SETTING UP ENVIRONMENT.

INSTALL PACKAGES.

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.2     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.2     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(data.table)
## 
## Attaching package: 'data.table'
## 
## The following objects are masked from 'package:lubridate':
## 
##     hour, isoweek, mday, minute, month, quarter, second, wday, week,
##     yday, year
## 
## The following objects are masked from 'package:dplyr':
## 
##     between, first, last
## 
## The following object is masked from 'package:purrr':
## 
##     transpose
library(hms)
## 
## Attaching package: 'hms'
## 
## The following object is masked from 'package:lubridate':
## 
##     hms
library(here)
## here() starts at C:/Users/SWill/Documents/APR TO JUN CYCLISTIC BIKES
library(skimr)
library(janitor)
## 
## Attaching package: 'janitor'
## 
## The following objects are masked from 'package:stats':
## 
##     chisq.test, fisher.test
library(conflicted)
library(gtsummary)
library(scales)
library(RColorBrewer)
library(ggthemes)
SCIENTIFIC NOTATION RUINING YOUR GGPLOT CHARTS? TRY THE LINE OF CODE BELOW
options(scipen = 999)
USE ‘getwd()’ FUNCTION TO DISPLAY WORKING DIRECTORY.
getwd()
## [1] "C:/Users/SWill/Documents/APR TO JUN CYCLISTIC BIKES"
USE ‘setwd()’ FUNCTION TO SET WORKING DIRECTORY TO SIMPLIFY CALLS TO DATA.
setwd("C:/Users/SWill/Documents/APR TO JUN CYCLISTIC BIKES")
USE ‘spec_csv()’ FUNCTION TO CHECK THE DATA TYPES BEFORE READING THE DATA.
NOTICE ‘started_at’ AND ‘ended_at’ COLUMNS ARE ‘datetime’ DATA TYPE.
spec_csv("C:/Users/SWill/Desktop/CYCLISTIC BIKES/divvy-trip-data 01-12/202104-divvy-tripdata.csv")
## cols(
##   ride_id = col_character(),
##   rideable_type = col_character(),
##   started_at = col_datetime(format = ""),
##   ended_at = col_datetime(format = ""),
##   start_station_name = col_character(),
##   start_station_id = col_character(),
##   end_station_name = col_character(),
##   end_station_id = col_character(),
##   start_lat = col_double(),
##   start_lng = col_double(),
##   end_lat = col_double(),
##   end_lng = col_double(),
##   member_casual = col_character()
## )
spec_csv("C:/Users/SWill/Desktop/CYCLISTIC BIKES/divvy-trip-data 01-12/202105-divvy-tripdata.csv")
## cols(
##   ride_id = col_character(),
##   rideable_type = col_character(),
##   started_at = col_datetime(format = ""),
##   ended_at = col_datetime(format = ""),
##   start_station_name = col_character(),
##   start_station_id = col_character(),
##   end_station_name = col_character(),
##   end_station_id = col_character(),
##   start_lat = col_double(),
##   start_lng = col_double(),
##   end_lat = col_double(),
##   end_lng = col_double(),
##   member_casual = col_character()
## )
spec_csv("C:/Users/SWill/Desktop/CYCLISTIC BIKES/divvy-trip-data 01-12/202106-divvy-tripdata.csv")
## cols(
##   ride_id = col_character(),
##   rideable_type = col_character(),
##   started_at = col_datetime(format = ""),
##   ended_at = col_datetime(format = ""),
##   start_station_name = col_character(),
##   start_station_id = col_character(),
##   end_station_name = col_character(),
##   end_station_id = col_character(),
##   start_lat = col_double(),
##   start_lng = col_double(),
##   end_lat = col_double(),
##   end_lng = col_double(),
##   member_casual = col_character()
## )
UPLOAD DATASETS divvy-trip-data.csv FILES.
df_04 <- read.csv("C:/Users/SWill/Desktop/CYCLISTIC BIKES/divvy-trip-data 01-12/202104-divvy-tripdata.csv")
df_05 <- read.csv("C:/Users/SWill/Desktop/CYCLISTIC BIKES/divvy-trip-data 01-12/202105-divvy-tripdata.csv")
df_06 <- read.csv("C:/Users/SWill/Desktop/CYCLISTIC BIKES/divvy-trip-data 01-12/202106-divvy-tripdata.csv")
USE ‘bind_rows()’ FUNCTION TO STACK DATA FRAMES INTO ONE BIG DATA FRAME.
apr_to_jun <- bind_rows(df_04,df_05,df_06)
CHECK COLUMNS.
colnames(apr_to_jun)
##  [1] "ride_id"            "rideable_type"      "started_at"        
##  [4] "ended_at"           "start_station_name" "start_station_id"  
##  [7] "end_station_name"   "end_station_id"     "start_lat"         
## [10] "start_lng"          "end_lat"            "end_lng"           
## [13] "member_casual"
USE ‘glimpse()’ FUNCTION TO GET A BETTER UNDERSTANDING OF THE DATA.
Rows: 1,598,458 Columns: 13
COLUMNS ‘started_at’ AND ‘ended_at’ ARE NOW ‘character’ DATA TYPE.
COLUMNS ‘end_station_name’ AND ‘end_station_id’ HAVE BLANK ROWS THAT NEED TO BE REMOVED.
glimpse(apr_to_jun)
## Rows: 1,598,458
## Columns: 13
## $ ride_id            <chr> "6C992BD37A98A63F", "1E0145613A209000", "E498E15508…
## $ rideable_type      <chr> "classic_bike", "docked_bike", "docked_bike", "clas…
## $ started_at         <chr> "2021-04-12 18:25:36", "2021-04-27 17:27:11", "2021…
## $ ended_at           <chr> "2021-04-12 18:56:55", "2021-04-27 18:31:29", "2021…
## $ start_station_name <chr> "State St & Pearson St", "Dorchester Ave & 49th St"…
## $ start_station_id   <chr> "TA1307000061", "KA1503000069", "20121", "TA1305000…
## $ end_station_name   <chr> "Southport Ave & Waveland Ave", "Dorchester Ave & 4…
## $ end_station_id     <chr> "13235", "KA1503000069", "20121", "13235", "20121",…
## $ start_lat          <dbl> 41.89745, 41.80577, 41.74149, 41.90312, 41.74149, 4…
## $ start_lng          <dbl> -87.62872, -87.59246, -87.65841, -87.67394, -87.658…
## $ end_lat            <dbl> 41.94815, 41.80577, 41.74149, 41.94815, 41.74149, 4…
## $ end_lng            <dbl> -87.66394, -87.59246, -87.65841, -87.66394, -87.658…
## $ member_casual      <chr> "member", "casual", "casual", "member", "casual", "…
USE ‘str()’ FUNCTION TO SEE LIST OF COLUMNS AND DATA TYPES NUMERIC, CHARACTER, DATETIME ETC.
‘data.frame’: 1598458 obs. of 13 variables:
str(apr_to_jun)
## 'data.frame':    1598458 obs. of  13 variables:
##  $ ride_id           : chr  "6C992BD37A98A63F" "1E0145613A209000" "E498E15508A80BAD" "1887262AD101C604" ...
##  $ rideable_type     : chr  "classic_bike" "docked_bike" "docked_bike" "classic_bike" ...
##  $ started_at        : chr  "2021-04-12 18:25:36" "2021-04-27 17:27:11" "2021-04-03 12:42:45" "2021-04-17 09:17:42" ...
##  $ ended_at          : chr  "2021-04-12 18:56:55" "2021-04-27 18:31:29" "2021-04-07 11:40:24" "2021-04-17 09:42:48" ...
##  $ start_station_name: chr  "State St & Pearson St" "Dorchester Ave & 49th St" "Loomis Blvd & 84th St" "Honore St & Division St" ...
##  $ start_station_id  : chr  "TA1307000061" "KA1503000069" "20121" "TA1305000034" ...
##  $ end_station_name  : chr  "Southport Ave & Waveland Ave" "Dorchester Ave & 49th St" "Loomis Blvd & 84th St" "Southport Ave & Waveland Ave" ...
##  $ end_station_id    : chr  "13235" "KA1503000069" "20121" "13235" ...
##  $ start_lat         : num  41.9 41.8 41.7 41.9 41.7 ...
##  $ start_lng         : num  -87.6 -87.6 -87.7 -87.7 -87.7 ...
##  $ end_lat           : num  41.9 41.8 41.7 41.9 41.7 ...
##  $ end_lng           : num  -87.7 -87.6 -87.7 -87.7 -87.7 ...
##  $ member_casual     : chr  "member" "casual" "casual" "member" ...
USE TIDYR TO SEPARATE “started_at” COLUMN TO A NEW COLUMN CALLED “start_date” and “start_time”.
USE TIDYR TO SEPARATE “ended_at” COLUMN TO A NEW COLUMN CALLED “end_date” and “end_time”.
apr_to_jun <- tidyr::separate(apr_to_jun, started_at, c("start_date", "start_time"), sep = " ", remove = FALSE)
apr_to_jun <- tidyr::separate(apr_to_jun, ended_at, c("end_date", "end_time"), sep = " ", remove = FALSE)
CHECK NEW COLUMNS.
colnames(apr_to_jun)
##  [1] "ride_id"            "rideable_type"      "started_at"        
##  [4] "start_date"         "start_time"         "ended_at"          
##  [7] "end_date"           "end_time"           "start_station_name"
## [10] "start_station_id"   "end_station_name"   "end_station_id"    
## [13] "start_lat"          "start_lng"          "end_lat"           
## [16] "end_lng"            "member_casual"
‘’data.frame’: 1598458 obs. of 17 variables:
str(apr_to_jun)
## 'data.frame':    1598458 obs. of  17 variables:
##  $ ride_id           : chr  "6C992BD37A98A63F" "1E0145613A209000" "E498E15508A80BAD" "1887262AD101C604" ...
##  $ rideable_type     : chr  "classic_bike" "docked_bike" "docked_bike" "classic_bike" ...
##  $ started_at        : chr  "2021-04-12 18:25:36" "2021-04-27 17:27:11" "2021-04-03 12:42:45" "2021-04-17 09:17:42" ...
##  $ start_date        : chr  "2021-04-12" "2021-04-27" "2021-04-03" "2021-04-17" ...
##  $ start_time        : chr  "18:25:36" "17:27:11" "12:42:45" "09:17:42" ...
##  $ ended_at          : chr  "2021-04-12 18:56:55" "2021-04-27 18:31:29" "2021-04-07 11:40:24" "2021-04-17 09:42:48" ...
##  $ end_date          : chr  "2021-04-12" "2021-04-27" "2021-04-07" "2021-04-17" ...
##  $ end_time          : chr  "18:56:55" "18:31:29" "11:40:24" "09:42:48" ...
##  $ start_station_name: chr  "State St & Pearson St" "Dorchester Ave & 49th St" "Loomis Blvd & 84th St" "Honore St & Division St" ...
##  $ start_station_id  : chr  "TA1307000061" "KA1503000069" "20121" "TA1305000034" ...
##  $ end_station_name  : chr  "Southport Ave & Waveland Ave" "Dorchester Ave & 49th St" "Loomis Blvd & 84th St" "Southport Ave & Waveland Ave" ...
##  $ end_station_id    : chr  "13235" "KA1503000069" "20121" "13235" ...
##  $ start_lat         : num  41.9 41.8 41.7 41.9 41.7 ...
##  $ start_lng         : num  -87.6 -87.6 -87.7 -87.7 -87.7 ...
##  $ end_lat           : num  41.9 41.8 41.7 41.9 41.7 ...
##  $ end_lng           : num  -87.7 -87.6 -87.7 -87.7 -87.7 ...
##  $ member_casual     : chr  "member" "casual" "casual" "member" ...

