LOAD PACKAGES
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.2 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.2 ✔ tibble 3.2.1
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
##
## Attaching package: 'data.table'
##
## The following objects are masked from 'package:lubridate':
##
## hour, isoweek, mday, minute, month, quarter, second, wday, week,
## yday, year
##
## The following objects are masked from 'package:dplyr':
##
## between, first, last
##
## The following object is masked from 'package:purrr':
##
## transpose
##
## Attaching package: 'hms'
##
## The following object is masked from 'package:lubridate':
##
## hms
## here() starts at C:/Users/SWill/Documents/JAN TO MAR CYCLISTIC BIKES
library(skimr)
library(janitor)
##
## Attaching package: 'janitor'
##
## The following objects are masked from 'package:stats':
##
## chisq.test, fisher.test
library(conflicted)
library(gtsummary)
library(scales)
library(RColorBrewer)
library(ggthemes)
SCIENTIFIC NOTATION RUINING YOUR GGPLOT CHARTS? TRY THE LINE OF CODE
BELOW
USE ‘getwd()’ FUNCTION TO DISPLAY WORKING DIRECTORY.
## [1] "C:/Users/SWill/Documents/JAN TO MAR CYCLISTIC BIKES"
USE ‘setwd()’ FUNCTION TO SET WORKING DIRECTORY TO SIMPLIFY CALLS TO
DATA.
setwd("C:/Users/SWill/Documents/JAN TO MAR CYCLISTIC BIKES")
USE ‘spec_csv()’ FUNCTION TO CHECK THE DATA TYPES BEFORE READING THE
DATA.
NOTICE ‘started_at’ AND ‘ended_at’ COLUMNS ARE ‘datetime’ DATA
TYPE.
spec_csv("C:/Users/SWill/Desktop/CYCLISTIC BIKES/divvy-trip-data 01-12/202101-divvy-tripdata.csv")
## cols(
## ride_id = col_character(),
## rideable_type = col_character(),
## started_at = col_datetime(format = ""),
## ended_at = col_datetime(format = ""),
## start_station_name = col_character(),
## start_station_id = col_character(),
## end_station_name = col_character(),
## end_station_id = col_character(),
## start_lat = col_double(),
## start_lng = col_double(),
## end_lat = col_double(),
## end_lng = col_double(),
## member_casual = col_character()
## )
spec_csv("C:/Users/SWill/Desktop/CYCLISTIC BIKES/divvy-trip-data 01-12/202102-divvy-tripdata.csv")
## cols(
## ride_id = col_character(),
## rideable_type = col_character(),
## started_at = col_datetime(format = ""),
## ended_at = col_datetime(format = ""),
## start_station_name = col_character(),
## start_station_id = col_character(),
## end_station_name = col_character(),
## end_station_id = col_character(),
## start_lat = col_double(),
## start_lng = col_double(),
## end_lat = col_double(),
## end_lng = col_double(),
## member_casual = col_character()
## )
spec_csv("C:/Users/SWill/Desktop/CYCLISTIC BIKES/divvy-trip-data 01-12/202103-divvy-tripdata.csv")
## cols(
## ride_id = col_character(),
## rideable_type = col_character(),
## started_at = col_datetime(format = ""),
## ended_at = col_datetime(format = ""),
## start_station_name = col_character(),
## start_station_id = col_character(),
## end_station_name = col_character(),
## end_station_id = col_character(),
## start_lat = col_double(),
## start_lng = col_double(),
## end_lat = col_double(),
## end_lng = col_double(),
## member_casual = col_character()
## )
UPLOAD DATASETS divvy-trip-data.csv FILES.
df_01 <- read.csv("C:/Users/SWill/Desktop/CYCLISTIC BIKES/divvy-trip-data 01-12/202101-divvy-tripdata.csv")
df_02 <- read.csv("C:/Users/SWill/Desktop/CYCLISTIC BIKES/divvy-trip-data 01-12/202102-divvy-tripdata.csv")
df_03 <- read.csv("C:/Users/SWill/Desktop/CYCLISTIC BIKES/divvy-trip-data 01-12/202103-divvy-tripdata.csv")
USE ‘bind_rows()’ FUNCTION TO STACK DATA FRAMES INTO ONE BIG DATA
FRAME.
jan_to_mar <- bind_rows(df_01,df_02,df_03)
CHECK COLUMNS.
