#Clean Political data frame to explore the effect of measured other variables
study2_data_raw_pol_all <- read_csv("C:/Users/Dell/OneDrive/Documents/CREST Postdoc/Deepfakes Experiment/Study 2 raw data/NEW - DeepF_Study 2_Politics (Believability AND Sharing Intentions) - FINAL - Copy_July 28, 2023_06.53.csv")
## Rows: 64 Columns: 166
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (166): StartDate, EndDate, Status, Progress, Duration (in seconds), Fini...
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
head (study2_data_raw_pol_all)
## # A tibble: 6 × 166
## StartDate EndDate Status Progress Duration (in seconds…¹ Finished RecordedDate
## <chr> <chr> <chr> <chr> <chr> <chr> <chr>
## 1 "Start D… "End D… "Resp… "Progre… "Duration (in seconds… "Finish… "Recorded D…
## 2 "{\"Impo… "{\"Im… "{\"I… "{\"Imp… "{\"ImportId\":\"dura… "{\"Imp… "{\"ImportI…
## 3 "6/21/20… "6/21/… "Surv… "100" "12" "TRUE" "6/21/2023 …
## 4 "6/21/20… "6/21/… "IP A… "100" "1116" "TRUE" "6/21/2023 …
## 5 "6/26/20… "6/26/… "IP A… "100" "716" "TRUE" "6/26/2023 …
## 6 "6/26/20… "6/26/… "IP A… "100" "748" "TRUE" "6/26/2023 …
## # ℹ abbreviated name: ¹​`Duration (in seconds)`
## # ℹ 159 more variables: ResponseId <chr>, DistributionChannel <chr>,
## # UserLanguage <chr>, Q_RecaptchaScore <chr>, QID1 <chr>, QID3 <chr>,
## # `COUNTRY&CITY` <chr>, AGE <chr>, PRONOUNS <chr>, BROWSE_INTERNET <chr>,
## # USE_SNS <chr>, SNS_PLATFORM_USE <chr>, WATCHING_BEHAVIOR <chr>,
## # SHARING_BEHAVIOR <chr>, KNOW_DEEPFAKE <chr>, KNOW_CREATE_DF <chr>,
## # EXP_CREATE_DF <chr>, EASE_CREATE_DF <chr>, `1P_R_BELIEVE` <chr>, …
# Drop the first 4 raws as those were used for test
study2_data_raw_pol<- study2_data_raw_pol_all[-c(1:4),]
head(study2_data_raw_pol)
## # A tibble: 6 × 166
## StartDate EndDate Status Progress Duration (in seconds…¹ Finished RecordedDate
## <chr> <chr> <chr> <chr> <chr> <chr> <chr>
## 1 6/26/202… 6/26/2… IP Ad… 100 716 TRUE 6/26/2023 2…
## 2 6/26/202… 6/26/2… IP Ad… 100 748 TRUE 6/26/2023 2…
## 3 6/26/202… 6/26/2… IP Ad… 100 1174 TRUE 6/26/2023 2…
## 4 6/26/202… 6/26/2… IP Ad… 100 991 TRUE 6/26/2023 2…
## 5 6/26/202… 6/26/2… IP Ad… 100 1255 TRUE 6/26/2023 2…
## 6 6/26/202… 6/26/2… IP Ad… 100 882 TRUE 6/26/2023 2…
## # ℹ abbreviated name: ¹​`Duration (in seconds)`
## # ℹ 159 more variables: ResponseId <chr>, DistributionChannel <chr>,
## # UserLanguage <chr>, Q_RecaptchaScore <chr>, QID1 <chr>, QID3 <chr>,
## # `COUNTRY&CITY` <chr>, AGE <chr>, PRONOUNS <chr>, BROWSE_INTERNET <chr>,
## # USE_SNS <chr>, SNS_PLATFORM_USE <chr>, WATCHING_BEHAVIOR <chr>,
## # SHARING_BEHAVIOR <chr>, KNOW_DEEPFAKE <chr>, KNOW_CREATE_DF <chr>,
## # EXP_CREATE_DF <chr>, EASE_CREATE_DF <chr>, `1P_R_BELIEVE` <chr>, …
nrow(study2_data_raw_pol)
## [1] 60
#Clean Entertainment data frame to explore the effect of measured other variables
study2_data_raw_ent_all <- read_csv("C:/Users/Dell/OneDrive/Documents/CREST Postdoc/Deepfakes Experiment/Study 2 raw data/NEW - DeepF_Study 2_Entertainment (Believability AND Sharing Intentions) - FINAL_July 28, 2023_06.18.csv")
## Rows: 63 Columns: 166
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (166): StartDate, EndDate, Status, Progress, Duration (in seconds), Fini...