EXPLORE AND MANIPULATE DATA FRAME APR_TO_JUN.

COLUMN RIDEABLE TYPE.

EXPLORE…CHARACTER VARIABLE TYPE IN “rideable_type” COLUMN.
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(apr_to_jun$rideable_type)
## [1] "character"
USE ‘unique ()’ FUNCTION TO FIND INDIVIDUAL VALUES IN COLUMN.
unique(apr_to_jun$rideable_type)
## [1] "classic_bike"  "docked_bike"   "electric_bike"
HOW MANY OBSERVATIONS FALL UNDER EACH USER TYPE?
table(apr_to_jun$rideable_type)
## 
##  classic_bike   docked_bike electric_bike 
##        958732        119783        519943
sort(table(apr_to_jun$rideable_type), decreasing = TRUE)
## 
##  classic_bike electric_bike   docked_bike 
##        958732        519943        119783
BAR PLOT OF DATA DISTRIBUTION OF ‘rideable_type’ COLUMN.
barplot(sort(table(apr_to_jun$rideable_type), decreasing = TRUE))

CHANGE VARIABLE FROM CHARACTER TO FACTOR.
apr_to_jun$rideable_type <- as.factor(apr_to_jun$rideable_type)
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(apr_to_jun$rideable_type)
## [1] "factor"
USE ‘levels’ FUNCTION TO CHECK FACTOR.
levels(apr_to_jun$rideable_type)
## [1] "classic_bike"  "docked_bike"   "electric_bike"
NOTE RIDEABLE TYPE IS NOW A FACTOR.
glimpse(apr_to_jun)
## Rows: 1,598,458
## Columns: 17
## $ ride_id            <chr> "6C992BD37A98A63F", "1E0145613A209000", "E498E15508…
## $ rideable_type      <fct> classic_bike, docked_bike, docked_bike, classic_bik…
## $ started_at         <chr> "2021-04-12 18:25:36", "2021-04-27 17:27:11", "2021…
## $ start_date         <chr> "2021-04-12", "2021-04-27", "2021-04-03", "2021-04-…
## $ start_time         <chr> "18:25:36", "17:27:11", "12:42:45", "09:17:42", "12…
## $ ended_at           <chr> "2021-04-12 18:56:55", "2021-04-27 18:31:29", "2021…
## $ end_date           <chr> "2021-04-12", "2021-04-27", "2021-04-07", "2021-04-…
## $ end_time           <chr> "18:56:55", "18:31:29", "11:40:24", "09:42:48", "14…
## $ start_station_name <chr> "State St & Pearson St", "Dorchester Ave & 49th St"…
## $ start_station_id   <chr> "TA1307000061", "KA1503000069", "20121", "TA1305000…
## $ end_station_name   <chr> "Southport Ave & Waveland Ave", "Dorchester Ave & 4…
## $ end_station_id     <chr> "13235", "KA1503000069", "20121", "13235", "20121",…
## $ start_lat          <dbl> 41.89745, 41.80577, 41.74149, 41.90312, 41.74149, 4…
## $ start_lng          <dbl> -87.62872, -87.59246, -87.65841, -87.67394, -87.658…
## $ end_lat            <dbl> 41.94815, 41.80577, 41.74149, 41.94815, 41.74149, 4…
## $ end_lng            <dbl> -87.66394, -87.59246, -87.65841, -87.66394, -87.658…
## $ member_casual      <chr> "member", "casual", "casual", "member", "casual", "…

COLUMN STARTED_AT AND ENDED_AT.

