INSTALL PACKAGES.
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.2 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.2 ✔ tibble 3.2.1
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
##
## Attaching package: 'data.table'
##
## The following objects are masked from 'package:lubridate':
##
## hour, isoweek, mday, minute, month, quarter, second, wday, week,
## yday, year
##
## The following objects are masked from 'package:dplyr':
##
## between, first, last
##
## The following object is masked from 'package:purrr':
##
## transpose
##
## Attaching package: 'hms'
##
## The following object is masked from 'package:lubridate':
##
## hms
## here() starts at C:/Users/SWill/Documents/JUL TO SEP CYCLISTIC BIKES
library(skimr)
library(janitor)
##
## Attaching package: 'janitor'
##
## The following objects are masked from 'package:stats':
##
## chisq.test, fisher.test
library(conflicted)
library(gtsummary)
library(scales)
library(RColorBrewer)
library(ggthemes)
SCIENTIFIC NOTATION RUINING YOUR GGPLOT CHARTS? TRY THE LINE OF CODE
BELOW.
USE ‘getwd()’ FUNCTION TO DISPLAY WORKING DIRECTORY.
## [1] "C:/Users/SWill/Documents/JUL TO SEP CYCLISTIC BIKES"
USE ‘setwd()’ FUNCTION TO SET WORKING DIRECTORY TO SIMPLIFY CALLS TO
DATA.
setwd("C:/Users/SWill/Documents/JUL TO SEP CYCLISTIC BIKES")
USE ‘spec_csv()’ FUNCTION TO CHECK THE DATA TYPES BEFORE READING THE
DATA.
NOTICE ‘started_at’ AND ‘ended_at’ COLUMNS ARE ‘datetime’ DATA
TYPE.
spec_csv("C:/Users/SWill/Desktop/CYCLISTIC BIKES/divvy-trip-data 01-12/202107-divvy-tripdata.csv")
## cols(
## ride_id = col_character(),
## rideable_type = col_character(),
## started_at = col_datetime(format = ""),
## ended_at = col_datetime(format = ""),
## start_station_name = col_character(),
## start_station_id = col_character(),
## end_station_name = col_character(),
## end_station_id = col_character(),
## start_lat = col_double(),
## start_lng = col_double(),
## end_lat = col_double(),
## end_lng = col_double(),
## member_casual = col_character()
## )
spec_csv("C:/Users/SWill/Desktop/CYCLISTIC BIKES/divvy-trip-data 01-12/202108-divvy-tripdata.csv")
## cols(
## ride_id = col_character(),
## rideable_type = col_character(),
## started_at = col_datetime(format = ""),
## ended_at = col_datetime(format = ""),
## start_station_name = col_character(),
## start_station_id = col_character(),
## end_station_name = col_character(),
## end_station_id = col_character(),
## start_lat = col_double(),
## start_lng = col_double(),
## end_lat = col_double(),
## end_lng = col_double(),
## member_casual = col_character()
## )
spec_csv("C:/Users/SWill/Desktop/CYCLISTIC BIKES/divvy-trip-data 01-12/202109-divvy-tripdata.csv")
## cols(
## ride_id = col_character(),
## rideable_type = col_character(),
## started_at = col_datetime(format = ""),
## ended_at = col_datetime(format = ""),
## start_station_name = col_character(),
## start_station_id = col_character(),
## end_station_name = col_character(),
## end_station_id = col_character(),
## start_lat = col_double(),
## start_lng = col_double(),
## end_lat = col_double(),
## end_lng = col_double(),
## member_casual = col_character()
## )
UPLOAD DATASETS divvy-trip-data.csv FILES.
df_07 <- read.csv("C:/Users/SWill/Desktop/CYCLISTIC BIKES/divvy-trip-data 01-12/202107-divvy-tripdata.csv")
df_08 <- read.csv("C:/Users/SWill/Desktop/CYCLISTIC BIKES/divvy-trip-data 01-12/202108-divvy-tripdata.csv")
df_09 <- read.csv("C:/Users/SWill/Desktop/CYCLISTIC BIKES/divvy-trip-data 01-12/202109-divvy-tripdata.csv")
USE ‘bind_rows()’ FUNCTION TO STACK DATA FRAMES INTO ONE BIG DATA
FRAME.
jul_to_sep <- bind_rows(df_07,df_08,df_09)
CHECK COLUMNS.