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
head (study2_data_raw_ent_all)
## # A tibble: 6 × 166
## StartDate EndDate Status Progress Duration (in seconds…¹ Finished RecordedDate
## <chr> <chr> <chr> <chr> <chr> <chr> <chr>
## 1 "Start D… "End D… "Resp… "Progre… "Duration (in seconds… "Finish… "Recorded D…
## 2 "{\"Impo… "{\"Im… "{\"I… "{\"Imp… "{\"ImportId\":\"dura… "{\"Imp… "{\"ImportI…
## 3 "2023-07… "2023-… "IP A… "100" "785" "True" "2023-07-02…
## 4 "2023-07… "2023-… "IP A… "100" "1411" "True" "2023-07-02…
## 5 "2023-07… "2023-… "IP A… "100" "1686" "True" "2023-07-02…
## 6 "2023-07… "2023-… "IP A… "100" "741" "True" "2023-07-02…
## # ℹ abbreviated name: ¹​`Duration (in seconds)`
## # ℹ 159 more variables: ResponseId <chr>, DistributionChannel <chr>,
## # UserLanguage <chr>, Q_RecaptchaScore <chr>, QID1 <chr>, QID3 <chr>,
## # `COUNTRY&CITY` <chr>, AGE <chr>, PRONOUNS <chr>, BROWSE_INTERNET <chr>,
## # USE_SNS <chr>, SNS_PLATFORM_USE <chr>, WATCHING_BEHAVIOR <chr>,
## # SHARING_BEHAVIOR <chr>, KNOW_DEEPFAKE <chr>, KNOW_CREATE_DF <chr>,
## # EXP_CREATE_DF <chr>, EASE_CREATE_DF <chr>, `3E_R_BELIEVE` <chr>, …
# Drop the first 4 raws as those were used for test
study2_data_all_ent<- study2_data_raw_ent_all[-c(1:2),]
head(study2_data_all_ent)
## # A tibble: 6 × 166
## StartDate EndDate Status Progress Duration (in seconds…¹ Finished RecordedDate
## <chr> <chr> <chr> <chr> <chr> <chr> <chr>
## 1 2023-07-… 2023-0… IP Ad… 100 785 True 2023-07-02 …
## 2 2023-07-… 2023-0… IP Ad… 100 1411 True 2023-07-02 …
## 3 2023-07-… 2023-0… IP Ad… 100 1686 True 2023-07-02 …
## 4 2023-07-… 2023-0… IP Ad… 100 741 True 2023-07-02 …
## 5 2023-07-… 2023-0… IP Ad… 100 735 True 2023-07-02 …
## 6 2023-07-… 2023-0… IP Ad… 100 1578 True 2023-07-02 …
## # ℹ abbreviated name: ¹​`Duration (in seconds)`
## # ℹ 159 more variables: ResponseId <chr>, DistributionChannel <chr>,
## # UserLanguage <chr>, Q_RecaptchaScore <chr>, QID1 <chr>, QID3 <chr>,
## # `COUNTRY&CITY` <chr>, AGE <chr>, PRONOUNS <chr>, BROWSE_INTERNET <chr>,
## # USE_SNS <chr>, SNS_PLATFORM_USE <chr>, WATCHING_BEHAVIOR <chr>,
## # SHARING_BEHAVIOR <chr>, KNOW_DEEPFAKE <chr>, KNOW_CREATE_DF <chr>,
## # EXP_CREATE_DF <chr>, EASE_CREATE_DF <chr>, `3E_R_BELIEVE` <chr>, …
nrow(study2_data_all_ent)
## [1] 61
#```{r}
#Likert scale has
likely_values <- c(
"very unlikely",
"moderately unlikely",
"slightly unlikely",
"slightly likely",
"moderately likely",
"very likely"
)
consume_values <- c(
"Less than 1 hour per day",
"1-2 hours per day",
"2-3 hours per day",
"3-4 hours per day",
"5+ hours per day"
)
interest_levels <- c ( "not at all interested in this",
"not interested",
"neither not interested nor interested",
"interested",
"very much interested"
)
likley_shory_values <- c("Very unlikely",
"Unlikely",
"Neither likely nor unlikely",
"Likely",
"Very likely")
knowledgable_values <- c(
"very unknowledgeable",
"somewhat unknowledgeable",
"neither",
"somewhat knowledgeable",
"very knowledgeable"
)
easy_levels <- c("Very difficult",
"Difficult",
"Neither difficult nor easy",
"Easy",
"Very easy")
boolen_q <- c( "Yes", "No")
importance_levels <- c ("very unimportant" ,
"unimportant",
"neither important nor unimportant",
"important" ,
"very important"
)
novel_levels <-c ("not at all novel",
"not novel",
"neither novel nor not novel",
"novel",
"very novel")
familiar_levels <-c ("not at all familiar",
"not familiar",
"neither familiar nor unfamiliar",
"familiar",
"very familiar")
believe_levels <- c("very unlikely",
"unlikely",
"neither likely nor unlikely",
"likely",
"very likely" )
####################
#After the survey, the postsurvey questions
judging_impact_values <- c(
"extremely unlikely",
"moderately unlikely",
"slightly unlikely",
"slightly likely",
"moderately likely",
"extremely likely"
)
sharing_accuracy_level <- c ("not at all important",
"moderately important" ,
"slightly important",
"neither important nor unimportant",
"very important" ,
"extremely important"
)
#Get all the data into lower case since likert will be all in lower
pol_individual_df <- study2_data_raw_pol |>
mutate(Duration = as.numeric(`Duration (in seconds)`),
AGE = as.numeric(AGE),
BROWSE_INTERNET = ordered(BROWSE_INTERNET, levels = consume_values),
browse_internet = as.numeric(BROWSE_INTERNET, levels = consume_values),
USE_SNS = ordered(USE_SNS, levels = consume_values),
use_sns = as.numeric(USE_SNS, levels = consume_values),
WATCHING_BEHAVIOR = ordered(WATCHING_BEHAVIOR, levels =likley_shory_values),
watching_behavior = as.numeric (WATCHING_BEHAVIOR, levels =likley_shory_values),
SHARING_BEHAVIOR = ordered(SHARING_BEHAVIOR, levels = likley_shory_values),
sharing_behavior = as.numeric(SHARING_BEHAVIOR, levels = likley_shory_values),
KNOW_DEEPFAKE = KNOW_DEEPFAKE == "Yes",
EXP_CREATE_DF = EXP_CREATE_DF == "Yes",
KNOW_CREATE_DF = str_to_lower(KNOW_CREATE_DF),
KNOW_CREATE_DF = ordered(KNOW_CREATE_DF, levels = knowledgable_values),
know_create_df = as.numeric(KNOW_CREATE_DF, levels = knowledgable_values),
EASE_CREATE_DF = ordered(EASE_CREATE_DF, levels = easy_levels),
ease_create_df = as.numeric(EASE_CREATE_DF, levels = easy_levels)) |>
dplyr::select(
ResponseId,
Duration,
AGE,
BROWSE_INTERNET,
browse_internet,
USE_SNS,
use_sns,
SNS_PLATFORM_USE,
WATCHING_BEHAVIOR,
watching_behavior,
SHARING_BEHAVIOR,
sharing_behavior,
KNOW_DEEPFAKE,
KNOW_CREATE_DF,
know_create_df,
EXP_CREATE_DF,
EASE_CREATE_DF,
ease_create_df
) |> mutate(
SNS_PLATFORM_USE = strsplit(SNS_PLATFORM_USE,split = ","),
value = TRUE
) |>
unnest() |>
mutate(SNS_PLATFORM_USE = paste0("Plat_",SNS_PLATFORM_USE)) |>
pivot_wider(names_from = SNS_PLATFORM_USE, values_fill = FALSE)