## [1] "ride_id" "rideable_type" "started_at"
## [4] "ended_at" "start_station_name" "start_station_id"
## [7] "end_station_name" "end_station_id" "start_lat"
## [10] "start_lng" "end_lat" "end_lng"
## [13] "member_casual"
USE ‘glimpse()’ FUNCTION TO GET A BETTER UNDERSTANDING OF THE
DATA.
Rows: 374,952 Columns: 13
COLUMNS ‘started_at’ AND ‘ended_at’ ARE NOW ‘character’ DATA
TYPE.
COLUMNS ‘end_station_name’ AND ‘end_station_id’ HAVE BLANK ROWS THAT
NEED TO BE REMOVED.
## Rows: 374,952
## Columns: 13
## $ ride_id <chr> "E19E6F1B8D4C42ED", "DC88F20C2C55F27F", "EC45C94683…
## $ rideable_type <chr> "electric_bike", "electric_bike", "electric_bike", …
## $ started_at <chr> "2021-01-23 16:14:19", "2021-01-27 18:43:08", "2021…
## $ ended_at <chr> "2021-01-23 16:24:44", "2021-01-27 18:47:12", "2021…
## $ start_station_name <chr> "California Ave & Cortez St", "California Ave & Cor…
## $ start_station_id <chr> "17660", "17660", "17660", "17660", "17660", "17660…
## $ end_station_name <chr> "", "", "", "", "", "", "", "", "", "Wood St & Augu…
## $ end_station_id <chr> "", "", "", "", "", "", "", "", "", "657", "13258",…
## $ start_lat <dbl> 41.90034, 41.90033, 41.90031, 41.90040, 41.90033, 4…
## $ start_lng <dbl> -87.69674, -87.69671, -87.69664, -87.69666, -87.696…
## $ end_lat <dbl> 41.89000, 41.90000, 41.90000, 41.92000, 41.90000, 4…
## $ end_lng <dbl> -87.72000, -87.69000, -87.70000, -87.69000, -87.700…
## $ member_casual <chr> "member", "member", "member", "member", "casual", "…
USE ‘str()’ FUNCTION TO SEE LIST OF COLUMNS AND DATA TYPES NUMERIC,
CHARACTER, DATETIME ETC.
‘data.frame’: 374952 obs. of 13 variables:
## 'data.frame': 374952 obs. of 13 variables:
## $ ride_id : chr "E19E6F1B8D4C42ED" "DC88F20C2C55F27F" "EC45C94683FE3F27" "4FA453A75AE377DB" ...
## $ rideable_type : chr "electric_bike" "electric_bike" "electric_bike" "electric_bike" ...
## $ started_at : chr "2021-01-23 16:14:19" "2021-01-27 18:43:08" "2021-01-21 22:35:54" "2021-01-07 13:31:13" ...
## $ ended_at : chr "2021-01-23 16:24:44" "2021-01-27 18:47:12" "2021-01-21 22:37:14" "2021-01-07 13:42:55" ...
## $ start_station_name: chr "California Ave & Cortez St" "California Ave & Cortez St" "California Ave & Cortez St" "California Ave & Cortez St" ...