## [1] "ride_id" "rideable_type" "started_at"
## [4] "ended_at" "start_station_name" "start_station_id"
## [7] "end_station_name" "end_station_id" "start_lat"
## [10] "start_lng" "end_lat" "end_lng"
## [13] "member_casual"
USE ‘glimpse()’ FUNCTION TO GET A BETTER UNDERSTANDING OF THE
DATA.
Rows: 2,382,909 Columns: 13
COLUMNS ‘started_at’ AND ‘ended_at’ ARE NOW ‘character’ DATA
TYPE.
COLUMNS ‘end_station_name’ AND ‘end_station_id’ HAVE BLANK ROWS THAT
NEED TO BE REMOVED.
## Rows: 2,382,909
## Columns: 13
## $ ride_id <chr> "0A1B623926EF4E16", "B2D5583A5A5E76EE", "6F264597DD…
## $ rideable_type <chr> "docked_bike", "classic_bike", "classic_bike", "cla…
## $ started_at <chr> "2021-07-02 14:44:36", "2021-07-07 16:57:42", "2021…
## $ ended_at <chr> "2021-07-02 15:19:58", "2021-07-07 17:16:09", "2021…
## $ start_station_name <chr> "Michigan Ave & Washington St", "California Ave & C…
## $ start_station_id <chr> "13001", "17660", "SL-012", "17660", "17660", "1766…
## $ end_station_name <chr> "Halsted St & North Branch St", "Wood St & Hubbard …
## $ end_station_id <chr> "KA1504000117", "13432", "KA1503000044", "13196", "…
## $ start_lat <dbl> 41.88398, 41.90036, 41.86038, 41.90036, 41.90035, 4…
## $ start_lng <dbl> -87.62468, -87.69670, -87.62581, -87.69670, -87.696…
## $ end_lat <dbl> 41.89937, 41.88990, 41.89017, 41.89456, 41.88659, 4…
## $ end_lng <dbl> -87.64848, -87.67147, -87.62619, -87.65345, -87.658…
## $ member_casual <chr> "casual", "casual", "member", "member", "casual", "…
USE ‘str()’ FUNCTION TO SEE LIST OF COLUMNS AND DATA TYPES NUMERIC,
CHARACTER, DATETIME ETC.
‘data.frame’: 2382909 obs. of 13 variables:
## 'data.frame': 2382909 obs. of 13 variables:
## $ ride_id : chr "0A1B623926EF4E16" "B2D5583A5A5E76EE" "6F264597DDBF427A" "379B58EAB20E8AA5" ...
## $ rideable_type : chr "docked_bike" "classic_bike" "classic_bike" "classic_bike" ...
## $ started_at : chr "2021-07-02 14:44:36" "2021-07-07 16:57:42" "2021-07-25 11:30:55" "2021-07-08 22:08:30" ...
## $ ended_at : chr "2021-07-02 15:19:58" "2021-07-07 17:16:09" "2021-07-25 11:48:45" "2021-07-08 22:23:32" ...
## $ start_station_name: chr "Michigan Ave & Washington St" "California Ave & Cortez St" "Wabash Ave & 16th St" "California Ave & Cortez St" ...
## $ start_station_id : chr "13001" "17660" "SL-012" "17660" ...
## $ end_station_name : chr "Halsted St & North Branch St" "Wood St & Hubbard St" "Rush St & Hubbard St" "Carpenter St & Huron St" ...