## Warning: `cols` is now required when using `unnest()`.
## ℹ Please use `cols = c(SNS_PLATFORM_USE)`.
#-------------------------------------------
ent_individual_df<-study2_data_all_ent |>
mutate(Duration = as.numeric(`Duration (in seconds)`),
AGE = as.numeric(AGE),
BROWSE_INTERNET = ordered(BROWSE_INTERNET, levels = consume_values),
browse_internet = as.numeric(BROWSE_INTERNET, levels = consume_values),
USE_SNS = ordered(USE_SNS, levels = consume_values),
use_sns = as.numeric(USE_SNS, levels = consume_values),
WATCHING_BEHAVIOR = ordered(WATCHING_BEHAVIOR, levels =likley_shory_values),
watching_behavior = as.numeric (WATCHING_BEHAVIOR, levels =likley_shory_values),
SHARING_BEHAVIOR = ordered(SHARING_BEHAVIOR, levels = likley_shory_values),
sharing_behavior = as.numeric(SHARING_BEHAVIOR, levels = likley_shory_values),
KNOW_DEEPFAKE = KNOW_DEEPFAKE == "Yes",
EXP_CREATE_DF = EXP_CREATE_DF == "Yes",
KNOW_CREATE_DF = str_to_lower(KNOW_CREATE_DF),
KNOW_CREATE_DF = ordered(KNOW_CREATE_DF, levels = knowledgable_values),
know_create_df = as.numeric(KNOW_CREATE_DF, levels = knowledgable_values),
EASE_CREATE_DF = ordered(EASE_CREATE_DF, levels = easy_levels),
ease_create_df = as.numeric(EASE_CREATE_DF, levels = easy_levels)) |>
dplyr::select(
ResponseId,
Duration,
AGE,
BROWSE_INTERNET,
browse_internet,
USE_SNS,
use_sns,
SNS_PLATFORM_USE,
WATCHING_BEHAVIOR,
watching_behavior,
SHARING_BEHAVIOR,
sharing_behavior,
KNOW_DEEPFAKE,
KNOW_CREATE_DF,
know_create_df,
EXP_CREATE_DF,
EASE_CREATE_DF,
ease_create_df
) |> mutate(
SNS_PLATFORM_USE = strsplit(SNS_PLATFORM_USE,split = ","),
value = TRUE
) |>
unnest() |>
mutate(SNS_PLATFORM_USE = paste0("Plat_",SNS_PLATFORM_USE)) |>
pivot_wider(names_from = SNS_PLATFORM_USE, values_fill = FALSE)
## Warning: `cols` is now required when using `unnest()`.
## ℹ Please use `cols = c(SNS_PLATFORM_USE)`.
#--------------------------
#Combined individual
combined_individual_df<-rbind(ent_individual_df,pol_individual_df)
pol_behavior_df <-study2_data_raw_pol |>
select(ResponseId, matches ("_R_"), matches ("_DF_")) |>
pivot_longer(-ResponseId, values_drop_na = TRUE) |>
separate(name, c("video", "fake", "question"), "_", extra= "merge") |>
pivot_wider(names_from = question, values_from = value)|>
select (ResponseId, fake, video, SHARE, BELIEVE, IMPT, NOVEL, INTEREST, FAMILIAR)|>
#Removing the error value created with Dont share 3E
#filter (video != "3E") |>
mutate(SHARE = str_to_lower(SHARE),share_numerical = as.numeric(ordered(SHARE, levels = likely_values)),
BELIEVE= str_to_lower(BELIEVE),
believe_numerical = as.numeric(ordered(BELIEVE, levels = believe_levels)),
IMPT= str_to_lower(IMPT),
impt_numerical = as.numeric(ordered(IMPT, levels = importance_levels)),
INTEREST = str_to_lower(INTEREST),
INTEREST = str_replace (INTEREST, "uninterested" , "not interested" ),
interest_numerical = as.numeric(ordered(INTEREST, levels = interest_levels)),
FAMILIAR = str_to_lower (FAMILIAR),
familiar_numerical = as.numeric(ordered(FAMILIAR, levels = familiar_levels)),
NOVEL = str_to_lower(NOVEL),
novel_numerical = as.numeric(ordered(NOVEL, levels = novel_levels)))|>
#Select all the numeric values
select (ResponseId,
fake,
video,
SHARE,
BELIEVE,
believe_numerical,
share_numerical,
impt_numerical ,
interest_numerical,
familiar_numerical,
novel_numerical)
#Selecting the Control group and convert likert value to numerical in post survey
pol_behavior_df_condition_cntr <-study2_data_raw_pol |>
mutate (condition = if_else(is.na(CTRL_JUDGING_IMPACT), "Treatment", "Control" ))|>
filter (condition == "Control") |>
mutate(JUDGING_IMPACT = str_to_lower(CTRL_JUDGING_IMPACT),
judging_impact_numerical = as.numeric(ordered(JUDGING_IMPACT, levels = judging_impact_values)),
SHARING_PERSP = str_to_lower(CTRL_SHARING_PERSP),
sharing_persp_numerical = as.numeric(ordered(SHARING_PERSP, levels = judging_impact_values)),
SHARING_INT = str_to_lower(CTRL_SHARING_INT),
sharing_int_numerical = as.numeric(ordered(SHARING_INT, levels = judging_impact_values)),
SHARING_ACCY = str_to_lower(CTRL_SHARING_ACCY),
sharing_accy_numerical = as.numeric(ordered(SHARING_ACCY, levels = sharing_accuracy_level)))|>
dplyr::select (ResponseId,
condition,
JUDGING_IMPACT,
SHARING_PERSP,
SHARING_INT,
SHARING_ACCY,
judging_impact_numerical,
sharing_persp_numerical,
sharing_int_numerical,
sharing_accy_numerical)
#Selecting the Treatment group and convert likert value to numerical in post survey
pol_behavior_df_condition_trmnt <-study2_data_raw_pol |> filter(Finished == "True") |>
mutate (condition = if_else(is.na(CTRL_JUDGING_IMPACT), "Treatment", "Control" ))|>
filter (condition == "Treatment") |>