## $ start_station_id : chr "17660" "17660" "17660" "17660" ...
## $ end_station_name : chr "" "" "" "" ...
## $ end_station_id : chr "" "" "" "" ...
## $ start_lat : num 41.9 41.9 41.9 41.9 41.9 ...
## $ start_lng : num -87.7 -87.7 -87.7 -87.7 -87.7 ...
## $ end_lat : num 41.9 41.9 41.9 41.9 41.9 ...
## $ end_lng : num -87.7 -87.7 -87.7 -87.7 -87.7 ...
## $ member_casual : chr "member" "member" "member" "member" ...
USE TIDYR TO SEPARATE “started_at” COLUMN TO A NEW COLUMN CALLED
“start_date” and “start_time”.
USE TIDYR TO SEPARATE “ended_at” COLUMN TO A NEW COLUMN CALLED
“end_date” and “end_time”.
jan_to_mar <- tidyr::separate(jan_to_mar, started_at, c("start_date", "start_time"), sep = " ", remove = FALSE)
jan_to_mar <- tidyr::separate(jan_to_mar, ended_at, c("end_date", "end_time"), sep = " ", remove = FALSE)
CHECK NEW COLUMNS.
## [1] "ride_id" "rideable_type" "started_at"
## [4] "start_date" "start_time" "ended_at"
## [7] "end_date" "end_time" "start_station_name"
## [10] "start_station_id" "end_station_name" "end_station_id"
## [13] "start_lat" "start_lng" "end_lat"
## [16] "end_lng" "member_casual"
‘data.frame’: 374952 obs. of 17 variables:
## 'data.frame': 374952 obs. of 17 variables:
## $ ride_id : chr "E19E6F1B8D4C42ED" "DC88F20C2C55F27F" "EC45C94683FE3F27" "4FA453A75AE377DB" ...
## $ rideable_type : chr "electric_bike" "electric_bike" "electric_bike" "electric_bike" ...
## $ started_at : chr "2021-01-23 16:14:19" "2021-01-27 18:43:08" "2021-01-21 22:35:54" "2021-01-07 13:31:13" ...
## $ start_date : chr "2021-01-23" "2021-01-27" "2021-01-21" "2021-01-07" ...
## $ start_time : chr "16:14:19" "18:43:08" "22:35:54" "13:31:13" ...
## $ ended_at : chr "2021-01-23 16:24:44" "2021-01-27 18:47:12" "2021-01-21 22:37:14" "2021-01-07 13:42:55" ...
## $ end_date : chr "2021-01-23" "2021-01-27" "2021-01-21" "2021-01-07" ...
## $ end_time : chr "16:24:44" "18:47:12" "22:37:14" "13:42:55" ...
## $ start_station_name: chr "California Ave & Cortez St" "California Ave & Cortez St" "California Ave & Cortez St" "California Ave & Cortez St" ...
## $ start_station_id : chr "17660" "17660" "17660" "17660" ...
## $ end_station_name : chr "" "" "" "" ...
## $ end_station_id : chr "" "" "" "" ...
## $ start_lat : num 41.9 41.9 41.9 41.9 41.9 ...
## $ start_lng : num -87.7 -87.7 -87.7 -87.7 -87.7 ...
## $ end_lat : num 41.9 41.9 41.9 41.9 41.9 ...
## $ end_lng : num -87.7 -87.7 -87.7 -87.7 -87.7 ...
## $ member_casual : chr "member" "member" "member" "member" ...
COLUMN RIDEABLE TYPE.
EXPLORE…CHARACTER VARIABLE TYPE IN “rideable_type” COLUMN.
