUAL.

EXPLORE…CHARACTER VARIABLE TYPE IN “member_casual” COLUMN.
USE ‘unique ()’ FUNCTION TO FIND INDIVIDUAL VALUES IN COLUMN.
unique(jul_to_sep$member_casual)
## [1] "casual" "member"
HOW MANY OBSERVATIONS FALL UNDER EACH USER TYPE?
table(jul_to_sep$member_casual)
## 
##  casual  member 
## 1003822  984058
sort(table(jul_to_sep$member_casual), decreasing = TRUE)
## 
##  casual  member 
## 1003822  984058
BAR PLOT OF DATA DISTRIBUTION OF ‘member_casual’ COLUMN.
barplot(sort(table(jul_to_sep$member_casual), decreasing = TRUE))

CHANGE VARIABLE FROM CHARACTER TO FACTOR.
jul_to_sep$member_casual <- as.factor(jul_to_sep$member_casual)
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(jul_to_sep$member_casual)
## [1] "factor"
USE ‘levels’ FUNCTION TO CHECK FACTOR.
levels(jul_to_sep$member_casual)
## [1] "casual" "member"
NOTE MEMBER CASUAL IS NOW A FACTOR.
glimpse(jul_to_sep)
## Rows: 1,987,880
## Columns: 17
## $ ride_id            <chr> "0A1B623926EF4E16", "B2D5583A5A5E76EE", "6F264597DD…
## $ rideable_type      <fct> docked_bike, classic_bike, classic_bike, classic_bi…
## $ started_at         <dttm> 2021-07-02 14:44:36, 2021-07-07 16:57:42, 2021-07-…
## $ start_date         <dttm> 2021-07-02, 2021-07-07, 2021-07-25, 2021-07-08, 20…
## $ start_time         <chr> "14:44:36", "16:57:42", "11:30:55", "22:08:30", "16…
## $ ended_at           <dttm> 2021-07-02 15:19:58, 2021-07-07 17:16:09, 2021-07-…
## $ end_date           <dttm> 2021-07-02, 2021-07-07, 2021-07-25, 2021-07-08, 20…
## $ end_time           <chr> "15:19:58", "17:16:09", "11:48:45", "22:23:32", "16…
## $ start_station_name <chr> "Michigan Ave & Washington St", "California Ave & C…
## $ start_station_id   <chr> "13001", "17660", "SL-012", "17660", "17660", "1766…
## $ end_station_name   <chr> "Halsted St & North Branch St", "Wood St & Hubbard …
## $ end_station_id     <chr> "KA1504000117", "13432", "KA1503000044", "13196", "…
## $ start_lat          <dbl> 41.88398, 41.90036, 41.86038, 41.90036, 41.90035, 4…
## $ start_lng          <dbl> -87.62468, -87.69670, -87.62581, -87.69670, -87.696…
## $ end_lat            <dbl> 41.89937, 41.88990, 41.89017, 41.89456, 41.88659, 4…
## $ end_lng            <dbl> -87.64848, -87.67147, -87.62619, -87.65345, -87.658…
## $ member_casual      <fct> casual, casual, member, member, casual, casual, cas…

ADD A CALCULATED FIELD FOR NEW COLUMN “ride_length_secs”

jul_to_sep$ride_length_secs <- difftime(jul_to_sep$ended_at,jul_to_sep$started_at)
CHECK DATA TYPE.
is.numeric(jul_to_sep$ride_length_secs)
## [1] FALSE
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(jul_to_sep$ride_length_secs)
## [1] "difftime"
CONVERT “ride_length_secs” FROM DIFFTIME TO NUMERIC TO RUN CALCULATIONS ON THE DATA.
jul_to_sep$ride_length_secs <- as.numeric(as.character(jul_to_sep$ride_length_secs))
CHECK DATA TYPE.
is.numeric(jul_to_sep$ride_length_secs)
## [1] TRUE

CREATE NEW COLUMN “ride_length_total” USING MUTATE FUNCTION.

jul_to_sep <- mutate(jul_to_sep, ride_length_total = ride_length_secs/60)
CHECK DATA TYPE.
is.numeric(jul_to_sep$ride_length_total)
## [1] TRUE

ADD COLUMN FOR DAY OF WEEK.