mutate(JUDGING_IMPACT = str_to_lower(ACT_JUDGING_IMPACT),
judging_impact_numerical = as.numeric(ordered(JUDGING_IMPACT, levels = judging_impact_values)),
SHARING_PERSP = str_to_lower(ACT_SHARING_PERSP),
sharing_persp_numerical = as.numeric(ordered(SHARING_PERSP, levels = judging_impact_values)),
SHARING_INT = str_to_lower(ACT_SHARING_INT),
sharing_int_numerical = as.numeric(ordered(SHARING_INT, levels = judging_impact_values)),
SHARING_ACCY = str_to_lower(ACT_SHARING_ACCY),
sharing_accy_numerical = as.numeric(ordered(SHARING_ACCY, levels = sharing_accuracy_level)),
cy_numerical = as.numeric(ordered(SHARING_ACCY, levels = sharing_accuracy_level)))|>
dplyr::select (ResponseId,
condition,
JUDGING_IMPACT,
SHARING_PERSP,
SHARING_INT,
SHARING_ACCY,
judging_impact_numerical,
sharing_persp_numerical,
sharing_int_numerical,
sharing_accy_numerical)
# Binding the control and treatment into one table
pol_survey_df <-bind_rows(pol_behavior_df_condition_trmnt, pol_behavior_df_condition_cntr)
# Binding the pre survey and post survey of each individual (60 participants)
pol_pre_post_df <-merge (pol_survey_df, pol_individual_df )
# The data frame with their rating for each video and post survey
pol_df <-merge (pol_behavior_df,pol_pre_post_df)
#adding the video category column to the table
pol_df['category'] <- 'pol'
colnames(pol_df)
## [1] "ResponseId" "fake"
## [3] "video" "SHARE"
## [5] "BELIEVE" "believe_numerical"
## [7] "share_numerical" "impt_numerical"
## [9] "interest_numerical" "familiar_numerical"
## [11] "novel_numerical" "condition"
## [13] "JUDGING_IMPACT" "SHARING_PERSP"
## [15] "SHARING_INT" "SHARING_ACCY"
## [17] "judging_impact_numerical" "sharing_persp_numerical"
## [19] "sharing_int_numerical" "sharing_accy_numerical"
## [21] "Duration" "AGE"
## [23] "BROWSE_INTERNET" "browse_internet"
## [25] "USE_SNS" "use_sns"
## [27] "WATCHING_BEHAVIOR" "watching_behavior"
## [29] "SHARING_BEHAVIOR" "sharing_behavior"
## [31] "KNOW_DEEPFAKE" "KNOW_CREATE_DF"
## [33] "know_create_df" "EXP_CREATE_DF"
## [35] "EASE_CREATE_DF" "ease_create_df"
## [37] "Plat_Facebook" "Plat_Instagram"
## [39] "Plat_Messenger" "Plat_TikTok"
## [41] "Plat_Snapchat" "Plat_Twitter"
## [43] "Plat_Quora" "Plat_Microsoft Teams"
## [45] "Plat_LinkedIn" "Plat_YouTube"
## [47] "Plat_Telegram" "Plat_Reddit"
## [49] "Plat_WhatsApp" "Plat_Pinterest"
## [51] "Plat_Skype" "Plat_WeChat"
## [53] "category"
#-----------------------------------------------------------------------
ent_behavior_df <-study2_data_all_ent |> filter(Finished == "True") |>
dplyr::select(ResponseId, matches ("_R_"), matches ("_DF_")) |>
pivot_longer(-ResponseId, values_drop_na = TRUE) |>
separate(name, c("video", "fake", "question"), "_", extra= "merge") |>
pivot_wider(names_from = question, values_from = value)|>
dplyr::select (ResponseId, fake, video ,SHARE, BELIEVE, IMPT, NOVEL, INTEREST, FAMILIAR)|>
#Removing the error value created with Dont share 3E
#filter (video != "3E") |>
mutate(SHARE = str_to_lower(SHARE),share_numerical = as.numeric(ordered(SHARE, levels = likely_values)),
BELIEVE= str_to_lower(BELIEVE),
believe_numerical = as.numeric(ordered(BELIEVE, levels = believe_levels)),
IMPT= str_to_lower(IMPT),
impt_numerical = as.numeric(ordered(IMPT, levels = importance_levels)),
INTEREST = str_to_lower(INTEREST),
INTEREST = str_replace (INTEREST, "uninterested" , "not interested" ),
interest_numerical = as.numeric(ordered(INTEREST, levels = interest_levels)),
FAMILIAR = str_to_lower (FAMILIAR),
familiar_numerical = as.numeric(ordered(FAMILIAR, levels = familiar_levels)),
NOVEL = str_to_lower(NOVEL),
novel_numerical = as.numeric(ordered(NOVEL, levels = novel_levels)))|>
#Select all the numeric values
dplyr::select (ResponseId,
fake,
video,
SHARE,
BELIEVE,
believe_numerical,
share_numerical,
impt_numerical ,
interest_numerical,
familiar_numerical,
novel_numerical)
#Selecting the Control group and convert likert value to numerical in post survey
ent_behavior_df_condition_cntr <-study2_data_all_ent|> filter(Finished == "True") |>
mutate (condition = if_else(is.na(CTRL_JUDGING_IMPACT), "Treatment", "Control" ))|>
dplyr::select (ResponseId, condition, matches ("CTRL_")) |>
filter (condition == "Control") |>
mutate(JUDGING_IMPACT = str_to_lower(CTRL_JUDGING_IMPACT),
judging_impact_numerical = as.numeric(ordered(JUDGING_IMPACT, levels = judging_impact_values)),
SHARING_PERSP = str_to_lower(CTRL_SHARING_PERSP),
sharing_persp_numerical = as.numeric(ordered(SHARING_PERSP, levels = judging_impact_values)),
SHARING_INT = str_to_lower(CTRL_SHARING_INT),
sharing_int_numerical = as.numeric(ordered(SHARING_INT, levels = judging_impact_values)),