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(jan_to_mar$rideable_type)
## [1] "character"
USE ‘unique ()’ FUNCTION TO FIND INDIVIDUAL VALUES IN COLUMN.
unique(jan_to_mar$rideable_type)
## [1] "electric_bike" "classic_bike" "docked_bike"
HOW MANY OBSERVATIONS FALL UNDER EACH USER TYPE?
table(jan_to_mar$rideable_type)
##
## classic_bike docked_bike electric_bike
## 249257 19034 106661
sort(table(jan_to_mar $rideable_type), decreasing = TRUE)
##
## classic_bike electric_bike docked_bike
## 249257 106661 19034
BAR PLOT OF DATA DISTRIBUTION OF ‘rideable_type’ COLUMN.
barplot(sort(table(jan_to_mar $rideable_type), decreasing = TRUE))

CHANGE VARIABLE FROM CHARACTER TO FACTOR.
jan_to_mar$rideable_type <- as.factor(jan_to_mar$rideable_type)
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(jan_to_mar$rideable_type)
## [1] "factor"
USE ‘levels’ FUNCTION TO CHECK FACTOR.
levels(jan_to_mar$rideable_type)
## [1] "classic_bike" "docked_bike" "electric_bike"
NOTE RIDEABLE TYPE IS NOW A FACTOR.
## Rows: 374,952
## Columns: 17
## $ ride_id <chr> "E19E6F1B8D4C42ED", "DC88F20C2C55F27F", "EC45C94683…
## $ rideable_type <fct> electric_bike, electric_bike, electric_bike, electr…
## $ started_at <chr> "2021-01-23 16:14:19", "2021-01-27 18:43:08", "2021…
## $ start_date <chr> "2021-01-23", "2021-01-27", "2021-01-21", "2021-01-…
## $ start_time <chr> "16:14:19", "18:43:08", "22:35:54", "13:31:13", "02…
## $ ended_at <chr> "2021-01-23 16:24:44", "2021-01-27 18:47:12", "2021…
## $ end_date <chr> "2021-01-23", "2021-01-27", "2021-01-21", "2021-01-…
## $ end_time <chr> "16:24:44", "18:47:12", "22:37:14", "13:42:55", "02…
## $ start_station_name <chr> "California Ave & Cortez St", "California Ave & Cor…
## $ start_station_id <chr> "17660", "17660", "17660", "17660", "17660", "17660…
## $ end_station_name <chr> "", "", "", "", "", "", "", "", "", "Wood St & Augu…
## $ end_station_id <chr> "", "", "", "", "", "", "", "", "", "657", "13258",…
## $ start_lat <dbl> 41.90034, 41.90033, 41.90031, 41.90040, 41.90033, 4…
## $ start_lng <dbl> -87.69674, -87.69671, -87.69664, -87.69666, -87.696…
## $ end_lat <dbl> 41.89000, 41.90000, 41.90000, 41.92000, 41.90000, 4…
## $ end_lng <dbl> -87.72000, -87.69000, -87.70000, -87.69000, -87.700…
## $ member_casual <chr> "member", "member", "member", "member", "casual", "…
COLUMN START_STATION_NAME START_STATION_ID END_STATION_NAME AND
END_STATION_ID.
EXPLORE CHARACTER VARIABLE TYPE IN “start_staion_name” AND
“end_staion_name”
REPLACE ALL BLANK VALUES IN “start_station_name” COLUMN WITH NA
VALUES.
jan_to_mar$start_station_name[jan_to_mar$start_station_name==""] <- NA
REPLACE ALL BLANK VALUES IN “start_station_id” COLUMN WITH NA
VALUES.
jan_to_mar$start_station_id[jan_to_mar$start_station_id==""] <- NA
REPLACE ALL BLANK VALUES IN “end_station_name” COLUMN WITH NA
VALUES.
jan_to_mar$end_station_name[jan_to_mar$end_station_name==""] <- NA
REPLACE ALL BLANK VALUES IN “end_station_id” COLUMN WITH NA
VALUES.