## $ end_station_id : chr "KA1504000117" "13432" "KA1503000044" "13196" ...
## $ start_lat : num 41.9 41.9 41.9 41.9 41.9 ...
## $ start_lng : num -87.6 -87.7 -87.6 -87.7 -87.7 ...
## $ end_lat : num 41.9 41.9 41.9 41.9 41.9 ...
## $ end_lng : num -87.6 -87.7 -87.6 -87.7 -87.7 ...
## $ member_casual : chr "casual" "casual" "member" "member" ...
USE TIDYR TO SEPARATE “started_at” COLUMN TO A NEW COLUMN CALLED
“start_date” and “start_time”.
USE TIDYR TO SEPARATE “ended_at” COLUMN TO A NEW COLUMN CALLED
“end_date” and “end_time”.
jul_to_sep <- tidyr::separate(jul_to_sep, started_at, c("start_date", "start_time"), sep = " ", remove = FALSE)
jul_to_sep <- tidyr::separate(jul_to_sep, ended_at, c("end_date", "end_time"), sep = " ", remove = FALSE)
CHECK NEW COLUMNS.
## [1] "ride_id" "rideable_type" "started_at"
## [4] "start_date" "start_time" "ended_at"
## [7] "end_date" "end_time" "start_station_name"
## [10] "start_station_id" "end_station_name" "end_station_id"
## [13] "start_lat" "start_lng" "end_lat"
## [16] "end_lng" "member_casual"
‘data.frame’: 2382909 obs. of 17 variables:
## 'data.frame': 2382909 obs. of 17 variables:
## $ ride_id : chr "0A1B623926EF4E16" "B2D5583A5A5E76EE" "6F264597DDBF427A" "379B58EAB20E8AA5" ...
## $ rideable_type : chr "docked_bike" "classic_bike" "classic_bike" "classic_bike" ...
## $ started_at : chr "2021-07-02 14:44:36" "2021-07-07 16:57:42" "2021-07-25 11:30:55" "2021-07-08 22:08:30" ...
## $ start_date : chr "2021-07-02" "2021-07-07" "2021-07-25" "2021-07-08" ...
## $ start_time : chr "14:44:36" "16:57:42" "11:30:55" "22:08:30" ...
## $ ended_at : chr "2021-07-02 15:19:58" "2021-07-07 17:16:09" "2021-07-25 11:48:45" "2021-07-08 22:23:32" ...
## $ end_date : chr "2021-07-02" "2021-07-07" "2021-07-25" "2021-07-08" ...
## $ end_time : chr "15:19:58" "17:16:09" "11:48:45" "22:23:32" ...
## $ start_station_name: chr "Michigan Ave & Washington St" "California Ave & Cortez St" "Wabash Ave & 16th St" "California Ave & Cortez St" ...
## $ start_station_id : chr "13001" "17660" "SL-012" "17660" ...
## $ end_station_name : chr "Halsted St & North Branch St" "Wood St & Hubbard St" "Rush St & Hubbard St" "Carpenter St & Huron St" ...
## $ end_station_id : chr "KA1504000117" "13432" "KA1503000044" "13196" ...
## $ start_lat : num 41.9 41.9 41.9 41.9 41.9 ...
## $ start_lng : num -87.6 -87.7 -87.6 -87.7 -87.7 ...
## $ end_lat : num 41.9 41.9 41.9 41.9 41.9 ...
## $ end_lng : num -87.6 -87.7 -87.6 -87.7 -87.7 ...
## $ member_casual : chr "casual" "casual" "member" "member" ...
COLUMN RIDEABLE TYPE.
EXPLORE CHARACTER VARIABLE TYPE IN “rideable_type” COLUMN.