NUMERIC VALUE DAY OF WEEK SUNDAY = 1 MONDAY = 2 TUESDAY = 3 ETC, ETC…
jul_to_sep$weekday <- lubridate::wday(jul_to_sep$start_date)
CHARACTER DAY OF WEEK USING ABBREVIATED LABELS MON,TUE,WED ETC ETC…
jul_to_sep$weekday. <- lubridate::wday(jul_to_sep$start_date, label = TRUE)
CHANGE ‘weekday’ DATA TYPE.
jul_to_sep$weekday. <- as.factor(jul_to_sep$weekday.)
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(jul_to_sep$weekday.)
## [1] "ordered" "factor"
USE ‘levels’ FUNCTION TO CHECK FACTOR.
levels(jul_to_sep$weekday.)
## [1] "Sun" "Mon" "Tue" "Wed" "Thu" "Fri" "Sat"
NOTE WEEKDAY. IS AN ORDERED FACTOR.
glimpse(jul_to_sep)
## Rows: 1,987,880
## Columns: 21
## $ ride_id            <chr> "0A1B623926EF4E16", "B2D5583A5A5E76EE", "6F264597DD…
## $ rideable_type      <fct> docked_bike, classic_bike, classic_bike, classic_bi…
## $ started_at         <dttm> 2021-07-02 14:44:36, 2021-07-07 16:57:42, 2021-07-…
## $ start_date         <dttm> 2021-07-02, 2021-07-07, 2021-07-25, 2021-07-08, 20…
## $ start_time         <chr> "14:44:36", "16:57:42", "11:30:55", "22:08:30", "16…
## $ ended_at           <dttm> 2021-07-02 15:19:58, 2021-07-07 17:16:09, 2021-07-…
## $ end_date           <dttm> 2021-07-02, 2021-07-07, 2021-07-25, 2021-07-08, 20…
## $ end_time           <chr> "15:19:58", "17:16:09", "11:48:45", "22:23:32", "16…
## $ start_station_name <chr> "Michigan Ave & Washington St", "California Ave & C…
## $ start_station_id   <chr> "13001", "17660", "SL-012", "17660", "17660", "1766…
## $ end_station_name   <chr> "Halsted St & North Branch St", "Wood St & Hubbard …
## $ end_station_id     <chr> "KA1504000117", "13432", "KA1503000044", "13196", "…
## $ start_lat          <dbl> 41.88398, 41.90036, 41.86038, 41.90036, 41.90035, 4…
## $ start_lng          <dbl> -87.62468, -87.69670, -87.62581, -87.69670, -87.696…
## $ end_lat            <dbl> 41.89937, 41.88990, 41.89017, 41.89456, 41.88659, 4…
## $ end_lng            <dbl> -87.64848, -87.67147, -87.62619, -87.65345, -87.658…
## $ member_casual      <fct> casual, casual, member, member, casual, casual, cas…
## $ ride_length_secs   <dbl> 2122, 1107, 1070, 902, 1143, 352, 718, 485, 1199, 8…
## $ ride_length_total  <dbl> 35.366667, 18.450000, 17.833333, 15.033333, 19.0500…
## $ weekday            <dbl> 6, 4, 1, 5, 4, 5, 4, 7, 6, 5, 2, 2, 6, 2, 4, 5, 6, …
## $ weekday.           <ord> Fri, Wed, Sun, Thu, Wed, Thu, Wed, Sat, Fri, Thu, M…
EXPLORE NUMERIC VARIABLE TYPE IN “weekday” COLUMN.
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(jul_to_sep$weekday)
## [1] "numeric"
USE ‘summary()’ FUNCTION TO SUMMARIZE VALUES IN DATA FRAME.
summary(jul_to_sep$weekday)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   2.000   4.000   4.138   6.000   7.000
BOX PLOT IS A GRAPHICAL REPRESENTATION TO SUMMARIZE DATA AND IDENTIFY OUTLIERS.
boxplot(jul_to_sep$weekday, col = 'violet') 

HISTOGRAM TO VISUALIZE DISTRIBUTION OF VALUES IN WEEKDAY COLUMN.
hist(jul_to_sep$weekday, col='coral') 