jan_to_mar$end_station_id[jan_to_mar$end_station_id==""] <- NA
## Rows: 374,952
## Columns: 17
## $ ride_id <chr> "E19E6F1B8D4C42ED", "DC88F20C2C55F27F", "EC45C94683…
## $ rideable_type <fct> electric_bike, electric_bike, electric_bike, electr…
## $ started_at <dttm> 2021-01-23 16:14:19, 2021-01-27 18:43:08, 2021-01-…
## $ start_date <dttm> 2021-01-23, 2021-01-27, 2021-01-21, 2021-01-07, 20…
## $ start_time <chr> "16:14:19", "18:43:08", "22:35:54", "13:31:13", "02…
## $ ended_at <dttm> 2021-01-23 16:24:44, 2021-01-27 18:47:12, 2021-01-…
## $ end_date <dttm> 2021-01-23, 2021-01-27, 2021-01-21, 2021-01-07, 20…
## $ end_time <chr> "16:24:44", "18:47:12", "22:37:14", "13:42:55", "02…
## $ start_station_name <chr> "California Ave & Cortez St", "California Ave & Cor…
## $ start_station_id <chr> "17660", "17660", "17660", "17660", "17660", "17660…
## $ end_station_name <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, "Wood St & Augu…
## $ end_station_id <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, "657", "13258",…
## $ start_lat <dbl> 41.90034, 41.90033, 41.90031, 41.90040, 41.90033, 4…
## $ start_lng <dbl> -87.69674, -87.69671, -87.69664, -87.69666, -87.696…
## $ end_lat <dbl> 41.89000, 41.90000, 41.90000, 41.92000, 41.90000, 4…
## $ end_lng <dbl> -87.72000, -87.69000, -87.70000, -87.69000, -87.700…
## $ member_casual <chr> "member", "member", "member", "member", "casual", "…
REMOVE ROWS WITH NA VALUES IN ALL COLUMNS.
jan_to_mar <- jan_to_mar %>% drop_na()
‘data.frame’: 332196 obs. of 17 variables:
## 'data.frame': 332196 obs. of 17 variables:
## $ ride_id : chr "B9F73448DFBE0D45" "457C7F4B5D3DA135" "57C750326F9FDABE" "4D518C65E338D070" ...
## $ rideable_type : Factor w/ 3 levels "classic_bike",..: 1 3 3 3 1 3 1 1 3 3 ...
## $ started_at : POSIXlt, format: "2021-01-24 19:15:38" "2021-01-23 12:57:38" ...
## $ start_date : POSIXlt, format: "2021-01-24" "2021-01-23" ...
## $ start_time : chr "19:15:38" "12:57:38" "15:28:04" "15:28:57" ...
## $ ended_at : POSIXlt, format: "2021-01-24 19:22:51" "2021-01-23 13:02:10" ...
## $ end_date : POSIXlt, format: "2021-01-24" "2021-01-23" ...
## $ end_time : chr "19:22:51" "13:02:10" "15:37:51" "15:37:54" ...
## $ start_station_name: chr "California Ave & Cortez St" "California Ave & Cortez St" "California Ave & Cortez St" "California Ave & Cortez St" ...
## $ start_station_id : chr "17660" "17660" "17660" "17660" ...
## $ end_station_name : chr "Wood St & Augusta Blvd" "California Ave & North Ave" "Wood St & Augusta Blvd" "Wood St & Augusta Blvd" ...
## $ end_station_id : chr "657" "13258" "657" "657" ...
## $ start_lat : num 41.9 41.9 41.9 41.9 41.9 ...
## $ start_lng : num -87.7 -87.7 -87.7 -87.7 -87.7 ...
## $ end_lat : num 41.9 41.9 41.9 41.9 41.9 ...
## $ end_lng : num -87.7 -87.7 -87.7 -87.7 -87.7 ...
## $ member_casual : chr "member" "member" "casual" "casual" ...
COLUMN MEMBER_CASUAL.
EXPLORE…CHARACTER VARIABLE TYPE IN “member_casual” COLUMN.