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(jul_to_sep$rideable_type)
## [1] "character"
USE ‘unique ()’ FUNCTION TO FIND INDIVIDUAL VALUES IN COLUMN.
unique(jul_to_sep$rideable_type)
## [1] "docked_bike" "classic_bike" "electric_bike"
HOW MANY OBSERVATIONS FALL UNDER EACH USER TYPE?
table(jul_to_sep$rideable_type)
##
## classic_bike docked_bike electric_bike
## 1472226 138100 772583
sort(table(jul_to_sep$rideable_type), decreasing = TRUE)
##
## classic_bike electric_bike docked_bike
## 1472226 772583 138100
BAR PLOT OF DATA DISTRIBUTION OF ‘rideable_type’ COLUMN.
barplot(sort(table(jul_to_sep$rideable_type), decreasing = TRUE))

CHANGE VARIABLE FROM CHARACTER TO FACTOR.
jul_to_sep$rideable_type <- as.factor(jul_to_sep$rideable_type)
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(jul_to_sep$rideable_type)
## [1] "factor"
USE ‘levels’ FUNCTION TO CHECK FACTOR.
levels(jul_to_sep$rideable_type)
## [1] "classic_bike" "docked_bike" "electric_bike"
NOTE RIDEABLE TYPE IS NOW A FACTOR.
## Rows: 2,382,909
## Columns: 17
## $ ride_id <chr> "0A1B623926EF4E16", "B2D5583A5A5E76EE", "6F264597DD…
## $ rideable_type <fct> docked_bike, classic_bike, classic_bike, classic_bi…
## $ started_at <chr> "2021-07-02 14:44:36", "2021-07-07 16:57:42", "2021…
## $ start_date <chr> "2021-07-02", "2021-07-07", "2021-07-25", "2021-07-…
## $ start_time <chr> "14:44:36", "16:57:42", "11:30:55", "22:08:30", "16…
## $ ended_at <chr> "2021-07-02 15:19:58", "2021-07-07 17:16:09", "2021…
## $ end_date <chr> "2021-07-02", "2021-07-07", "2021-07-25", "2021-07-…
## $ end_time <chr> "15:19:58", "17:16:09", "11:48:45", "22:23:32", "16…
## $ start_station_name <chr> "Michigan Ave & Washington St", "California Ave & C…
## $ start_station_id <chr> "13001", "17660", "SL-012", "17660", "17660", "1766…
## $ end_station_name <chr> "Halsted St & North Branch St", "Wood St & Hubbard …
## $ end_station_id <chr> "KA1504000117", "13432", "KA1503000044", "13196", "…
## $ start_lat <dbl> 41.88398, 41.90036, 41.86038, 41.90036, 41.90035, 4…
## $ start_lng <dbl> -87.62468, -87.69670, -87.62581, -87.69670, -87.696…
## $ end_lat <dbl> 41.89937, 41.88990, 41.89017, 41.89456, 41.88659, 4…
## $ end_lng <dbl> -87.64848, -87.67147, -87.62619, -87.65345, -87.658…
## $ member_casual <chr> "casual", "casual", "member", "member", "casual", "…
COLUMN START_STATION_NAME START_STATION_ID END_STATION_NAME AND
END_STATION_ID.
EXPLORE…CHARACTER VARIABLE TYPE IN “start_staion_name” AND
“end_staion_name”
REPLACE ALL BLANK VALUES IN “start_station_name” COLUMN WITH NA
VALUES.
jul_to_sep$start_station_name[jul_to_sep$start_station_name==""] <- NA
REPLACE ALL BLANK VALUES IN “start_station_id” COLUMN WITH NA
VALUES.
jul_to_sep$start_station_id[jul_to_sep$start_station_id==""] <- NA
REPLACE ALL BLANK VALUES IN “end_station_name” COLUMN WITH NA
VALUES.
jul_to_sep$end_station_name[jul_to_sep$end_station_name==""] <- NA
REPLACE ALL BLANK VALUES IN “end_station_id” COLUMN WITH NA
VALUES.