NOTE WEEKDAY IS NOW A ‘dbl’.
glimpse(jul_to_sep)
## Rows: 1,987,880
## Columns: 21
## $ ride_id            <chr> "0A1B623926EF4E16", "B2D5583A5A5E76EE", "6F264597DD…
## $ rideable_type      <fct> docked_bike, classic_bike, classic_bike, classic_bi…
## $ started_at         <dttm> 2021-07-02 14:44:36, 2021-07-07 16:57:42, 2021-07-…
## $ start_date         <dttm> 2021-07-02, 2021-07-07, 2021-07-25, 2021-07-08, 20…
## $ start_time         <chr> "14:44:36", "16:57:42", "11:30:55", "22:08:30", "16…
## $ ended_at           <dttm> 2021-07-02 15:19:58, 2021-07-07 17:16:09, 2021-07-…
## $ end_date           <dttm> 2021-07-02, 2021-07-07, 2021-07-25, 2021-07-08, 20…
## $ end_time           <chr> "15:19:58", "17:16:09", "11:48:45", "22:23:32", "16…
## $ start_station_name <chr> "Michigan Ave & Washington St", "California Ave & C…
## $ start_station_id   <chr> "13001", "17660", "SL-012", "17660", "17660", "1766…
## $ end_station_name   <chr> "Halsted St & North Branch St", "Wood St & Hubbard …
## $ end_station_id     <chr> "KA1504000117", "13432", "KA1503000044", "13196", "…
## $ start_lat          <dbl> 41.88398, 41.90036, 41.86038, 41.90036, 41.90035, 4…
## $ start_lng          <dbl> -87.62468, -87.69670, -87.62581, -87.69670, -87.696…
## $ end_lat            <dbl> 41.89937, 41.88990, 41.89017, 41.89456, 41.88659, 4…
## $ end_lng            <dbl> -87.64848, -87.67147, -87.62619, -87.65345, -87.658…
## $ member_casual      <fct> casual, casual, member, member, casual, casual, cas…
## $ ride_length_secs   <dbl> 2122, 1107, 1070, 902, 1143, 352, 718, 485, 1199, 8…
## $ ride_length_total  <dbl> 35.366667, 18.450000, 17.833333, 15.033333, 19.0500…
## $ weekday            <dbl> 6, 4, 1, 5, 4, 5, 4, 7, 6, 5, 2, 2, 6, 2, 4, 5, 6, …
## $ weekday.           <ord> Fri, Wed, Sun, Thu, Wed, Thu, Wed, Sat, Fri, Thu, M…
NOTE WEEKDAY IS NOW NUMERIC.
str(jul_to_sep)
## 'data.frame':    1987880 obs. of  21 variables:
##  $ ride_id           : chr  "0A1B623926EF4E16" "B2D5583A5A5E76EE" "6F264597DDBF427A" "379B58EAB20E8AA5" ...
##  $ rideable_type     : Factor w/ 3 levels "classic_bike",..: 2 1 1 1 3 3 1 1 1 1 ...
##  $ started_at        : POSIXlt, format: "2021-07-02 14:44:36" "2021-07-07 16:57:42" ...
##  $ start_date        : POSIXlt, format: "2021-07-02" "2021-07-07" ...
##  $ start_time        : chr  "14:44:36" "16:57:42" "11:30:55" "22:08:30" ...
##  $ ended_at          : POSIXlt, format: "2021-07-02 15:19:58" "2021-07-07 17:16:09" ...
##  $ end_date          : POSIXlt, format: "2021-07-02" "2021-07-07" ...
##  $ end_time          : chr  "15:19:58" "17:16:09" "11:48:45" "22:23:32" ...
##  $ start_station_name: chr  "Michigan Ave & Washington St" "California Ave & Cortez St" "Wabash Ave & 16th St" "California Ave & Cortez St" ...
##  $ start_station_id  : chr  "13001" "17660" "SL-012" "17660" ...
##  $ end_station_name  : chr  "Halsted St & North Branch St" "Wood St & Hubbard St" "Rush St & Hubbard St" "Carpenter St & Huron St" ...
##  $ end_station_id    : chr  "KA1504000117" "13432" "KA1503000044" "13196" ...
##  $ start_lat         : num  41.9 41.9 41.9 41.9 41.9 ...
##  $ start_lng         : num  -87.6 -87.7 -87.6 -87.7 -87.7 ...
##  $ end_lat           : num  41.9 41.9 41.9 41.9 41.9 ...
##  $ end_lng           : num  -87.6 -87.7 -87.6 -87.7 -87.7 ...
##  $ member_casual     : Factor w/ 2 levels "casual","member": 1 1 2 2 1 1 1 1 2 2 ...
##  $ ride_length_secs  : num  2122 1107 1070 902 1143 ...
##  $ ride_length_total : num  35.4 18.4 17.8 15 19.1 ...
##  $ weekday           : num  6 4 1 5 4 5 4 7 6 5 ...
##  $ weekday.          : Ord.factor w/ 7 levels "Sun"<"Mon"<"Tue"<..: 6 4 1 5 4 5 4 7 6 5 ...