EXPLORE…CHARACTER VARIABLE TYPE IN “started_at” AND ended_at” COLUMN.
DATA TYPE IN COLUMN “started_at” AND “end_at” WAS DATETIME BEFORE UPLOADING.
CONVERT “started_at” AND “ended_at” COLUMN FROM CHARACTER TO DATETIME
apr_to_jun$started_at <- as.POSIXlt(apr_to_jun$started_at, format="%Y-%m-%d %H:%M:%S", tz="UTC")
apr_to_jun$ended_at <- as.POSIXlt(apr_to_jun$ended_at, format="%Y-%m-%d %H:%M:%S", tz="UTC")
CONVERT “start_date” COLUMN FROM CHARACTER TO DATE FORMAT.
apr_to_jun$start_date <- as.POSIXlt(apr_to_jun$start_date)
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(apr_to_jun$start_date) 
## [1] "POSIXlt" "POSIXt"
CONVERT “end_date” COLUMN FROM CHARACTER TO DATE FORMAT.
apr_to_jun$end_date <- as.POSIXlt(apr_to_jun$end_date)
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(apr_to_jun$end_date) 
## [1] "POSIXlt" "POSIXt"
USE ‘str()’ FUNCTION TO SEE LIST OF COLUMNS AND DATA TYPES NUMERIC, CHARACTER, DATETIME ETC.
‘started_at’AND ’ended_at’ CHARACTER DATA TYPE IS NOW POSIXlt.
‘data.frame’: 1598458 obs. of 17 variables:
str(apr_to_jun)
## 'data.frame':    1598458 obs. of  17 variables:
##  $ ride_id           : chr  "6C992BD37A98A63F" "1E0145613A209000" "E498E15508A80BAD" "1887262AD101C604" ...
##  $ rideable_type     : Factor w/ 3 levels "classic_bike",..: 1 2 2 1 2 1 1 3 1 1 ...
##  $ started_at        : POSIXlt, format: "2021-04-12 18:25:36" "2021-04-27 17:27:11" ...
##  $ start_date        : POSIXlt, format: "2021-04-12" "2021-04-27" ...
##  $ start_time        : chr  "18:25:36" "17:27:11" "12:42:45" "09:17:42" ...
##  $ ended_at          : POSIXlt, format: "2021-04-12 18:56:55" "2021-04-27 18:31:29" ...
##  $ end_date          : POSIXlt, format: "2021-04-12" "2021-04-27" ...
##  $ end_time          : chr  "18:56:55" "18:31:29" "11:40:24" "09:42:48" ...
##  $ start_station_name: chr  "State St & Pearson St" "Dorchester Ave & 49th St" "Loomis Blvd & 84th St" "Honore St & Division St" ...
##  $ start_station_id  : chr  "TA1307000061" "KA1503000069" "20121" "TA1305000034" ...
##  $ end_station_name  : chr  "Southport Ave & Waveland Ave" "Dorchester Ave & 49th St" "Loomis Blvd & 84th St" "Southport Ave & Waveland Ave" ...
##  $ end_station_id    : chr  "13235" "KA1503000069" "20121" "13235" ...
##  $ start_lat         : num  41.9 41.8 41.7 41.9 41.7 ...
##  $ start_lng         : num  -87.6 -87.6 -87.7 -87.7 -87.7 ...
##  $ end_lat           : num  41.9 41.8 41.7 41.9 41.7 ...
##  $ end_lng           : num  -87.7 -87.6 -87.7 -87.7 -87.7 ...
##  $ member_casual     : chr  "member" "casual" "casual" "member" ...

COLUMN START_STATION_NAME START_STATION_ID END_STATION_NAME AND END_STATION_ID.

EXPLORE…CHARACTER VARIABLE TYPE IN “start_staion_name” AND “end_staion_name”
REPLACE ALL BLANK VALUES IN “start_station_name” COLUMN WITH NA VALUES.
apr_to_jun$start_station_name[apr_to_jun$start_station_name==""] <- NA
REPLACE ALL BLANK VALUES IN “start_station_id” COLUMN WITH NA VALUES.
apr_to_jun$start_station_id[apr_to_jun$start_station_id==""] <- NA
REPLACE ALL BLANK VALUES IN “end_station_name” COLUMN WITH NA VALUES.
apr_to_jun$end_station_name[apr_to_jun$end_station_name==""] <- NA
REPLACE ALL BLANK VALUES IN “end_station_id” COLUMN WITH NA VALUES.
apr_to_jun$end_station_id[apr_to_jun$end_station_id==""] <- NA
glimpse(apr_to_jun)
## Rows: 1,598,458
## Columns: 17
## $ ride_id            <chr> "6C992BD37A98A63F", "1E0145613A209000", "E498E15508…
## $ rideable_type      <fct> classic_bike, docked_bike, docked_bike, classic_bik…
## $ started_at         <dttm> 2021-04-12 18:25:36, 2021-04-27 17:27:11, 2021-04-…
## $ start_date         <dttm> 2021-04-12, 2021-04-27, 2021-04-03, 2021-04-17, 20…
## $ start_time         <chr> "18:25:36", "17:27:11", "12:42:45", "09:17:42", "12…
## $ ended_at           <dttm> 2021-04-12 18:56:55, 2021-04-27 18:31:29, 2021-04-…
## $ end_date           <dttm> 2021-04-12, 2021-04-27, 2021-04-07, 2021-04-17, 20…
## $ end_time           <chr> "18:56:55", "18:31:29", "11:40:24", "09:42:48", "14…
## $ start_station_name <chr> "State St & Pearson St", "Dorchester Ave & 49th St"…
## $ start_station_id   <chr> "TA1307000061", "KA1503000069", "20121", "TA1305000…
## $ end_station_name   <chr> "Southport Ave & Waveland Ave", "Dorchester Ave & 4…
## $ end_station_id     <chr> "13235", "KA1503000069", "20121", "13235", "20121",…
## $ start_lat          <dbl> 41.89745, 41.80577, 41.74149, 41.90312, 41.74149, 4…
## $ start_lng          <dbl> -87.62872, -87.59246, -87.65841, -87.67394, -87.658…
## $ end_lat            <dbl> 41.94815, 41.80577, 41.74149, 41.94815, 41.74149, 4…
## $ end_lng            <dbl> -87.66394, -87.59246, -87.65841, -87.66394, -87.658…
## $ member_casual      <chr> "member", "casual", "casual", "member", "casual", "…
REMOVE ROWS WITH NA VALUES IN ALL COLUMNS.
apr_to_jun <- apr_to_jun %>% drop_na()
‘data.frame’: 1357979 obs. of 17 variables:
str(apr_to_jun)
## 'data.frame':    1357979 obs. of  17 variables:
##  $ ride_id           : chr  "6C992BD37A98A63F" "1E0145613A209000" "E498E15508A80BAD" "1887262AD101C604" ...
##  $ rideable_type     : Factor w/ 3 levels "classic_bike",..: 1 2 2 1 2 1 1 3 1 1 ...
##  $ started_at        : POSIXlt, format: "2021-04-12 18:25:36" "2021-04-27 17:27:11" ...
##  $ start_date        : POSIXlt, format: "2021-04-12" "2021-04-27" ...
##  $ start_time        : chr  "18:25:36" "17:27:11" "12:42:45" "09:17:42" ...
##  $ ended_at          : POSIXlt, format: "2021-04-12 18:56:55" "2021-04-27 18:31:29" ...
##  $ end_date          : POSIXlt, format: "2021-04-12" "2021-04-27" ...
##  $ end_time          : chr  "18:56:55" "18:31:29" "11:40:24" "09:42:48" ...
##  $ start_station_name: chr  "State St & Pearson St" "Dorchester Ave & 49th St" "Loomis Blvd & 84th St" "Honore St & Division St" ...
##  $ start_station_id  : chr  "TA1307000061" "KA1503000069" "20121" "TA1305000034" ...
##  $ end_station_name  : chr  "Southport Ave & Waveland Ave" "Dorchester Ave & 49th St" "Loomis Blvd & 84th St" "Southport Ave & Waveland Ave" ...
##  $ end_station_id    : chr  "13235" "KA1503000069" "20121" "13235" ...
##  $ start_lat         : num  41.9 41.8 41.7 41.9 41.7 ...
##  $ start_lng         : num  -87.6 -87.6 -87.7 -87.7 -87.7 ...
##  $ end_lat           : num  41.9 41.8 41.7 41.9 41.7 ...
##  $ end_lng           : num  -87.7 -87.6 -87.7 -87.7 -87.7 ...
##  $ member_casual     : chr  "member" "casual" "casual" "member" ...