jul_to_sep$end_station_id[jul_to_sep$end_station_id==""] <- NA
## Rows: 2,382,909
## Columns: 17
## $ ride_id <chr> "0A1B623926EF4E16", "B2D5583A5A5E76EE", "6F264597DD…
## $ rideable_type <fct> docked_bike, classic_bike, classic_bike, classic_bi…
## $ started_at <dttm> 2021-07-02 14:44:36, 2021-07-07 16:57:42, 2021-07-…
## $ start_date <dttm> 2021-07-02, 2021-07-07, 2021-07-25, 2021-07-08, 20…
## $ start_time <chr> "14:44:36", "16:57:42", "11:30:55", "22:08:30", "16…
## $ ended_at <dttm> 2021-07-02 15:19:58, 2021-07-07 17:16:09, 2021-07-…
## $ end_date <dttm> 2021-07-02, 2021-07-07, 2021-07-25, 2021-07-08, 20…
## $ end_time <chr> "15:19:58", "17:16:09", "11:48:45", "22:23:32", "16…
## $ start_station_name <chr> "Michigan Ave & Washington St", "California Ave & C…
## $ start_station_id <chr> "13001", "17660", "SL-012", "17660", "17660", "1766…
## $ end_station_name <chr> "Halsted St & North Branch St", "Wood St & Hubbard …
## $ end_station_id <chr> "KA1504000117", "13432", "KA1503000044", "13196", "…
## $ start_lat <dbl> 41.88398, 41.90036, 41.86038, 41.90036, 41.90035, 4…
## $ start_lng <dbl> -87.62468, -87.69670, -87.62581, -87.69670, -87.696…
## $ end_lat <dbl> 41.89937, 41.88990, 41.89017, 41.89456, 41.88659, 4…
## $ end_lng <dbl> -87.64848, -87.67147, -87.62619, -87.65345, -87.658…
## $ member_casual <chr> "casual", "casual", "member", "member", "casual", "…
REMOVE ROWS WITH NA VALUES IN ALL COLUMNS.
jul_to_sep <- jul_to_sep %>% drop_na()
‘data.frame’: 1987880 obs. of 17 variables:
## 'data.frame': 1987880 obs. of 17 variables:
## $ ride_id : chr "0A1B623926EF4E16" "B2D5583A5A5E76EE" "6F264597DDBF427A" "379B58EAB20E8AA5" ...
## $ rideable_type : Factor w/ 3 levels "classic_bike",..: 2 1 1 1 3 3 1 1 1 1 ...
## $ started_at : POSIXlt, format: "2021-07-02 14:44:36" "2021-07-07 16:57:42" ...
## $ start_date : POSIXlt, format: "2021-07-02" "2021-07-07" ...
## $ start_time : chr "14:44:36" "16:57:42" "11:30:55" "22:08:30" ...
## $ ended_at : POSIXlt, format: "2021-07-02 15:19:58" "2021-07-07 17:16:09" ...
## $ end_date : POSIXlt, format: "2021-07-02" "2021-07-07" ...
## $ end_time : chr "15:19:58" "17:16:09" "11:48:45" "22:23:32" ...
## $ start_station_name: chr "Michigan Ave & Washington St" "California Ave & Cortez St" "Wabash Ave & 16th St" "California Ave & Cortez St" ...
## $ start_station_id : chr "13001" "17660" "SL-012" "17660" ...
## $ end_station_name : chr "Halsted St & North Branch St" "Wood St & Hubbard St" "Rush St & Hubbard St" "Carpenter St & Huron St" ...
## $ end_station_id : chr "KA1504000117" "13432" "KA1503000044" "13196" ...
## $ start_lat : num 41.9 41.9 41.9 41.9 41.9 ...
## $ start_lng : num -87.6 -87.7 -87.6 -87.7 -87.7 ...
## $ end_lat : num 41.9 41.9 41.9 41.9 41.9 ...
## $ end_lng : num -87.6 -87.7 -87.6 -87.7 -87.7 ...
## $ member_casual : chr "casual" "casual" "member" "member" ...
COLUMN MEMBER_CASUAL.
EXPLORE…CHARACTER VARIABLE TYPE IN “member_casual” COLUMN.