COLUMN RIDE_LENGTH_SECS

DELETE RIDES UNDER 2 MINUTES (> 120) 1940647 ROWS REMAIN.
jul_to_sep <- subset(jul_to_sep, ride_length_secs > 120)
‘data.frame’: 1940647 obs. of 21 variables:
str(jul_to_sep)
## 'data.frame':    1940647 obs. of  21 variables:
##  $ ride_id           : chr  "0A1B623926EF4E16" "B2D5583A5A5E76EE" "6F264597DDBF427A" "379B58EAB20E8AA5" ...
##  $ rideable_type     : Factor w/ 3 levels "classic_bike",..: 2 1 1 1 3 3 1 1 1 1 ...
##  $ started_at        : POSIXlt, format: "2021-07-02 14:44:36" "2021-07-07 16:57:42" ...
##  $ start_date        : POSIXlt, format: "2021-07-02" "2021-07-07" ...
##  $ start_time        : chr  "14:44:36" "16:57:42" "11:30:55" "22:08:30" ...
##  $ ended_at          : POSIXlt, format: "2021-07-02 15:19:58" "2021-07-07 17:16:09" ...
##  $ end_date          : POSIXlt, format: "2021-07-02" "2021-07-07" ...
##  $ end_time          : chr  "15:19:58" "17:16:09" "11:48:45" "22:23:32" ...
##  $ start_station_name: chr  "Michigan Ave & Washington St" "California Ave & Cortez St" "Wabash Ave & 16th St" "California Ave & Cortez St" ...
##  $ start_station_id  : chr  "13001" "17660" "SL-012" "17660" ...
##  $ end_station_name  : chr  "Halsted St & North Branch St" "Wood St & Hubbard St" "Rush St & Hubbard St" "Carpenter St & Huron St" ...
##  $ end_station_id    : chr  "KA1504000117" "13432" "KA1503000044" "13196" ...
##  $ start_lat         : num  41.9 41.9 41.9 41.9 41.9 ...
##  $ start_lng         : num  -87.6 -87.7 -87.6 -87.7 -87.7 ...
##  $ end_lat           : num  41.9 41.9 41.9 41.9 41.9 ...
##  $ end_lng           : num  -87.6 -87.7 -87.6 -87.7 -87.7 ...
##  $ member_casual     : Factor w/ 2 levels "casual","member": 1 1 2 2 1 1 1 1 2 2 ...
##  $ ride_length_secs  : num  2122 1107 1070 902 1143 ...
##  $ ride_length_total : num  35.4 18.4 17.8 15 19.1 ...
##  $ weekday           : num  6 4 1 5 4 5 4 7 6 5 ...
##  $ weekday.          : Ord.factor w/ 7 levels "Sun"<"Mon"<"Tue"<..: 6 4 1 5 4 5 4 7 6 5 ...
DELETE RIDES OVER 24 HOURS (> 86400) 1940244 ROWS REMAIN.
jul_to_sep <- subset(jul_to_sep, ride_length_secs < 86400)
‘data.frame’: 1940244 obs. of 21 variables:
str(jul_to_sep)
## 'data.frame':    1940244 obs. of  21 variables:
##  $ ride_id           : chr  "0A1B623926EF4E16" "B2D5583A5A5E76EE" "6F264597DDBF427A" "379B58EAB20E8AA5" ...
##  $ rideable_type     : Factor w/ 3 levels "classic_bike",..: 2 1 1 1 3 3 1 1 1 1 ...
##  $ started_at        : POSIXlt, format: "2021-07-02 14:44:36" "2021-07-07 16:57:42" ...
##  $ start_date        : POSIXlt, format: "2021-07-02" "2021-07-07" ...
##  $ start_time        : chr  "14:44:36" "16:57:42" "11:30:55" "22:08:30" ...
##  $ ended_at          : POSIXlt, format: "2021-07-02 15:19:58" "2021-07-07 17:16:09" ...
##  $ end_date          : POSIXlt, format: "2021-07-02" "2021-07-07" ...
##  $ end_time          : chr  "15:19:58" "17:16:09" "11:48:45" "22:23:32" ...
##  $ start_station_name: chr  "Michigan Ave & Washington St" "California Ave & Cortez St" "Wabash Ave & 16th St" "California Ave & Cortez St" ...
##  $ start_station_id  : chr  "13001" "17660" "SL-012" "17660" ...
##  $ end_station_name  : chr  "Halsted St & North Branch St" "Wood St & Hubbard St" "Rush St & Hubbard St" "Carpenter St & Huron St" ...
##  $ end_station_id    : chr  "KA1504000117" "13432" "KA1503000044" "13196" ...
##  $ start_lat         : num  41.9 41.9 41.9 41.9 41.9 ...
##  $ start_lng         : num  -87.6 -87.7 -87.6 -87.7 -87.7 ...
##  $ end_lat           : num  41.9 41.9 41.9 41.9 41.9 ...
##  $ end_lng           : num  -87.6 -87.7 -87.6 -87.7 -87.7 ...
##  $ member_casual     : Factor w/ 2 levels "casual","member": 1 1 2 2 1 1 1 1 2 2 ...
##  $ ride_length_secs  : num  2122 1107 1070 902 1143 ...
##  $ ride_length_total : num  35.4 18.4 17.8 15 19.1 ...
##  $ weekday           : num  6 4 1 5 4 5 4 7 6 5 ...
##  $ weekday.          : Ord.factor w/ 7 levels "Sun"<"Mon"<"Tue"<..: 6 4 1 5 4 5 4 7 6 5 ...