COLUMN MEMBER_CASUAL.

EXPLORE…CHARACTER VARIABLE TYPE IN “member_casual” COLUMN.
USE ‘unique ()’ FUNCTION TO FIND INDIVIDUAL VALUES IN COLUMN.
unique(apr_to_jun$member_casual)
## [1] "member" "casual"
HOW MANY OBSERVATIONS FALL UNDER EACH USER TYPE?
table(apr_to_jun$member_casual)
## 
## casual member 
## 641441 716538
sort(table(apr_to_jun$member_casual), decreasing = TRUE)
## 
## member casual 
## 716538 641441
BAR PLOT OF DATA DISTRIBUTION OF ‘member_casual’ COLUMN.
barplot(sort(table(apr_to_jun$member_casual), decreasing = TRUE))

CHANGE VARIABLE FROM CHARACTER TO FACTOR.
apr_to_jun$member_casual <- as.factor(apr_to_jun$member_casual)
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(apr_to_jun$member_casual)
## [1] "factor"
USE ‘levels’ FUNCTION TO CHECK FACTOR.
levels(apr_to_jun$member_casual)
## [1] "casual" "member"
NOTE MEMBER CASUAL IS NOW A FACTOR.
glimpse(apr_to_jun)
## Rows: 1,357,979
## Columns: 17
## $ ride_id            <chr> "6C992BD37A98A63F", "1E0145613A209000", "E498E15508…
## $ rideable_type      <fct> classic_bike, docked_bike, docked_bike, classic_bik…
## $ started_at         <dttm> 2021-04-12 18:25:36, 2021-04-27 17:27:11, 2021-04-…
## $ start_date         <dttm> 2021-04-12, 2021-04-27, 2021-04-03, 2021-04-17, 20…
## $ start_time         <chr> "18:25:36", "17:27:11", "12:42:45", "09:17:42", "12…
## $ ended_at           <dttm> 2021-04-12 18:56:55, 2021-04-27 18:31:29, 2021-04-…
## $ end_date           <dttm> 2021-04-12, 2021-04-27, 2021-04-07, 2021-04-17, 20…
## $ end_time           <chr> "18:56:55", "18:31:29", "11:40:24", "09:42:48", "14…
## $ start_station_name <chr> "State St & Pearson St", "Dorchester Ave & 49th St"…
## $ start_station_id   <chr> "TA1307000061", "KA1503000069", "20121", "TA1305000…
## $ end_station_name   <chr> "Southport Ave & Waveland Ave", "Dorchester Ave & 4…
## $ end_station_id     <chr> "13235", "KA1503000069", "20121", "13235", "20121",…
## $ start_lat          <dbl> 41.89745, 41.80577, 41.74149, 41.90312, 41.74149, 4…
## $ start_lng          <dbl> -87.62872, -87.59246, -87.65841, -87.67394, -87.658…
## $ end_lat            <dbl> 41.94815, 41.80577, 41.74149, 41.94815, 41.74149, 4…
## $ end_lng            <dbl> -87.66394, -87.59246, -87.65841, -87.66394, -87.658…
## $ member_casual      <fct> member, casual, casual, member, casual, casual, cas…

ADD A CALCULATED FIELD FOR NEW COLUMN “ride_length_secs”.

apr_to_jun$ride_length_secs <- difftime(apr_to_jun$ended_at,apr_to_jun$started_at)
CHECK DATA TYPE.
is.numeric(apr_to_jun$ride_length_secs)
## [1] FALSE
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(apr_to_jun$ride_length_secs)
## [1] "difftime"
CONVERT “ride_length_secs” FROM DIFFTIME TO NUMERIC TO RUN CALCULATIONS ON THE DATA.
apr_to_jun$ride_length_secs <- as.numeric(as.character(apr_to_jun$ride_length_secs))
CHECK DATA TYPE.
is.numeric(apr_to_jun$ride_length_secs)
## [1] TRUE

CREATE NEW COLUMN “ride_length_total” USING MUTATE FUNCTION.

apr_to_jun <- mutate(apr_to_jun, ride_length_total = ride_length_secs/60)
CHECK DATA TYPE.
is.numeric(apr_to_jun$ride_length_total)
## [1] TRUE

ADD COLUMN FOR DAY OF WEEK.