USE ‘unique ()’ FUNCTION TO FIND INDIVIDUAL VALUES IN COLUMN.
unique(jul_to_sep$member_casual)
## [1] "casual" "member"
HOW MANY OBSERVATIONS FALL UNDER EACH USER TYPE?
table(jul_to_sep$member_casual)
##
## casual member
## 1003822 984058
sort(table(jul_to_sep$member_casual), decreasing = TRUE)
##
## casual member
## 1003822 984058
BAR PLOT OF DATA DISTRIBUTION OF ‘member_casual’ COLUMN.
barplot(sort(table(jul_to_sep$member_casual), decreasing = TRUE))

CHANGE VARIABLE FROM CHARACTER TO FACTOR.
jul_to_sep$member_casual <- as.factor(jul_to_sep$member_casual)
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(jul_to_sep$member_casual)
## [1] "factor"
USE ‘levels’ FUNCTION TO CHECK FACTOR.
levels(jul_to_sep$member_casual)
## [1] "casual" "member"
NOTE MEMBER CASUAL IS NOW A FACTOR.
## Rows: 1,987,880
## Columns: 17
## $ ride_id <chr> "0A1B623926EF4E16", "B2D5583A5A5E76EE", "6F264597DD…
## $ rideable_type <fct> docked_bike, classic_bike, classic_bike, classic_bi…
## $ started_at <dttm> 2021-07-02 14:44:36, 2021-07-07 16:57:42, 2021-07-…
## $ start_date <dttm> 2021-07-02, 2021-07-07, 2021-07-25, 2021-07-08, 20…
## $ start_time <chr> "14:44:36", "16:57:42", "11:30:55", "22:08:30", "16…
## $ ended_at <dttm> 2021-07-02 15:19:58, 2021-07-07 17:16:09, 2021-07-…
## $ end_date <dttm> 2021-07-02, 2021-07-07, 2021-07-25, 2021-07-08, 20…
## $ end_time <chr> "15:19:58", "17:16:09", "11:48:45", "22:23:32", "16…
## $ start_station_name <chr> "Michigan Ave & Washington St", "California Ave & C…
## $ start_station_id <chr> "13001", "17660", "SL-012", "17660", "17660", "1766…
## $ end_station_name <chr> "Halsted St & North Branch St", "Wood St & Hubbard …
## $ end_station_id <chr> "KA1504000117", "13432", "KA1503000044", "13196", "…
## $ start_lat <dbl> 41.88398, 41.90036, 41.86038, 41.90036, 41.90035, 4…
## $ start_lng <dbl> -87.62468, -87.69670, -87.62581, -87.69670, -87.696…
## $ end_lat <dbl> 41.89937, 41.88990, 41.89017, 41.89456, 41.88659, 4…
## $ end_lng <dbl> -87.64848, -87.67147, -87.62619, -87.65345, -87.658…
## $ member_casual <fct> casual, casual, member, member, casual, casual, cas…
ADD COLUMN FOR DAY OF WEEK.
NUMERIC VALUE DAY OF WEEK SUNDAY = 1 MONDAY = 2 TUESDAY = 3 ETC,
ETC…
jul_to_sep$weekday <- lubridate::wday(jul_to_sep$start_date)
CHARACTER DAY OF WEEK USING ABBREVIATED LABELS MON,TUE,WED ETC
ETC…
jul_to_sep$weekday. <- lubridate::wday(jul_to_sep$start_date, label = TRUE)
CHANGE ‘weekday’ DATA TYPE.
jul_to_sep$weekday. <- as.factor(jul_to_sep$weekday.)
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(jul_to_sep$weekday.)
## [1] "ordered" "factor"
USE ‘levels’ FUNCTION TO CHECK FACTOR.
levels(jul_to_sep$weekday.)
## [1] "Sun" "Mon" "Tue" "Wed" "Thu" "Fri" "Sat"
NOTE WEEKDAY. IS AN ORDERED FACTOR.