SORT DATA FRAME BY DATE AND TIMES.

jul_to_sep <- jul_to_sep %>% arrange(ymd_hms(jul_to_sep$started_at))

CREATE NEW DATA FRAME (jul_to_sep_v2) FROM DATA FRAME (jul_to_sep).

jul_to_sep_v2 <- jul_to_sep[c('rideable_type', 'started_at', 'start_date', 'member_casual', 'ride_length_secs', 'ride_length_total', 'weekday', 'weekday.')]

DESCRIPTIVE ANALYSIS ON RIDE LENGTH.

MINIMUM TRIP TIME.
min(jul_to_sep_v2$ride_length_secs)
## [1] 121
MIDDLE VALUE IN JUL TO SEP DATASET.
median(jul_to_sep_v2$ride_length_secs)
## [1] 787
MAXIMUM TRIP TIME.
max(jul_to_sep_v2$ride_length_secs)
## [1] 86362
AVERAGE TRIP.
mean(jul_to_sep_v2$ride_length_secs)
## [1] 1256.998
THE DIFFERENCE BETWEEN MAXIMUM AND MINIMUM TRIP.
range(jul_to_sep_v2$ride_length_secs)
## [1]   121 86362
DIFFERENCE BETWEEN THE FIRST QUARTILE AND THIRD QUARTILE OF JUL TO SEP.
IQR(jul_to_sep_v2$ride_length_secs)
## [1] 931

COMPARE MEMBERS AND CASUAL RIDERS.