SHARING_ACCY = str_to_lower(CTRL_SHARING_ACCY),
sharing_accy_numerical = as.numeric(ordered(SHARING_ACCY, levels = sharing_accuracy_level)))|>
dplyr::select (ResponseId,
condition,
JUDGING_IMPACT,
SHARING_PERSP,
SHARING_INT,
SHARING_ACCY,
judging_impact_numerical,
sharing_persp_numerical,
sharing_int_numerical,
sharing_accy_numerical)
#Selecting the Treatment group and convert likert value to numerical in post survey
ent_behavior_df_condition_trmnt <-study2_data_all_ent |> filter(Finished == "True") |>
mutate (condition = if_else(is.na(CTRL_JUDGING_IMPACT), "Treatment", "Control" ))|>
filter (condition == "Treatment") |>
mutate(JUDGING_IMPACT = str_to_lower(ACT_JUDGING_IMPACT),
judging_impact_numerical = as.numeric(ordered(JUDGING_IMPACT, levels = judging_impact_values)),
SHARING_PERSP = str_to_lower(ACT_SHARING_PERSP),
sharing_persp_numerical = as.numeric(ordered(SHARING_PERSP, levels = judging_impact_values)),
SHARING_INT = str_to_lower(ACT_SHARING_INT),
sharing_int_numerical = as.numeric(ordered(SHARING_INT, levels = judging_impact_values)),
SHARING_ACCY = str_to_lower(ACT_SHARING_ACCY),
sharing_accy_numerical = as.numeric(ordered(SHARING_ACCY, levels = sharing_accuracy_level)))|>
dplyr::select (ResponseId,
condition,
JUDGING_IMPACT,
SHARING_PERSP,
SHARING_INT,
SHARING_ACCY,
judging_impact_numerical,
sharing_persp_numerical,
sharing_int_numerical,
sharing_accy_numerical)
# Binding the control and treatment into one table
ent_post_survey_df <-bind_rows(ent_behavior_df_condition_trmnt, ent_behavior_df_condition_cntr)
# Binding the pre survey and post survey of each individual (60 participants)
ent_pre_post_df <-merge (ent_post_survey_df, ent_individual_df)
# The data frame with their rating for each video and post survey
ent_df <-merge (ent_behavior_df,ent_pre_post_df)
#adding the video category column to the table
ent_df['category'] <- 'ent'
colnames(ent_df)
## [1] "ResponseId" "fake"
## [3] "video" "SHARE"
## [5] "BELIEVE" "believe_numerical"
## [7] "share_numerical" "impt_numerical"
## [9] "interest_numerical" "familiar_numerical"
## [11] "novel_numerical" "condition"
## [13] "JUDGING_IMPACT" "SHARING_PERSP"
## [15] "SHARING_INT" "SHARING_ACCY"
## [17] "judging_impact_numerical" "sharing_persp_numerical"
## [19] "sharing_int_numerical" "sharing_accy_numerical"
## [21] "Duration" "AGE"
## [23] "BROWSE_INTERNET" "browse_internet"
## [25] "USE_SNS" "use_sns"
## [27] "WATCHING_BEHAVIOR" "watching_behavior"
## [29] "SHARING_BEHAVIOR" "sharing_behavior"
## [31] "KNOW_DEEPFAKE" "KNOW_CREATE_DF"
## [33] "know_create_df" "EXP_CREATE_DF"
## [35] "EASE_CREATE_DF" "ease_create_df"
## [37] "Plat_Facebook" "Plat_YouTube"
## [39] "Plat_Instagram" "Plat_Messenger"
## [41] "Plat_TikTok" "Plat_Snapchat"
## [43] "Plat_Pinterest" "Plat_Twitter"
## [45] "Plat_Reddit" "Plat_Microsoft Teams"
## [47] "Plat_WeChat" "Plat_Skype"
## [49] "Plat_WhatsApp" "Plat_Telegram"
## [51] "Plat_LinkedIn" "Plat_Quora"
## [53] "category"
colnames(pol_df)
## [1] "ResponseId" "fake"
## [3] "video" "SHARE"
## [5] "BELIEVE" "believe_numerical"
## [7] "share_numerical" "impt_numerical"
## [9] "interest_numerical" "familiar_numerical"
## [11] "novel_numerical" "condition"
## [13] "JUDGING_IMPACT" "SHARING_PERSP"
## [15] "SHARING_INT" "SHARING_ACCY"
## [17] "judging_impact_numerical" "sharing_persp_numerical"
## [19] "sharing_int_numerical" "sharing_accy_numerical"
## [21] "Duration" "AGE"
## [23] "BROWSE_INTERNET" "browse_internet"
## [25] "USE_SNS" "use_sns"
## [27] "WATCHING_BEHAVIOR" "watching_behavior"
## [29] "SHARING_BEHAVIOR" "sharing_behavior"
## [31] "KNOW_DEEPFAKE" "KNOW_CREATE_DF"
## [33] "know_create_df" "EXP_CREATE_DF"
## [35] "EASE_CREATE_DF" "ease_create_df"
## [37] "Plat_Facebook" "Plat_Instagram"
## [39] "Plat_Messenger" "Plat_TikTok"
## [41] "Plat_Snapchat" "Plat_Twitter"
## [43] "Plat_Quora" "Plat_Microsoft Teams"
## [45] "Plat_LinkedIn" "Plat_YouTube"
## [47] "Plat_Telegram" "Plat_Reddit"
## [49] "Plat_WhatsApp" "Plat_Pinterest"
## [51] "Plat_Skype" "Plat_WeChat"
## [53] "category"
#--------------------------------
combined_df<- bind_rows(ent_df, pol_df)
colnames(combined_df)