NUMERIC VALUE DAY OF WEEK SUNDAY = 1 MONDAY = 2 TUESDAY = 3 ETC, ETC…
apr_to_jun$weekday <- lubridate::wday(apr_to_jun$start_date)
CHARACTER DAY OF WEEK USING ABBREVIATED LABELS MON,TUE,WED ETC ETC…
apr_to_jun$weekday. <- lubridate::wday(apr_to_jun$start_date, label = TRUE)
CHANGE ‘weekday’ DATA TYPE.
apr_to_jun$weekday. <- as.factor(apr_to_jun$weekday.)
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(apr_to_jun$weekday.)
## [1] "ordered" "factor"
USE ‘levels’ FUNCTION TO CHECK FACTOR.
levels(apr_to_jun$weekday.)
## [1] "Sun" "Mon" "Tue" "Wed" "Thu" "Fri" "Sat"
NOTE WEEKDAY. IS AN ORDERED FACTOR.
glimpse(apr_to_jun)
## Rows: 1,357,979
## Columns: 21
## $ ride_id            <chr> "6C992BD37A98A63F", "1E0145613A209000", "E498E15508…
## $ rideable_type      <fct> classic_bike, docked_bike, docked_bike, classic_bik…
## $ started_at         <dttm> 2021-04-12 18:25:36, 2021-04-27 17:27:11, 2021-04-…
## $ start_date         <dttm> 2021-04-12, 2021-04-27, 2021-04-03, 2021-04-17, 20…
## $ start_time         <chr> "18:25:36", "17:27:11", "12:42:45", "09:17:42", "12…
## $ ended_at           <dttm> 2021-04-12 18:56:55, 2021-04-27 18:31:29, 2021-04-…
## $ end_date           <dttm> 2021-04-12, 2021-04-27, 2021-04-07, 2021-04-17, 20…
## $ end_time           <chr> "18:56:55", "18:31:29", "11:40:24", "09:42:48", "14…
## $ start_station_name <chr> "State St & Pearson St", "Dorchester Ave & 49th St"…
## $ start_station_id   <chr> "TA1307000061", "KA1503000069", "20121", "TA1305000…
## $ end_station_name   <chr> "Southport Ave & Waveland Ave", "Dorchester Ave & 4…
## $ end_station_id     <chr> "13235", "KA1503000069", "20121", "13235", "20121",…
## $ start_lat          <dbl> 41.89745, 41.80577, 41.74149, 41.90312, 41.74149, 4…
## $ start_lng          <dbl> -87.62872, -87.59246, -87.65841, -87.67394, -87.658…
## $ end_lat            <dbl> 41.94815, 41.80577, 41.74149, 41.94815, 41.74149, 4…
## $ end_lng            <dbl> -87.66394, -87.59246, -87.65841, -87.66394, -87.658…
## $ member_casual      <fct> member, casual, casual, member, casual, casual, cas…
## $ ride_length_secs   <dbl> 1879, 3858, 341859, 1506, 5477, 41, 86, 1550, 3174,…
## $ ride_length_total  <dbl> 31.3166667, 64.3000000, 5697.6500000, 25.1000000, 9…
## $ weekday            <dbl> 2, 3, 7, 7, 7, 1, 7, 3, 2, 7, 7, 7, 3, 1, 3, 5, 3, …
## $ weekday.           <ord> Mon, Tue, Sat, Sat, Sat, Sun, Sat, Tue, Mon, Sat, S…
EXPLORE NUMERIC VARIABLE TYPE IN “weekday” COLUMN.
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(apr_to_jun$weekday)
## [1] "numeric"
USE ‘summary()’ FUNCTION TO SUMMARIZE VALUES IN DATA FRAME.
summary(apr_to_jun$weekday)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   2.000   4.000   4.046   6.000   7.000
BOX PLOT AKA IS A GRAPHICAL REPRESENTATION TO SUMMARIZE DATA AND IDENTIFY OUTLIERS.
boxplot(apr_to_jun$weekday, col = 'yellow') 

HISTOGRAM TO VIZUALIZE DISTRIBUTION OF VALUES IN WEEKDAY COLUMN.
hist(apr_to_jun$weekday, col='pink') 

NOTE WEEKDAY IS NOW A ‘dbl’.
glimpse(apr_to_jun)
## Rows: 1,357,979
## Columns: 21
## $ ride_id            <chr> "6C992BD37A98A63F", "1E0145613A209000", "E498E15508…
## $ rideable_type      <fct> classic_bike, docked_bike, docked_bike, classic_bik…
## $ started_at         <dttm> 2021-04-12 18:25:36, 2021-04-27 17:27:11, 2021-04-…
## $ start_date         <dttm> 2021-04-12, 2021-04-27, 2021-04-03, 2021-04-17, 20…
## $ start_time         <chr> "18:25:36", "17:27:11", "12:42:45", "09:17:42", "12…
## $ ended_at           <dttm> 2021-04-12 18:56:55, 2021-04-27 18:31:29, 2021-04-…
## $ end_date           <dttm> 2021-04-12, 2021-04-27, 2021-04-07, 2021-04-17, 20…
## $ end_time           <chr> "18:56:55", "18:31:29", "11:40:24", "09:42:48", "14…
## $ start_station_name <chr> "State St & Pearson St", "Dorchester Ave & 49th St"…
## $ start_station_id   <chr> "TA1307000061", "KA1503000069", "20121", "TA1305000…
## $ end_station_name   <chr> "Southport Ave & Waveland Ave", "Dorchester Ave & 4…
## $ end_station_id     <chr> "13235", "KA1503000069", "20121", "13235", "20121",…
## $ start_lat          <dbl> 41.89745, 41.80577, 41.74149, 41.90312, 41.74149, 4…
## $ start_lng          <dbl> -87.62872, -87.59246, -87.65841, -87.67394, -87.658…
## $ end_lat            <dbl> 41.94815, 41.80577, 41.74149, 41.94815, 41.74149, 4…
## $ end_lng            <dbl> -87.66394, -87.59246, -87.65841, -87.66394, -87.658…
## $ member_casual      <fct> member, casual, casual, member, casual, casual, cas…
## $ ride_length_secs   <dbl> 1879, 3858, 341859, 1506, 5477, 41, 86, 1550, 3174,…
## $ ride_length_total  <dbl> 31.3166667, 64.3000000, 5697.6500000, 25.1000000, 9…
## $ weekday            <dbl> 2, 3, 7, 7, 7, 1, 7, 3, 2, 7, 7, 7, 3, 1, 3, 5, 3, …
## $ weekday.           <ord> Mon, Tue, Sat, Sat, Sat, Sun, Sat, Tue, Mon, Sat, S…
NOTE WEEKDAY IS NOW NUMERIC.
str(apr_to_jun)
## 'data.frame':    1357979 obs. of  21 variables:
##  $ ride_id           : chr  "6C992BD37A98A63F" "1E0145613A209000" "E498E15508A80BAD" "1887262AD101C604" ...
##  $ rideable_type     : Factor w/ 3 levels "classic_bike",..: 1 2 2 1 2 1 1 3 1 1 ...
##  $ started_at        : POSIXlt, format: "2021-04-12 18:25:36" "2021-04-27 17:27:11" ...
##  $ start_date        : POSIXlt, format: "2021-04-12" "2021-04-27" ...
##  $ start_time        : chr  "18:25:36" "17:27:11" "12:42:45" "09:17:42" ...
##  $ ended_at          : POSIXlt, format: "2021-04-12 18:56:55" "2021-04-27 18:31:29" ...
##  $ end_date          : POSIXlt, format: "2021-04-12" "2021-04-27" ...
##  $ end_time          : chr  "18:56:55" "18:31:29" "11:40:24" "09:42:48" ...
##  $ start_station_name: chr  "State St & Pearson St" "Dorchester Ave & 49th St" "Loomis Blvd & 84th St" "Honore St & Division St" ...
##  $ start_station_id  : chr  "TA1307000061" "KA1503000069" "20121" "TA1305000034" ...
##  $ end_station_name  : chr  "Southport Ave & Waveland Ave" "Dorchester Ave & 49th St" "Loomis Blvd & 84th St" "Southport Ave & Waveland Ave" ...
##  $ end_station_id    : chr  "13235" "KA1503000069" "20121" "13235" ...
##  $ start_lat         : num  41.9 41.8 41.7 41.9 41.7 ...
##  $ start_lng         : num  -87.6 -87.6 -87.7 -87.7 -87.7 ...
##  $ end_lat           : num  41.9 41.8 41.7 41.9 41.7 ...
##  $ end_lng           : num  -87.7 -87.6 -87.7 -87.7 -87.7 ...
##  $ member_casual     : Factor w/ 2 levels "casual","member": 2 1 1 2 1 1 1 1 1 1 ...
##  $ ride_length_secs  : num  1879 3858 341859 1506 5477 ...
##  $ ride_length_total : num  31.3 64.3 5697.6 25.1 91.3 ...
##  $ weekday           : num  2 3 7 7 7 1 7 3 2 7 ...
##  $ weekday.          : Ord.factor w/ 7 levels "Sun"<"Mon"<"Tue"<..: 2 3 7 7 7 1 7 3 2 7 ...