MEMBERS Vs CASUAL MINIMUM TRIP TIME.
aggregate(jul_to_sep_v2$ride_length_secs ~ jul_to_sep_v2$member_casual, FUN = min)
##   jul_to_sep_v2$member_casual jul_to_sep_v2$ride_length_secs
## 1                      casual                            121
## 2                      member                            121
MEMBERS Vs CASUAL MIDDLE VALUE IN JUL TO SEP DATASET.
aggregate(jul_to_sep_v2$ride_length_secs ~ jul_to_sep_v2$member_casual, FUN = median)
##   jul_to_sep_v2$member_casual jul_to_sep_v2$ride_length_secs
## 1                      casual                           1006
## 2                      member                            622
MEMBERS Vs CASUAL MAXIMUM TRIP TIME.
aggregate(jul_to_sep_v2$ride_length_secs ~ jul_to_sep_v2$member_casual, FUN = max)
##   jul_to_sep_v2$member_casual jul_to_sep_v2$ride_length_secs
## 1                      casual                          86362
## 2                      member                          80861
MEMBERS Vs CASUAL AVERAGE TRIP.
aggregate(jul_to_sep_v2$ride_length_secs ~ jul_to_sep_v2$member_casual, FUN = mean)
##   jul_to_sep_v2$member_casual jul_to_sep_v2$ride_length_secs
## 1                      casual                      1667.5600
## 2                      member                       832.6465
AVERAGE RIDE TIME FOR EACH DAY FOR MEMBERS Vs CASUAL RIDERS.
aggregate(jul_to_sep_v2$ride_length_total ~ jul_to_sep_v2$member_casual + jul_to_sep_v2$weekday., FUN = mean)
##    jul_to_sep_v2$member_casual jul_to_sep_v2$weekday.
## 1                       casual                    Sun
## 2                       member                    Sun
## 3                       casual                    Mon
## 4                       member                    Mon
## 5                       casual                    Tue
## 6                       member                    Tue
## 7                       casual                    Wed
## 8                       member                    Wed
## 9                       casual                    Thu
## 10                      member                    Thu
## 11                      casual                    Fri
## 12                      member                    Fri
## 13                      casual                    Sat
## 14                      member                    Sat
##    jul_to_sep_v2$ride_length_total
## 1                         31.47539
## 2                         15.98895
## 3                         28.79893
## 4                         13.53092
## 5                         24.88202
## 6                         12.77747
## 7                         24.19613
## 8                         13.03934
## 9                         24.43612
## 10                        13.09269
## 11                        26.12585
## 12                        13.60772
## 13                        30.08967
## 14                        15.65941
jul_to_sep_v2 %>% 
  group_by(member_casual, weekday.) %>%  
  summarise(number_of_rides = n(),average_duration = mean(ride_length_total)) %>%       
  arrange(member_casual, weekday.)  
## `summarise()` has grouped output by 'member_casual'. You can override using the
## `.groups` argument.
## # A tibble: 14 × 4
## # Groups:   member_casual [2]
##    member_casual weekday. number_of_rides average_duration
##    <fct>         <ord>              <int>            <dbl>
##  1 casual        Sun               186951             31.5
##  2 casual        Mon               112942             28.8
##  3 casual        Tue                97025             24.9
##  4 casual        Wed               103621             24.2
##  5 casual        Thu               122207             24.4
##  6 casual        Fri               144202             26.1
##  7 casual        Sat               219196             30.1
##  8 member        Sun               116154             16.0
##  9 member        Mon               127806             13.5
## 10 member        Tue               138458             12.8
## 11 member        Wed               145550             13.0
## 12 member        Thu               156979             13.1
## 13 member        Fri               137994             13.6
## 14 member        Sat               131159             15.7

DATA VISUALIZATIONS AND SUMMARY.

COUNT ‘member_casual’ FOR PIE CHART.
CREATE DATA FRAME FOR PIE CHART.
MEMBER Vs CASUAL JUL TO SEP PIE CHART.
jul_to_sep_pi <- jul_to_sep_v2%>% 
  group_by(member_casual) %>% 
  summarise(number_of_rides = n())

jul_to_sep_pie <- data.frame(group = c("casual", "member"), value = c(986144, 954100))

ggplot(jul_to_sep_pie, aes(x = "", y = value, fill = group)) +
  geom_col(width = 1) +
  coord_polar("y") +
  geom_text(aes(label = round(value, 3)), position = position_stack(vjust = 0.5))+
  scale_fill_brewer(palette = "Spectral")+
  labs(title = "July to September Daily Totals")+
  theme_economist()

MEMBER Vs CASUAL JUL TO SEP DAILY TOTALS.
jul_to_sep_v2 %>% 
  group_by(member_casual, weekday.) %>% 
  summarise(number_of_rides = n()) %>% 
  arrange(member_casual, weekday.)  %>% 
  ggplot(aes(x = weekday., y = number_of_rides, fill = member_casual)) +
  scale_fill_brewer(palette = "Spectral")+
  labs(title = "Member Vs Casual,July to September 2021 Daily Totals.",
       x = "Weekday",
       y = "Number of Rides")+
  geom_col(position = "dodge")+
  theme_economist()
## `summarise()` has grouped output by 'member_casual'. You can override using the
## `.groups` argument.