## Rows: 1,987,880
## Columns: 21
## $ ride_id <chr> "0A1B623926EF4E16", "B2D5583A5A5E76EE", "6F264597DD…
## $ rideable_type <fct> docked_bike, classic_bike, classic_bike, classic_bi…
## $ started_at <dttm> 2021-07-02 14:44:36, 2021-07-07 16:57:42, 2021-07-…
## $ start_date <dttm> 2021-07-02, 2021-07-07, 2021-07-25, 2021-07-08, 20…
## $ start_time <chr> "14:44:36", "16:57:42", "11:30:55", "22:08:30", "16…
## $ ended_at <dttm> 2021-07-02 15:19:58, 2021-07-07 17:16:09, 2021-07-…
## $ end_date <dttm> 2021-07-02, 2021-07-07, 2021-07-25, 2021-07-08, 20…
## $ end_time <chr> "15:19:58", "17:16:09", "11:48:45", "22:23:32", "16…
## $ start_station_name <chr> "Michigan Ave & Washington St", "California Ave & C…
## $ start_station_id <chr> "13001", "17660", "SL-012", "17660", "17660", "1766…
## $ end_station_name <chr> "Halsted St & North Branch St", "Wood St & Hubbard …
## $ end_station_id <chr> "KA1504000117", "13432", "KA1503000044", "13196", "…
## $ start_lat <dbl> 41.88398, 41.90036, 41.86038, 41.90036, 41.90035, 4…
## $ start_lng <dbl> -87.62468, -87.69670, -87.62581, -87.69670, -87.696…
## $ end_lat <dbl> 41.89937, 41.88990, 41.89017, 41.89456, 41.88659, 4…
## $ end_lng <dbl> -87.64848, -87.67147, -87.62619, -87.65345, -87.658…
## $ member_casual <fct> casual, casual, member, member, casual, casual, cas…
## $ ride_length_secs <dbl> 2122, 1107, 1070, 902, 1143, 352, 718, 485, 1199, 8…
## $ ride_length_total <dbl> 35.366667, 18.450000, 17.833333, 15.033333, 19.0500…
## $ weekday <dbl> 6, 4, 1, 5, 4, 5, 4, 7, 6, 5, 2, 2, 6, 2, 4, 5, 6, …
## $ weekday. <ord> Fri, Wed, Sun, Thu, Wed, Thu, Wed, Sat, Fri, Thu, M…
EXPLORE NUMERIC VARIABLE TYPE IN “weekday” COLUMN.
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(jul_to_sep$weekday)
## [1] "numeric"
USE ‘summary()’ FUNCTION TO SUMMARIZE VALUES IN DATA FRAME.
summary(jul_to_sep$weekday)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.000 2.000 4.000 4.138 6.000 7.000
BOX PLOT IS A GRAPHICAL REPRESENTATION TO SUMMARIZE DATA AND
IDENTIFY OUTLIERS.
boxplot(jul_to_sep$weekday, col = 'violet')

HISTOGRAM TO VISUALIZE DISTRIBUTION OF VALUES IN WEEKDAY
COLUMN.
hist(jul_to_sep$weekday, col='coral')

NOTE WEEKDAY IS NOW A ‘dbl’.