## [1] "ResponseId" "fake"
## [3] "video" "SHARE"
## [5] "BELIEVE" "believe_numerical"
## [7] "share_numerical" "impt_numerical"
## [9] "interest_numerical" "familiar_numerical"
## [11] "novel_numerical" "condition"
## [13] "JUDGING_IMPACT" "SHARING_PERSP"
## [15] "SHARING_INT" "SHARING_ACCY"
## [17] "judging_impact_numerical" "sharing_persp_numerical"
## [19] "sharing_int_numerical" "sharing_accy_numerical"
## [21] "Duration" "AGE"
## [23] "BROWSE_INTERNET" "browse_internet"
## [25] "USE_SNS" "use_sns"
## [27] "WATCHING_BEHAVIOR" "watching_behavior"
## [29] "SHARING_BEHAVIOR" "sharing_behavior"
## [31] "KNOW_DEEPFAKE" "KNOW_CREATE_DF"
## [33] "know_create_df" "EXP_CREATE_DF"
## [35] "EASE_CREATE_DF" "ease_create_df"
## [37] "Plat_Facebook" "Plat_YouTube"
## [39] "Plat_Instagram" "Plat_Messenger"
## [41] "Plat_TikTok" "Plat_Snapchat"
## [43] "Plat_Pinterest" "Plat_Twitter"
## [45] "Plat_Reddit" "Plat_Microsoft Teams"
## [47] "Plat_WeChat" "Plat_Skype"
## [49] "Plat_WhatsApp" "Plat_Telegram"
## [51] "Plat_LinkedIn" "Plat_Quora"
## [53] "category"
library(ggplot2)
ggplot(combined_df, aes(x=BELIEVE, fill = fake )) + geom_bar() +
facet_wrap(~condition, nrow=2)
ggplot(combined_df, aes(x=SHARE, fill = fake)) +
geom_bar() +
facet_wrap(~condition, nrow=2)
histogram_df_control<-combined_df |> filter (condition =="Control")
histinfo=hist(histogram_df_control$share_numerical)
histinfo=hist(histogram_df_control$believe_numerical)
histogram_df_treatment<-combined_df |> filter (condition =="Treatment")
histinfo=hist(histogram_df_treatment$share_numerical)
histinfo=hist(histogram_df_treatment$believe_numerical)
#Total path
fit.totaleffect=lm(share_numerical~condition,combined_df)
summary(fit.totaleffect)
##
## Call:
## lm(formula = share_numerical ~ condition, data = combined_df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.3556 -0.8167 -0.8167 0.6444 4.1833
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.81667 0.05348 33.966 < 2e-16 ***
## conditionTreatment 0.53889 0.09264 5.817 7.88e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.435 on 1078 degrees of freedom
## Multiple R-squared: 0.03044, Adjusted R-squared: 0.02954
## F-statistic: 33.84 on 1 and 1078 DF, p-value: 7.884e-09
fit.mediator=lm(believe_numerical~condition,combined_df)
summary(fit.mediator)
##
## Call:
## lm(formula = believe_numerical ~ condition, data = combined_df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.08611 -1.08611 -0.00556 0.99444 1.99444
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.00556 0.05406 55.60 <2e-16 ***
## conditionTreatment 0.08056 0.09363 0.86 0.39
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.451 on 1078 degrees of freedom
## Multiple R-squared: 0.0006861, Adjusted R-squared: -0.0002409
## F-statistic: 0.7401 on 1 and 1078 DF, p-value: 0.3898
library(mediation)
## Warning: package 'mediation' was built under R version 4.3.1
## Loading required package: MASS
##
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
## select
## Loading required package: mvtnorm
## Loading required package: sandwich
## mediation: Causal Mediation Analysis
## Version: 4.5.0
results = mediate(fit.mediator, fit.dv, treat='condition', mediator='believe_numerical', boot=T)
## Warning in mediate(fit.mediator, fit.dv, treat = "condition", mediator =
## "believe_numerical", : treatment and control values do not match factor levels;
## using Control and Treatment as control and treatment, respectively
## Running nonparametric bootstrap
summary(results)
##
## Causal Mediation Analysis
##
## Nonparametric Bootstrap Confidence Intervals with the Percentile Method
##
## Estimate 95% CI Lower 95% CI Upper p-value
## ACME -0.0118 -0.0402 0.01 0.38
## ADE 0.5507 0.3441 0.75 <2e-16 ***
## Total Effect 0.5389 0.3311 0.73 <2e-16 ***
## Prop. Mediated -0.0219 -0.0877 0.03 0.38
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Sample Size Used: 1080
##
##
## Simulations: 1000
# OUr data ent_df
one.way <- aov( share_numerical ~ condition, data = combined_df)
summary(one.way)
## Df Sum Sq Mean Sq F value Pr(>F)
## condition 1 69.7 69.70 33.84 7.88e-09 ***
## Residuals 1078 2220.3 2.06
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
library (lsr)
## Warning: package 'lsr' was built under R version 4.3.1
# Eta sqr one way
Eta_oneway <-etaSquared(one.way)
print (Eta_oneway)
## eta.sq eta.sq.part
## condition 0.03043526 0.03043526
combined_twoway_no_interactions <- aov (share_numerical ~ condition+ believe_numerical,
data= combined_df)
summary (combined_twoway_no_interactions)
## Df Sum Sq Mean Sq F value Pr(>F)
## condition 1 69.7 69.70 34.57 5.49e-09 ***
## believe_numerical 1 48.7 48.68 24.14 1.03e-06 ***
## Residuals 1077 2171.6 2.02
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Eta sqr one way
Eta_twoway_no_interactions <-etaSquared(combined_twoway_no_interactions)
print (Eta_twoway_no_interactions)
## eta.sq eta.sq.part
## condition 0.03176101 0.03240691
## believe_numerical 0.02125675 0.02192401
combined_twoway_with_interactions <- aov (share_numerical ~ condition * believe_numerical,
data=combined_df)
summary ( combined_twoway_with_interactions)