USE ‘unique ()’ FUNCTION TO FIND INDIVIDUAL VALUES IN COLUMN.
unique(jan_to_mar$member_casual)
## [1] "member" "casual"
HOW MANY OBSERVATIONS FALL UNDER EACH USER TYPE?
table(jan_to_mar$member_casual)
##
## casual member
## 98945 233251
sort(table(jan_to_mar$member_casual), decreasing = TRUE)
##
## member casual
## 233251 98945
BAR PLOT OF DATA DISTRIBUTION OF ‘member_casual’ COLUMN.
barplot(sort(table(jan_to_mar$member_casual), decreasing = TRUE))

CHANGE VARIABLE FROM CHARACTER TO FACTOR.
jan_to_mar$member_casual <- as.factor(jan_to_mar$member_casual)
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(jan_to_mar$member_casual)
## [1] "factor"
USE ‘levels’ FUNCTION TO CHECK FACTOR.
levels(jan_to_mar$member_casual)
## [1] "casual" "member"
NOTE MEMBER CASUAL IS NOW A FACTOR.
## Rows: 332,196
## Columns: 17
## $ ride_id <chr> "B9F73448DFBE0D45", "457C7F4B5D3DA135", "57C750326F…
## $ rideable_type <fct> classic_bike, electric_bike, electric_bike, electri…
## $ started_at <dttm> 2021-01-24 19:15:38, 2021-01-23 12:57:38, 2021-01-…
## $ start_date <dttm> 2021-01-24, 2021-01-23, 2021-01-09, 2021-01-09, 20…
## $ start_time <chr> "19:15:38", "12:57:38", "15:28:04", "15:28:57", "15…
## $ ended_at <dttm> 2021-01-24 19:22:51, 2021-01-23 13:02:10, 2021-01-…
## $ end_date <dttm> 2021-01-24, 2021-01-23, 2021-01-09, 2021-01-09, 20…
## $ end_time <chr> "19:22:51", "13:02:10", "15:37:51", "15:37:54", "16…
## $ start_station_name <chr> "California Ave & Cortez St", "California Ave & Cor…
## $ start_station_id <chr> "17660", "17660", "17660", "17660", "17660", "17660…
## $ end_station_name <chr> "Wood St & Augusta Blvd", "California Ave & North A…
## $ end_station_id <chr> "657", "13258", "657", "657", "657", "KA1504000135"…
## $ start_lat <dbl> 41.90036, 41.90041, 41.90037, 41.90038, 41.90036, 4…
## $ start_lng <dbl> -87.69670, -87.69673, -87.69669, -87.69672, -87.696…
## $ end_lat <dbl> 41.89918, 41.91044, 41.89918, 41.89915, 41.89918, 4…
## $ end_lng <dbl> -87.67220, -87.69689, -87.67218, -87.67218, -87.672…
## $ member_casual <fct> member, member, casual, casual, casual, member, mem…
ADD COLUMN FOR DAY OF WEEK.
NUMERIC VALUE DAY OF WEEK SUNDAY = 1 MONDAY = 2 TUESDAY = 3 ETC,
ETC…
jan_to_mar$weekday <- lubridate::wday(jan_to_mar$start_date)
CHARACTER DAY OF WEEK USING ABBREVIATED LABELS MON,TUE,WED ETC
ETC…
jan_to_mar$weekday. <- lubridate::wday(jan_to_mar$start_date, label = TRUE)
CHANGE WEEKDAY DATA TYPE
jan_to_mar$weekday. <- as.factor(jan_to_mar$weekday.)
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(jan_to_mar$weekday.)
## [1] "ordered" "factor"
USE ‘levels’ FUNCTION TO CHECK FACTOR.
levels(jan_to_mar$weekday.)
## [1] "Sun" "Mon" "Tue" "Wed" "Thu" "Fri" "Sat"
NOTE WEEKDAY. IS AN ORDERED FACTOR.