## Rows: 1,987,880
## Columns: 21
## $ ride_id <chr> "0A1B623926EF4E16", "B2D5583A5A5E76EE", "6F264597DD…
## $ rideable_type <fct> docked_bike, classic_bike, classic_bike, classic_bi…
## $ started_at <dttm> 2021-07-02 14:44:36, 2021-07-07 16:57:42, 2021-07-…
## $ start_date <dttm> 2021-07-02, 2021-07-07, 2021-07-25, 2021-07-08, 20…
## $ start_time <chr> "14:44:36", "16:57:42", "11:30:55", "22:08:30", "16…
## $ ended_at <dttm> 2021-07-02 15:19:58, 2021-07-07 17:16:09, 2021-07-…
## $ end_date <dttm> 2021-07-02, 2021-07-07, 2021-07-25, 2021-07-08, 20…
## $ end_time <chr> "15:19:58", "17:16:09", "11:48:45", "22:23:32", "16…
## $ start_station_name <chr> "Michigan Ave & Washington St", "California Ave & C…
## $ start_station_id <chr> "13001", "17660", "SL-012", "17660", "17660", "1766…
## $ end_station_name <chr> "Halsted St & North Branch St", "Wood St & Hubbard …
## $ end_station_id <chr> "KA1504000117", "13432", "KA1503000044", "13196", "…
## $ start_lat <dbl> 41.88398, 41.90036, 41.86038, 41.90036, 41.90035, 4…
## $ start_lng <dbl> -87.62468, -87.69670, -87.62581, -87.69670, -87.696…
## $ end_lat <dbl> 41.89937, 41.88990, 41.89017, 41.89456, 41.88659, 4…
## $ end_lng <dbl> -87.64848, -87.67147, -87.62619, -87.65345, -87.658…
## $ member_casual <fct> casual, casual, member, member, casual, casual, cas…
## $ ride_length_secs <dbl> 2122, 1107, 1070, 902, 1143, 352, 718, 485, 1199, 8…
## $ ride_length_total <dbl> 35.366667, 18.450000, 17.833333, 15.033333, 19.0500…
## $ weekday <dbl> 6, 4, 1, 5, 4, 5, 4, 7, 6, 5, 2, 2, 6, 2, 4, 5, 6, …
## $ weekday. <ord> Fri, Wed, Sun, Thu, Wed, Thu, Wed, Sat, Fri, Thu, M…
NOTE WEEKDAY IS NOW NUMERIC.
## 'data.frame': 1987880 obs. of 21 variables:
## $ ride_id : chr "0A1B623926EF4E16" "B2D5583A5A5E76EE" "6F264597DDBF427A" "379B58EAB20E8AA5" ...
## $ rideable_type : Factor w/ 3 levels "classic_bike",..: 2 1 1 1 3 3 1 1 1 1 ...
## $ started_at : POSIXlt, format: "2021-07-02 14:44:36" "2021-07-07 16:57:42" ...
## $ start_date : POSIXlt, format: "2021-07-02" "2021-07-07" ...
## $ start_time : chr "14:44:36" "16:57:42" "11:30:55" "22:08:30" ...
## $ ended_at : POSIXlt, format: "2021-07-02 15:19:58" "2021-07-07 17:16:09" ...
## $ end_date : POSIXlt, format: "2021-07-02" "2021-07-07" ...
## $ end_time : chr "15:19:58" "17:16:09" "11:48:45" "22:23:32" ...
## $ start_station_name: chr "Michigan Ave & Washington St" "California Ave & Cortez St" "Wabash Ave & 16th St" "California Ave & Cortez St" ...
## $ start_station_id : chr "13001" "17660" "SL-012" "17660" ...
## $ end_station_name : chr "Halsted St & North Branch St" "Wood St & Hubbard St" "Rush St & Hubbard St" "Carpenter St & Huron St" ...
## $ end_station_id : chr "KA1504000117" "13432" "KA1503000044" "13196" ...
## $ start_lat : num 41.9 41.9 41.9 41.9 41.9 ...
## $ start_lng : num -87.6 -87.7 -87.6 -87.7 -87.7 ...
## $ end_lat : num 41.9 41.9 41.9 41.9 41.9 ...
## $ end_lng : num -87.6 -87.7 -87.6 -87.7 -87.7 ...
## $ member_casual : Factor w/ 2 levels "casual","member": 1 1 2 2 1 1 1 1 2 2 ...
## $ ride_length_secs : num 2122 1107 1070 902 1143 ...
## $ ride_length_total : num 35.4 18.4 17.8 15 19.1 ...
## $ weekday : num 6 4 1 5 4 5 4 7 6 5 ...
## $ weekday. : Ord.factor w/ 7 levels "Sun"<"Mon"<"Tue"<..: 6 4 1 5 4 5 4 7 6 5 ...