## Df Sum Sq Mean Sq F value Pr(>F)
## condition 1 69.7 69.70 34.64 5.31e-09 ***
## believe_numerical 1 48.7 48.68 24.19 1.01e-06 ***
## condition:believe_numerical 1 6.4 6.40 3.18 0.0748 .
## Residuals 1076 2165.2 2.01
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Eta sqr one way
Eta_twoway_with_interactions <-etaSquared(combined_twoway_with_interactions)
print (Eta_twoway_with_interactions )
## eta.sq eta.sq.part
## condition 0.031761008 0.032499571
## believe_numerical 0.021256751 0.021987382
## condition:believe_numerical 0.002794306 0.002946622
combined_df |> ggplot(aes(condition,share_numerical)) +
# facet_wrap(vars(video)) +
stat_summary(
fun.data = mean_cl_boot,
geom = "pointrange",
shape = 21,
fill = "white"
)
combined_df |> ggplot(aes(condition,believe_numerical)) +
# facet_wrap(vars(video)) +
stat_summary(
fun.data = mean_cl_boot,
geom = "pointrange",
shape = 21,
fill = "white"
)
# What if there is a deepfake/read effect to the share intensions
deepfake.anova <- aov(share_numerical~condition + fake, data=combined_df)
summary(deepfake.anova)
## Df Sum Sq Mean Sq F value Pr(>F)
## condition 1 69.7 69.70 34.63 5.33e-09 ***
## fake 1 52.4 52.45 26.06 3.92e-07 ***
## Residuals 1077 2167.8 2.01
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#select only deepfakes
only_df<- combined_df |> filter (fake =="DF")
deepfake_video.anova <- aov(share_numerical~condition , data=only_df)
summary(deepfake_video.anova)
## Df Sum Sq Mean Sq F value Pr(>F)
## condition 1 32.4 32.38 19.41 1.27e-05 ***
## Residuals 538 897.5 1.67
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#select only real
only_real <- combined_df |> filter (fake == "R")
real_video.anova <- aov(share_numerical~condition , data=only_real)
summary(real_video.anova)
## Df Sum Sq Mean Sq F value Pr(>F)
## condition 1 37.4 37.41 15.84 7.82e-05 ***
## Residuals 538 1270.2 2.36
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
deepfake_lm=lm(share_numerical~condition,only_df)
summary(deepfake_lm)
##
## Call:
## lm(formula = share_numerical ~ condition, data = only_df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.1222 -0.6028 -0.6028 0.3972 4.3972
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.60278 0.06807 23.545 < 2e-16 ***
## conditionTreatment 0.51944 0.11791 4.406 1.27e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.292 on 538 degrees of freedom
## Multiple R-squared: 0.03482, Adjusted R-squared: 0.03303
## F-statistic: 19.41 on 1 and 538 DF, p-value: 1.274e-05
real_lm=lm(share_numerical~condition,only_real)
summary(real_lm)
##
## Call:
## lm(formula = share_numerical ~ condition, data = only_real)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.5889 -1.0306 -1.0306 0.9694 3.9694
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.03056 0.08098 25.07 < 2e-16 ***
## conditionTreatment 0.55833 0.14027 3.98 7.82e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.537 on 538 degrees of freedom
## Multiple R-squared: 0.02861, Adjusted R-squared: 0.0268
## F-statistic: 15.84 on 1 and 538 DF, p-value: 7.823e-05
multi_factor_lm=lm(share_numerical~condition + interest_numerical + impt_numerical+ believe_numerical + familiar_numerical+ novel_numerical , combined_df)
summary(multi_factor_lm)
##
## Call:
## lm(formula = share_numerical ~ condition + interest_numerical +
## impt_numerical + believe_numerical + familiar_numerical +
## novel_numerical, data = combined_df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3645 -0.5530 0.0070 0.5067 4.3822
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.39993 0.12810 -3.122 0.00184 **
## conditionTreatment 0.44452 0.06431 6.913 8.15e-12 ***
## interest_numerical 0.61901 0.03112 19.894 < 2e-16 ***
## impt_numerical 0.01726 0.02993 0.577 0.56421
## believe_numerical -0.03192 0.02135 -1.495 0.13519
## familiar_numerical 0.02362 0.02125 1.111 0.26666
## novel_numerical 0.29938 0.03173 9.435 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9926 on 1073 degrees of freedom
## Multiple R-squared: 0.5384, Adjusted R-squared: 0.5358
## F-statistic: 208.6 on 6 and 1073 DF, p-value: < 2.2e-16
interest_factor_lm=lm(share_numerical~condition +
interest_numerical ,combined_df)
summary (interest_factor_lm)
##
## Call:
## lm(formula = share_numerical ~ condition + interest_numerical,
## data = combined_df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.8764 -0.5409 0.0229 0.4591 4.0229
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.01605 0.06983 -0.230 0.818
## conditionTreatment 0.43617 0.06695 6.515 1.11e-10 ***
## interest_numerical 0.77850 0.02472 31.498 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.036 on 1077 degrees of freedom
## Multiple R-squared: 0.4953, Adjusted R-squared: 0.4944
## F-statistic: 528.6 on 2 and 1077 DF, p-value: < 2.2e-16
impt_factor_lm = lm (share_numerical~condition + impt_numerical ,combined_df)
summary (impt_factor_lm)
##
## Call:
## lm(formula = share_numerical ~ condition + impt_numerical, data = combined_df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.3396 -0.8511 -0.2798 0.6604 4.7202
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.28751 0.10950 2.626 0.00877 **
## conditionTreatment 0.57128 0.08377 6.820 1.52e-11 ***
## impt_numerical 0.49617 0.03188 15.564 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.297 on 1077 degrees of freedom
## Multiple R-squared: 0.2085, Adjusted R-squared: 0.207
## F-statistic: 141.8 on 2 and 1077 DF, p-value: < 2.2e-16
int_imt_factor_lm=lm (share_numerical~condition + impt_numerical + interest_numerical, combined_df)
summary (int_imt_factor_lm)
##
## Call:
## lm(formula = share_numerical ~ condition + impt_numerical + interest_numerical,
## data = combined_df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.9194 -0.6325 0.0861 0.3670 4.0861
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.16870 0.08906 -1.894 0.0585 .