## Rows: 332,196
## Columns: 21
## $ ride_id <chr> "B9F73448DFBE0D45", "457C7F4B5D3DA135", "57C750326F…
## $ rideable_type <fct> classic_bike, electric_bike, electric_bike, electri…
## $ started_at <dttm> 2021-01-24 19:15:38, 2021-01-23 12:57:38, 2021-01-…
## $ start_date <dttm> 2021-01-24, 2021-01-23, 2021-01-09, 2021-01-09, 20…
## $ start_time <chr> "19:15:38", "12:57:38", "15:28:04", "15:28:57", "15…
## $ ended_at <dttm> 2021-01-24 19:22:51, 2021-01-23 13:02:10, 2021-01-…
## $ end_date <dttm> 2021-01-24, 2021-01-23, 2021-01-09, 2021-01-09, 20…
## $ end_time <chr> "19:22:51", "13:02:10", "15:37:51", "15:37:54", "16…
## $ start_station_name <chr> "California Ave & Cortez St", "California Ave & Cor…
## $ start_station_id <chr> "17660", "17660", "17660", "17660", "17660", "17660…
## $ end_station_name <chr> "Wood St & Augusta Blvd", "California Ave & North A…
## $ end_station_id <chr> "657", "13258", "657", "657", "657", "KA1504000135"…
## $ start_lat <dbl> 41.90036, 41.90041, 41.90037, 41.90038, 41.90036, 4…
## $ start_lng <dbl> -87.69670, -87.69673, -87.69669, -87.69672, -87.696…
## $ end_lat <dbl> 41.89918, 41.91044, 41.89918, 41.89915, 41.89918, 4…
## $ end_lng <dbl> -87.67220, -87.69689, -87.67218, -87.67218, -87.672…
## $ member_casual <fct> member, member, casual, casual, casual, member, mem…
## $ ride_length_secs <dbl> 433, 272, 587, 537, 609, 1233, 360, 268, 1103, 1025…
## $ ride_length_total <dbl> 7.216667, 4.533333, 9.783333, 8.950000, 10.150000, …
## $ weekday <dbl> 1, 7, 7, 7, 1, 6, 3, 7, 4, 6, 1, 2, 5, 2, 6, 7, 5, …
## $ weekday. <ord> Sun, Sat, Sat, Sat, Sun, Fri, Tue, Sat, Wed, Fri, S…
EXPLORE NUMERIC VARIABLE TYPE IN “weekday” COLUMN.
USE ‘class’ FUNCTION TO CHECK DATA TYPE IN COLUMN.
class(jan_to_mar$weekday)
## [1] "numeric"
USE ‘summary()’ FUNCTION TO SUMMARIZE VALUES IN DATA FRAME.
summary(jan_to_mar$weekday)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.0 2.0 4.0 4.1 6.0 7.0
BOX PLOT IS A GRAPHICAL REPRESENTATION TO SUMMARIZE DATA AND
IDENTIFY OUTLIERS.
boxplot(jan_to_mar$weekday, col = 'orange')

HISTOGRAM TO VISUALIZE DISTRIBUTION OF VALUES IN WEEKDAY
COLUMN.
hist(jan_to_mar$weekday, col = 'purple')

NOTE WEEKDAY IS NOW A ‘dbl’.