NEW COLUMN RIDE_LENGTH_SECS

DELETE RIDES UNDER 2 MINUTES (> 120) 1325970 ROWS REMAIN.
apr_to_jun <- subset(apr_to_jun, ride_length_secs > 120)
‘data.frame’: 1325970 obs. of 21 variables:
str(apr_to_jun)
## 'data.frame':    1325970 obs. of  21 variables:
##  $ ride_id           : chr  "6C992BD37A98A63F" "1E0145613A209000" "E498E15508A80BAD" "1887262AD101C604" ...
##  $ rideable_type     : Factor w/ 3 levels "classic_bike",..: 1 2 2 1 2 3 1 3 3 1 ...
##  $ started_at        : POSIXlt, format: "2021-04-12 18:25:36" "2021-04-27 17:27:11" ...
##  $ start_date        : POSIXlt, format: "2021-04-12" "2021-04-27" ...
##  $ start_time        : chr  "18:25:36" "17:27:11" "12:42:45" "09:17:42" ...
##  $ ended_at          : POSIXlt, format: "2021-04-12 18:56:55" "2021-04-27 18:31:29" ...
##  $ end_date          : POSIXlt, format: "2021-04-12" "2021-04-27" ...
##  $ end_time          : chr  "18:56:55" "18:31:29" "11:40:24" "09:42:48" ...
##  $ start_station_name: chr  "State St & Pearson St" "Dorchester Ave & 49th St" "Loomis Blvd & 84th St" "Honore St & Division St" ...
##  $ start_station_id  : chr  "TA1307000061" "KA1503000069" "20121" "TA1305000034" ...
##  $ end_station_name  : chr  "Southport Ave & Waveland Ave" "Dorchester Ave & 49th St" "Loomis Blvd & 84th St" "Southport Ave & Waveland Ave" ...
##  $ end_station_id    : chr  "13235" "KA1503000069" "20121" "13235" ...
##  $ start_lat         : num  41.9 41.8 41.7 41.9 41.7 ...
##  $ start_lng         : num  -87.6 -87.6 -87.7 -87.7 -87.7 ...
##  $ end_lat           : num  41.9 41.8 41.7 41.9 41.7 ...
##  $ end_lng           : num  -87.7 -87.6 -87.7 -87.7 -87.7 ...
##  $ member_casual     : Factor w/ 2 levels "casual","member": 2 1 1 2 1 1 1 1 1 1 ...
##  $ ride_length_secs  : num  1879 3858 341859 1506 5477 ...
##  $ ride_length_total : num  31.3 64.3 5697.6 25.1 91.3 ...
##  $ weekday           : num  2 3 7 7 7 3 2 7 7 3 ...
##  $ weekday.          : Ord.factor w/ 7 levels "Sun"<"Mon"<"Tue"<..: 2 3 7 7 7 3 2 7 7 3 ...
DELETE RIDES OVER 24 HOURS (> 86400) 1325386 ROWS REMAIN.
apr_to_jun <- subset(apr_to_jun, ride_length_secs < 86400)
‘data.frame’: 1325386 obs. of 21 variables:
str(apr_to_jun)
## 'data.frame':    1325386 obs. of  21 variables:
##  $ ride_id           : chr  "6C992BD37A98A63F" "1E0145613A209000" "1887262AD101C604" "C123548CAB2A32A5" ...
##  $ rideable_type     : Factor w/ 3 levels "classic_bike",..: 1 2 1 2 3 1 3 3 1 1 ...
##  $ started_at        : POSIXlt, format: "2021-04-12 18:25:36" "2021-04-27 17:27:11" ...
##  $ start_date        : POSIXlt, format: "2021-04-12" "2021-04-27" ...
##  $ start_time        : chr  "18:25:36" "17:27:11" "09:17:42" "12:42:25" ...
##  $ ended_at          : POSIXlt, format: "2021-04-12 18:56:55" "2021-04-27 18:31:29" ...
##  $ end_date          : POSIXlt, format: "2021-04-12" "2021-04-27" ...
##  $ end_time          : chr  "18:56:55" "18:31:29" "09:42:48" "14:13:42" ...
##  $ start_station_name: chr  "State St & Pearson St" "Dorchester Ave & 49th St" "Honore St & Division St" "Loomis Blvd & 84th St" ...
##  $ start_station_id  : chr  "TA1307000061" "KA1503000069" "TA1305000034" "20121" ...
##  $ end_station_name  : chr  "Southport Ave & Waveland Ave" "Dorchester Ave & 49th St" "Southport Ave & Waveland Ave" "Loomis Blvd & 84th St" ...
##  $ end_station_id    : chr  "13235" "KA1503000069" "13235" "20121" ...
##  $ start_lat         : num  41.9 41.8 41.9 41.7 41.8 ...
##  $ start_lng         : num  -87.6 -87.6 -87.7 -87.7 -87.6 ...
##  $ end_lat           : num  41.9 41.8 41.9 41.7 41.8 ...
##  $ end_lng           : num  -87.7 -87.6 -87.7 -87.7 -87.6 ...
##  $ member_casual     : Factor w/ 2 levels "casual","member": 2 1 2 1 1 1 1 1 1 1 ...
##  $ ride_length_secs  : num  1879 3858 1506 5477 1550 ...
##  $ ride_length_total : num  31.3 64.3 25.1 91.3 25.8 ...
##  $ weekday           : num  2 3 7 7 3 2 7 7 3 1 ...
##  $ weekday.          : Ord.factor w/ 7 levels "Sun"<"Mon"<"Tue"<..: 2 3 7 7 3 2 7 7 3 1 ...

SORT DATA FRAME BY DATE AND TIMES.

apr_to_jun <- apr_to_jun %>% arrange(ymd_hms(apr_to_jun$started_at))

CREATE NEW DATA FRAME (apr_to_jun_v2) FROM DATA FRAME (apr_to_jun).

apr_to_jun_v2 <- apr_to_jun[c('rideable_type', 'started_at', 'start_date', 'member_casual', 'ride_length_secs', 'ride_length_total', 'weekday', 'weekday.')]