SUMMARY MEMBER Vs CASUAL JUL TO SEP DAILY TOTALS.
jul_to_sep_v2 %>% select(!c(ride_length_secs, ride_length_total ,started_at, start_date, weekday, rideable_type)) %>% tbl_summary(by = member_casual)
Characteristic casual, N = 986,1441 member, N = 954,1001
weekday.
    Sun 186,951 (19%) 116,154 (12%)
    Mon 112,942 (11%) 127,806 (13%)
    Tue 97,025 (9.8%) 138,458 (15%)
    Wed 103,621 (11%) 145,550 (15%)
    Thu 122,207 (12%) 156,979 (16%)
    Fri 144,202 (15%) 137,994 (14%)
    Sat 219,196 (22%) 131,159 (14%)
1 n (%)
MEMBER Vs CASUAL JUL TO SEP RIDEABLE TYPE.
jul_to_sep_v2 %>% 
  group_by(member_casual, rideable_type) %>% 
  summarise(number_of_rides = n()) %>% 
  arrange(member_casual, rideable_type)  %>% 
  ggplot(aes(x = rideable_type, y = number_of_rides, fill = member_casual)) +
  scale_fill_brewer(palette = "Spectral")+
  labs(title = "July to September 2021 Rideable Type.",
       x = "Rideable Type",
       y = "Number of Bikes")+
  geom_col(position = "dodge")+
  theme_economist()
## `summarise()` has grouped output by 'member_casual'. You can override using the
## `.groups` argument.

SUMMARY MEMBER Vs CASUAL JUL TO SEP RIDEABLE TYPE.
jul_to_sep_v2 %>% select(!c(ride_length_secs,ride_length_total ,started_at, start_date, weekday, weekday.)) %>% tbl_summary(by = member_casual)
Characteristic casual, N = 986,1441 member, N = 954,1001
rideable_type
    classic_bike 652,599 (66%) 780,193 (82%)
    docked_bike 136,381 (14%) 0 (0%)
    electric_bike 197,164 (20%) 173,907 (18%)
1 n (%)
RIDEABLE TYPE JUL TO SEP DAILY TOTALS.
jul_to_sep_v2 %>% 
  group_by(weekday., rideable_type) %>% 
  summarise(number_of_rides = n()) %>% 
  arrange(weekday.)  %>% 
  ggplot(aes(x = weekday., y = number_of_rides, fill = rideable_type)) +
  scale_fill_brewer(palette = "Spectral")+
  facet_wrap(~rideable_type)+
  labs(title = "Rideable Type July to September 2021 Daily Totals.",
       x = "Day Of Week",
       y = "Number of Bikes")+
  geom_col(position = "dodge")+
  theme_economist()
## `summarise()` has grouped output by 'weekday.'. You can override using the
## `.groups` argument.

RIDEABLE TYPE JUL TO SEP DAILY TOTALS.
jul_to_sep_v2 %>% 
  group_by(weekday., rideable_type) %>% 
  summarise(number_of_rides = n()) %>% 
  arrange(weekday.)  %>% 
  ggplot(aes(x = weekday., y = number_of_rides, fill = rideable_type)) +
  scale_fill_brewer(palette = "Spectral")+
  labs(title = "Rideable Type July to September 2021 Daily Totals.",
       x = "Day Of Week",
       y = "Number of Bikes")+
  geom_col(position = "dodge")+
  theme_economist()
## `summarise()` has grouped output by 'weekday.'. You can override using the
## `.groups` argument.