## Rows: 332,196
## Columns: 21
## $ ride_id <chr> "B9F73448DFBE0D45", "457C7F4B5D3DA135", "57C750326F…
## $ rideable_type <fct> classic_bike, electric_bike, electric_bike, electri…
## $ started_at <dttm> 2021-01-24 19:15:38, 2021-01-23 12:57:38, 2021-01-…
## $ start_date <dttm> 2021-01-24, 2021-01-23, 2021-01-09, 2021-01-09, 20…
## $ start_time <chr> "19:15:38", "12:57:38", "15:28:04", "15:28:57", "15…
## $ ended_at <dttm> 2021-01-24 19:22:51, 2021-01-23 13:02:10, 2021-01-…
## $ end_date <dttm> 2021-01-24, 2021-01-23, 2021-01-09, 2021-01-09, 20…
## $ end_time <chr> "19:22:51", "13:02:10", "15:37:51", "15:37:54", "16…
## $ start_station_name <chr> "California Ave & Cortez St", "California Ave & Cor…
## $ start_station_id <chr> "17660", "17660", "17660", "17660", "17660", "17660…
## $ end_station_name <chr> "Wood St & Augusta Blvd", "California Ave & North A…
## $ end_station_id <chr> "657", "13258", "657", "657", "657", "KA1504000135"…
## $ start_lat <dbl> 41.90036, 41.90041, 41.90037, 41.90038, 41.90036, 4…
## $ start_lng <dbl> -87.69670, -87.69673, -87.69669, -87.69672, -87.696…
## $ end_lat <dbl> 41.89918, 41.91044, 41.89918, 41.89915, 41.89918, 4…
## $ end_lng <dbl> -87.67220, -87.69689, -87.67218, -87.67218, -87.672…
## $ member_casual <fct> member, member, casual, casual, casual, member, mem…
## $ ride_length_secs <dbl> 433, 272, 587, 537, 609, 1233, 360, 268, 1103, 1025…
## $ ride_length_total <dbl> 7.216667, 4.533333, 9.783333, 8.950000, 10.150000, …
## $ weekday <dbl> 1, 7, 7, 7, 1, 6, 3, 7, 4, 6, 1, 2, 5, 2, 6, 7, 5, …
## $ weekday. <ord> Sun, Sat, Sat, Sat, Sun, Fri, Tue, Sat, Wed, Fri, S…
NOTE WEEKDAY IS NOW AN ORDERED FACTOR.
## 'data.frame': 332196 obs. of 21 variables:
## $ ride_id : chr "B9F73448DFBE0D45" "457C7F4B5D3DA135" "57C750326F9FDABE" "4D518C65E338D070" ...
## $ rideable_type : Factor w/ 3 levels "classic_bike",..: 1 3 3 3 1 3 1 1 3 3 ...
## $ started_at : POSIXlt, format: "2021-01-24 19:15:38" "2021-01-23 12:57:38" ...
## $ start_date : POSIXlt, format: "2021-01-24" "2021-01-23" ...
## $ start_time : chr "19:15:38" "12:57:38" "15:28:04" "15:28:57" ...
## $ ended_at : POSIXlt, format: "2021-01-24 19:22:51" "2021-01-23 13:02:10" ...
## $ end_date : POSIXlt, format: "2021-01-24" "2021-01-23" ...
## $ end_time : chr "19:22:51" "13:02:10" "15:37:51" "15:37:54" ...
## $ start_station_name: chr "California Ave & Cortez St" "California Ave & Cortez St" "California Ave & Cortez St" "California Ave & Cortez St" ...
## $ start_station_id : chr "17660" "17660" "17660" "17660" ...
## $ end_station_name : chr "Wood St & Augusta Blvd" "California Ave & North Ave" "Wood St & Augusta Blvd" "Wood St & Augusta Blvd" ...
## $ end_station_id : chr "657" "13258" "657" "657" ...
## $ start_lat : num 41.9 41.9 41.9 41.9 41.9 ...
## $ start_lng : num -87.7 -87.7 -87.7 -87.7 -87.7 ...
## $ end_lat : num 41.9 41.9 41.9 41.9 41.9 ...
## $ end_lng : num -87.7 -87.7 -87.7 -87.7 -87.7 ...
## $ member_casual : Factor w/ 2 levels "casual","member": 2 2 1 1 1 2 2 2 2 2 ...
## $ ride_length_secs : num 433 272 587 537 609 ...
## $ ride_length_total : num 7.22 4.53 9.78 8.95 10.15 ...
## $ weekday : num 1 7 7 7 1 6 3 7 4 6 ...
## $ weekday. : Ord.factor w/ 7 levels "Sun"<"Mon"<"Tue"<..: 1 7 7 7 1 6 3 7 4 6 ...