DESCRIPTIVE ANALYSIS ON RIDE LENGTH.

MINIMUM TRIP TIME.
min(apr_to_jun_v2$ride_length_secs)
## [1] 121
MIDDLE VALUE IN APR TO JUN DATASET.
median(apr_to_jun_v2$ride_length_secs)
## [1] 839
MAXIMUM TRIP TIME.
max(apr_to_jun_v2$ride_length_secs)
## [1] 86313
AVERAGE TRIP.
mean(apr_to_jun_v2$ride_length_secs)
## [1] 1382.554
THE DIFFERENCE BETWEEN MAXIMUM AND MINIMUM TRIP.
range(apr_to_jun_v2$ride_length_secs)
## [1]   121 86313
DIFFERENCE BETWEEN THE FIRST QUARTILE AND THIRD QUARTILE OF APR TO JUN.
IQR(apr_to_jun_v2$ride_length_secs)
## [1] 1036

COMPARE MEMBERS AND CASUAL RIDERS.

MEMBERS Vs CASUAL MINIMUM TRIP TIME.
aggregate(apr_to_jun_v2$ride_length_secs ~ apr_to_jun_v2$member_casual, FUN = min)
##   apr_to_jun_v2$member_casual apr_to_jun_v2$ride_length_secs
## 1                      casual                            121
## 2                      member                            121
MEMBERS Vs CASUAL MIDDLE VALUE IN APR TO JUN DATASET.
aggregate(apr_to_jun_v2$ride_length_secs ~ apr_to_jun_v2$member_casual, FUN = median)
##   apr_to_jun_v2$member_casual apr_to_jun_v2$ride_length_secs
## 1                      casual                           1144
## 2                      member                            654
MEMBERS Vs CASUAL MAXIMUM TRIP TIME.
aggregate(apr_to_jun_v2$ride_length_secs ~ apr_to_jun_v2$member_casual, FUN = max)
##   apr_to_jun_v2$member_casual apr_to_jun_v2$ride_length_secs
## 1                      casual                          86313
## 2                      member                          84355
MEMBERS Vs CASUAL AVERAGE TRIP.
aggregate(apr_to_jun_v2$ride_length_secs ~ apr_to_jun_v2$member_casual, FUN = mean)
##   apr_to_jun_v2$member_casual apr_to_jun_v2$ride_length_secs
## 1                      casual                      1940.8063
## 2                      member                       877.2253
AVERAGE RIDE TIME FOR EACH DAY FOR MEMBERS Vs CASUAL RIDERS.
aggregate(apr_to_jun_v2$ride_length_total ~ apr_to_jun_v2$member_casual + apr_to_jun_v2$weekday., FUN = mean)
##    apr_to_jun_v2$member_casual apr_to_jun_v2$weekday.
## 1                       casual                    Sun
## 2                       member                    Sun
## 3                       casual                    Mon
## 4                       member                    Mon
## 5                       casual                    Tue
## 6                       member                    Tue
## 7                       casual                    Wed
## 8                       member                    Wed
## 9                       casual                    Thu
## 10                      member                    Thu
## 11                      casual                    Fri
## 12                      member                    Fri
## 13                      casual                    Sat
## 14                      member                    Sat
##    apr_to_jun_v2$ride_length_total
## 1                         36.76020
## 2                         16.85183
## 3                         32.29270
## 4                         13.99979
## 5                         30.60623
## 6                         13.93400
## 7                         28.33423
## 8                         13.77299
## 9                         27.86540
## 10                        13.65438
## 11                        29.93355
## 12                        14.09953
## 13                        34.38729
## 14                        16.21189
apr_to_jun_v2 %>% 
  group_by(member_casual, weekday.) %>%  
  summarise(number_of_rides = n(),average_duration = mean(ride_length_total)) %>%       
  arrange(member_casual, weekday.)  
## `summarise()` has grouped output by 'member_casual'. You can override using the
## `.groups` argument.
## # A tibble: 14 × 4
## # Groups:   member_casual [2]
##    member_casual weekday. number_of_rides average_duration
##    <fct>         <ord>              <int>            <dbl>
##  1 casual        Sun               133179             36.8
##  2 casual        Mon                69867             32.3
##  3 casual        Tue                70259             30.6
##  4 casual        Wed                67159             28.3
##  5 casual        Thu                61054             27.9
##  6 casual        Fri                86280             29.9
##  7 casual        Sat               141919             34.4
##  8 member        Sun                93641             16.9
##  9 member        Mon                94734             14.0
## 10 member        Tue               106353             13.9
## 11 member        Wed               108626             13.8
## 12 member        Thu                94294             13.7
## 13 member        Fri                99013             14.1
## 14 member        Sat                99008             16.2

DATA VISUALIZATIONS AND SUMMARY

COUNT ‘member_casual’ FOR PIE CHART
CREATE DATA FRAME FOR PIE CHART
MEMBER Vs CASUAL APR TO JUN PIE CHART
apr_to_jun_v2_tot <- apr_to_jun_v2 %>% 
  group_by(member_casual) %>% 
  summarise(number_of_rides = n()) 

pie_cvm <- data.frame(group = c("casual", "member"), value = c(629717, 695669))

ggplot(pie_cvm, aes(x = "", y = value, fill = group)) +
  geom_col(width = 1) +
  coord_polar("y") +
  geom_text(aes(label = round(value, 3)), position = position_stack(vjust = 0.5))+
  scale_fill_brewer(palette = "Dark2")+
  labs(title = "April to June 2021 Totals.")+
  theme_economist()

MEMBER Vs CASUAL APR TO JUN DAILY TOTALS.
apr_to_jun_v2 %>% 
  group_by(member_casual, weekday.) %>% 
  summarise(number_of_rides = n()) %>% 
  arrange(member_casual, weekday.)  %>% 
  ggplot(aes(x = weekday., y = number_of_rides, fill = member_casual)) +
  scale_fill_brewer(palette = "Dark2")+
  labs(title = "Member Vs Casual, April to June 2021 Daily Totals.",
       x = "Weekday",
       y = "Number of Rides")+
  geom_col(position = "dodge")+
  theme_economist()
## `summarise()` has grouped output by 'member_casual'. You can override using the
## `.groups` argument.

SUMMARY MEMBER Vs CASUAL APR TO JUN DAILY TOTALS.
apr_to_jun_v2 %>% select(!c(ride_length_secs, ride_length_total ,started_at, start_date, weekday, rideable_type)) %>% tbl_summary(by = member_casual)
Characteristic casual, N = 629,7171 member, N = 695,6691
weekday.
    Sun 133,179 (21%) 93,641 (13%)
    Mon 69,867 (11%) 94,734 (14%)
    Tue 70,259 (11%) 106,353 (15%)
    Wed 67,159 (11%) 108,626 (16%)
    Thu 61,054 (9.7%) 94,294 (14%)
    Fri 86,280 (14%) 99,013 (14%)
    Sat 141,919 (23%) 99,008 (14%)
1 n (%)
MEMBER Vs CASUAL APR TO JUN RIDEABLE TYPE.
apr_to_jun_v2 %>% 
  group_by(member_casual, rideable_type) %>% 
  summarise(number_of_rides = n()) %>% 
  arrange(member_casual, rideable_type)  %>% 
  ggplot(aes(x = rideable_type, y = number_of_rides, fill = member_casual)) +
  scale_fill_brewer(palette = "Dark2")+
  labs(title = "Member Vs Casual, April to June 2021 Rideable Type.",
       x = "Rideable Type",
       y = "Number of Bikes")+
  geom_col(position = "dodge")+
  theme_economist()
## `summarise()` has grouped output by 'member_casual'. You can override using the
## `.groups` argument.