SUMMARY RIDEABLE TYPE JUL TO SEP DAILY TOTALS.
jul_to_sep_v2 %>% select(!c(ride_length_secs,ride_length_total ,started_at, start_date, weekday, member_casual )) %>% tbl_summary(by = rideable_type)
Characteristic classic_bike, N = 1,432,7921 docked_bike, N = 136,3811 electric_bike, N = 371,0711
weekday.
    Sun 224,745 (16%) 28,793 (21%) 49,567 (13%)
    Mon 174,916 (12%) 16,716 (12%) 49,116 (13%)
    Tue 170,718 (12%) 11,989 (8.8%) 52,776 (14%)
    Wed 185,940 (13%) 12,189 (8.9%) 51,042 (14%)
    Thu 209,184 (15%) 14,120 (10%) 55,882 (15%)
    Fri 205,857 (14%) 19,382 (14%) 56,957 (15%)
    Sat 261,432 (18%) 33,192 (24%) 55,731 (15%)
1 n (%)
RIDEABLE TYPE JUL TO SEP TOTALS.
jul_to_sep_v2 %>% 
  group_by(rideable_type) %>% 
  summarise(number_of_rides = n()) %>% 
  arrange(rideable_type)  %>% 
  ggplot(aes(x = rideable_type, y = number_of_rides, fill = rideable_type)) +
  scale_fill_brewer(palette = "Spectral")+
  labs(title = "Rideable Type July to September 2021 Totals.",
       x = "Rideable Type",
       y = "Number of Bikes")+
  geom_col(position = "dodge")+
  theme_economist()

SUMMARY RIDEABLE TYPE JUL TO SEP TOTALS.
jul_to_sep_v2 %>% select(!c(ride_length_secs,ride_length_total ,started_at, start_date, weekday, weekday., member_casual)) %>% tbl_summary()
Characteristic N = 1,940,2441
rideable_type
    classic_bike 1,432,792 (74%)
    docked_bike 136,381 (7.0%)
    electric_bike 371,071 (19%)
1 n (%)

MORE TO LEARN.

SESSION INFORMATION.

sessionInfo()
## R version 4.2.3 (2023-03-15 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 22621)
## 
## Matrix products: default
## 
## locale:
## [1] LC_COLLATE=English_United Kingdom.utf8 
## [2] LC_CTYPE=English_United Kingdom.utf8   
## [3] LC_MONETARY=English_United Kingdom.utf8
## [4] LC_NUMERIC=C                           
## [5] LC_TIME=English_United Kingdom.utf8    
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] ggthemes_4.2.4     RColorBrewer_1.1-3 scales_1.2.1       gtsummary_1.7.1   
##  [5] conflicted_1.2.0   janitor_2.2.0      skimr_2.1.5        here_1.0.1        
##  [9] hms_1.1.3          data.table_1.14.8  lubridate_1.9.2    forcats_1.0.0     
## [13] stringr_1.5.0      dplyr_1.1.2        purrr_1.0.1        readr_2.1.4       
## [17] tidyr_1.3.0        tibble_3.2.1       ggplot2_3.4.2      tidyverse_2.0.0   
## 
## loaded via a namespace (and not attached):
##  [1] rprojroot_2.0.3      digest_0.6.29        utf8_1.2.2          
##  [4] R6_2.5.1             repr_1.1.6           evaluate_0.16       
##  [7] highr_0.9            pillar_1.9.0         rlang_1.1.0         
## [10] rstudioapi_0.14      jquerylib_0.1.4      rmarkdown_2.22      
## [13] labeling_0.4.2       munsell_0.5.0        compiler_4.2.3      
## [16] xfun_0.38            pkgconfig_2.0.3      base64enc_0.1-3     
## [19] htmltools_0.5.5      tidyselect_1.2.0     fansi_1.0.3         
## [22] crayon_1.5.1         tzdb_0.3.0           withr_2.5.0         
## [25] commonmark_1.9.0     grid_4.2.3           jsonlite_1.8.4      
## [28] gtable_0.3.0         lifecycle_1.0.3      magrittr_2.0.3      
## [31] cli_3.6.1            stringi_1.7.8        cachem_1.0.6        
## [34] farver_2.1.1         broom.helpers_1.13.0 snakecase_0.11.0    
## [37] xml2_1.3.3           bslib_0.4.0          generics_0.1.3      
## [40] vctrs_0.6.1          tools_4.2.3          glue_1.6.2          
## [43] markdown_1.5         fastmap_1.1.0        yaml_2.3.5          
## [46] timechange_0.1.1     colorspace_2.0-3     gt_0.9.0            
## [49] memoise_2.0.1        knitr_1.39           sass_0.4.6