SUMMARY MEMBER Vs CASUAL APR TO JUN RIDEABLE TYPE.
apr_to_jun_v2 %>% select(!c(ride_length_secs,ride_length_total ,started_at, start_date, weekday, weekday.)) %>% tbl_summary(by = member_casual)
Characteristic casual, N = 629,7171 member, N = 695,6691
rideable_type
    classic_bike 374,133 (59%) 558,445 (80%)
    docked_bike 117,966 (19%) 0 (0%)
    electric_bike 137,618 (22%) 137,224 (20%)
1 n (%)
RIDEABLE TYPE APR TO JUN DAILY TOTALS.
apr_to_jun_v2 %>% 
  group_by(weekday., rideable_type) %>% 
  summarise(number_of_rides = n()) %>% 
  arrange(weekday.)  %>% 
  ggplot(aes(x = weekday., y = number_of_rides, fill = rideable_type)) +
  scale_fill_brewer(palette = "Dark2")+
  facet_wrap(~rideable_type)+
  labs(title = "Rideable Type April to June 2021 Daily Totals.",
       x = "Day Of Week",
       y = "Number of Bikes")+
  geom_col(position = "dodge")+
  theme_economist()
## `summarise()` has grouped output by 'weekday.'. You can override using the
## `.groups` argument.

RIDEABLE TYPE APR TO JUN DAILY TOTALS.
apr_to_jun_v2 %>% 
  group_by(weekday., rideable_type) %>% 
  summarise(number_of_rides = n()) %>% 
  arrange(weekday.)  %>% 
  ggplot(aes(x = weekday., y = number_of_rides, fill = rideable_type)) +
  scale_fill_brewer(palette = "Dark2")+
  labs(title = "Rideable Type April to June 2021 Daily Totals.",
       x = "Day Of Week",
       y = "Number of Bikes")+
  geom_col(position = "dodge")+
  theme_economist()
## `summarise()` has grouped output by 'weekday.'. You can override using the
## `.groups` argument.

SUMMARY RIDEABLE TYPE APR TO JUN DAILY TOTALS.
apr_to_jun_v2 %>% select(!c(ride_length_secs,ride_length_total ,started_at, start_date, weekday, member_casual )) %>% tbl_summary(by = rideable_type)
Characteristic classic_bike, N = 932,5781 docked_bike, N = 117,9661 electric_bike, N = 274,8421
weekday.
    Sun 158,511 (17%) 28,175 (24%) 40,134 (15%)
    Mon 116,292 (12%) 13,366 (11%) 34,943 (13%)
    Tue 125,954 (14%) 12,262 (10%) 38,396 (14%)
    Wed 126,066 (14%) 10,531 (8.9%) 39,188 (14%)
    Thu 109,086 (12%) 9,562 (8.1%) 36,700 (13%)
    Fri 127,996 (14%) 15,605 (13%) 41,692 (15%)
    Sat 168,673 (18%) 28,465 (24%) 43,789 (16%)
1 n (%)
RIDEABLE TYPE APR TO JUN TOTALS.
apr_to_jun_v2 %>% 
  group_by(rideable_type) %>% 
  summarise(number_of_rides = n()) %>% 
  arrange(rideable_type)  %>% 
  ggplot(aes(x = rideable_type, y = number_of_rides, fill = rideable_type)) +
  scale_fill_brewer(palette = "Dark2")+
  labs(title = "Rideable Type April to June 2021 Totals.",
       x = "Rideable Type",
       y = "Number of Bikes")+
  geom_col(position = "dodge")+
  theme_economist()

SUMMARY RIDEABLE TYPE APR TO JUN TOTALS.
apr_to_jun_v2 %>% select(!c(ride_length_secs,ride_length_total ,started_at, start_date, weekday, weekday., member_casual)) %>% tbl_summary()
Characteristic N = 1,325,3861
rideable_type
    classic_bike 932,578 (70%)
    docked_bike 117,966 (8.9%)
    electric_bike 274,842 (21%)
1 n (%)

MORE TO LEARN

SESSION INFORMATION

sessionInfo()
## R version 4.2.3 (2023-03-15 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 22621)
## 
## Matrix products: default
## 
## locale:
## [1] LC_COLLATE=English_United Kingdom.utf8 
## [2] LC_CTYPE=English_United Kingdom.utf8   
## [3] LC_MONETARY=English_United Kingdom.utf8
## [4] LC_NUMERIC=C                           
## [5] LC_TIME=English_United Kingdom.utf8    
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] ggthemes_4.2.4     RColorBrewer_1.1-3 scales_1.2.1       gtsummary_1.7.1   
##  [5] conflicted_1.2.0   janitor_2.2.0      skimr_2.1.5        here_1.0.1        
##  [9] hms_1.1.3          data.table_1.14.8  lubridate_1.9.2    forcats_1.0.0     
## [13] stringr_1.5.0      dplyr_1.1.2        purrr_1.0.1        readr_2.1.4       
## [17] tidyr_1.3.0        tibble_3.2.1       ggplot2_3.4.2      tidyverse_2.0.0   
## 
## loaded via a namespace (and not attached):
##  [1] rprojroot_2.0.3      digest_0.6.29        utf8_1.2.2          
##  [4] R6_2.5.1             repr_1.1.6           evaluate_0.16       
##  [7] highr_0.9            pillar_1.9.0         rlang_1.1.0         
## [10] rstudioapi_0.14      jquerylib_0.1.4      rmarkdown_2.22      
## [13] labeling_0.4.2       munsell_0.5.0        compiler_4.2.3      
## [16] xfun_0.38            pkgconfig_2.0.3      base64enc_0.1-3     
## [19] htmltools_0.5.5      tidyselect_1.2.0     fansi_1.0.3         
## [22] crayon_1.5.1         tzdb_0.3.0           withr_2.5.0         
## [25] commonmark_1.9.0     grid_4.2.3           jsonlite_1.8.4      
## [28] gtable_0.3.0         lifecycle_1.0.3      magrittr_2.0.3      
## [31] cli_3.6.1            stringi_1.7.8        cachem_1.0.6        
## [34] farver_2.1.1         broom.helpers_1.13.0 snakecase_0.11.0    
## [37] xml2_1.3.3           bslib_0.4.0          generics_0.1.3      
## [40] vctrs_0.6.1          tools_4.2.3          glue_1.6.2          
## [43] markdown_1.5         fastmap_1.1.0        yaml_2.3.5          
## [46] timechange_0.1.1     colorspace_2.0-3     gt_0.9.0            
## [49] memoise_2.0.1        knitr_1.39           sass_0.4.6