## conditionTreatment 0.44743 0.06687 6.691 3.55e-11 ***
## impt_numerical 0.08323 0.03029 2.748 0.0061 **
## interest_numerical 0.73438 0.02941 24.970 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.033 on 1076 degrees of freedom
## Multiple R-squared: 0.4989, Adjusted R-squared: 0.4975
## F-statistic: 357 on 3 and 1076 DF, p-value: < 2.2e-16
#Checking discernment
Combined_believability<-lm (formula = believe_numerical ~ condition, data = combined_df)
summary(Combined_believability)
##
## Call:
## lm(formula = believe_numerical ~ condition, data = combined_df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.08611 -1.08611 -0.00556 0.99444 1.99444
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.00556 0.05406 55.60 <2e-16 ***
## conditionTreatment 0.08056 0.09363 0.86 0.39
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.451 on 1078 degrees of freedom
## Multiple R-squared: 0.0006861, Adjusted R-squared: -0.0002409
## F-statistic: 0.7401 on 1 and 1078 DF, p-value: 0.3898
colnames(combined_df)
## [1] "ResponseId" "fake"
## [3] "video" "SHARE"
## [5] "BELIEVE" "believe_numerical"
## [7] "share_numerical" "impt_numerical"
## [9] "interest_numerical" "familiar_numerical"
## [11] "novel_numerical" "condition"
## [13] "JUDGING_IMPACT" "SHARING_PERSP"
## [15] "SHARING_INT" "SHARING_ACCY"
## [17] "judging_impact_numerical" "sharing_persp_numerical"
## [19] "sharing_int_numerical" "sharing_accy_numerical"
## [21] "Duration" "AGE"
## [23] "BROWSE_INTERNET" "browse_internet"
## [25] "USE_SNS" "use_sns"
## [27] "WATCHING_BEHAVIOR" "watching_behavior"
## [29] "SHARING_BEHAVIOR" "sharing_behavior"
## [31] "KNOW_DEEPFAKE" "KNOW_CREATE_DF"
## [33] "know_create_df" "EXP_CREATE_DF"
## [35] "EASE_CREATE_DF" "ease_create_df"
## [37] "Plat_Facebook" "Plat_YouTube"
## [39] "Plat_Instagram" "Plat_Messenger"
## [41] "Plat_TikTok" "Plat_Snapchat"
## [43] "Plat_Pinterest" "Plat_Twitter"
## [45] "Plat_Reddit" "Plat_Microsoft Teams"
## [47] "Plat_WeChat" "Plat_Skype"
## [49] "Plat_WhatsApp" "Plat_Telegram"
## [51] "Plat_LinkedIn" "Plat_Quora"
## [53] "category"
# real videos
Fake_video_df <- combined_df |> filter(fake =='DF')
fake_video_lm<- lm (formula = believe_numerical ~ condition, data = Fake_video_df)
summary(fake_video_lm)
##
## Call:
## lm(formula = believe_numerical ~ condition, data = Fake_video_df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.9083 -0.9083 0.2167 1.0917 1.2167
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.90833 0.06588 59.328 <2e-16 ***
## conditionTreatment -0.12500 0.11410 -1.096 0.274
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.25 on 538 degrees of freedom
## Multiple R-squared: 0.002226, Adjusted R-squared: 0.0003712
## F-statistic: 1.2 on 1 and 538 DF, p-value: 0.2738
Real_video_df <- combined_df |> filter(fake =='DF')
fake_video_lm<- lm (formula = believe_numerical ~ condition, data = Fake_video_df)
summary(fake_video_lm)
##
## Call:
## lm(formula = believe_numerical ~ condition, data = Fake_video_df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.9083 -0.9083 0.2167 1.0917 1.2167
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.90833 0.06588 59.328 <2e-16 ***
## conditionTreatment -0.12500 0.11410 -1.096 0.274
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.25 on 538 degrees of freedom
## Multiple R-squared: 0.002226, Adjusted R-squared: 0.0003712
## F-statistic: 1.2 on 1 and 538 DF, p-value: 0.2738
#selecting the sharing reasons for real videos
clean_political_data <-study2_data_raw_pol |>
dplyr::select(ResponseId, matches ("_R_")) |>
pivot_longer(-ResponseId) |>
separate(name,
into = c("video", "realness", "name"),
extra = "merge") |>
mutate(
name = sub("REAS.*", "REASON", name),
video = as_numeric(sub("P","",video))
) |>
pivot_wider() |>
filter(!is.na(SHARE)) |>
separate_rows(SHARE_REASON, sep = ",") |>
separate_rows(DNSHARE_REASON, sep = ",") |>
mutate(
SHARE_OTHER = if_else(grepl("Other", SHARE_REASON), SHARE_OTHER, NA),
DNSHARE_OTHER = if_else(grepl("Other", DNSHARE_REASON), DNSHARE_OTHER, NA)
)
clean_political_data |>
pivot_longer(cols = c(SHARE_REASON,DNSHARE_REASON)) |>
mutate(
name = if_else(name == "DNSHARE_REASON","Not sharing", "Sharing")
) |>
filter(!grepl("Other",value)) |>
filter(!is.na(value)) |>
group_by(value,video,name) |> count() |>
ggplot(aes(reorder(value,n),n)) +
geom_col() +
coord_flip() +
facet_grid(rows = vars(name),scales = "free",cols = vars(video)) +
labs(x="Real Video Plitical Videos", y="") +
theme_pubclean()
# Sharing and not sharing reasons on Deefake videos
clean_political_data <-study2_data_raw_pol |>
# just using select is not working so needed to call directly from package
dplyr::select(ResponseId, matches ("_DF_")) |>
pivot_longer(-ResponseId) |>
separate(name,
into = c("video", "realness", "name"),
extra = "merge") |>
mutate(
name = sub("REAS.*", "REASON", name),
video = as_numeric(sub("P","",video))
) |>
pivot_wider() |>
filter(!is.na(SHARE)) |>
separate_rows(SHARE_REASON, sep = ",") |>
separate_rows(DNSHARE_REASON, sep = ",") |>
mutate(
SHARE_OTHER = if_else(grepl("Other", SHARE_REASON), SHARE_OTHER, NA),
DNSHARE_OTHER = if_else(grepl("Other", DNSHARE_REASON), DNSHARE_OTHER, NA)
)
clean_political_data |>
pivot_longer(cols = c(SHARE_REASON,DNSHARE_REASON)) |>
mutate(
name = if_else(name == "DNSHARE_REASON","Not sharing", "Sharing")
) |>
filter(!grepl("Other",value)) |>
filter(!is.na(value)) |>
group_by(value,video,name) |> count() |>
ggplot(aes(reorder(value,n),n)) +
geom_col() +
coord_flip() +
facet_grid(rows = vars(name),scales = "free",cols = vars(video)) +
labs(x="DeepFake Political Videos", y="") +
theme_pubclean()
# Understaning the reasons for sharing videos and not sharing videos
ENTERTAINMENT CONTEXT
# Sharing and not sharing reasons on Deefake videos
clean_entertainment_data <-study2_data_all_ent |>
# just using select is not working so needed to call directly from package
dplyr::select(ResponseId, matches ("_DF_")) |>
pivot_longer(-ResponseId) |>
separate(name,
into = c("video", "realness", "name"),
extra = "merge") |>
mutate(
name = sub("REAS.*", "REASON", name),
video = as_numeric(sub("P","",video))
) |>
pivot_wider() |>
filter(!is.na(SHARE)) |>
separate_rows(SHARE_REASON, sep = ",") |>
separate_rows(DNSHARE_REASON, sep = ",") |>
mutate(
SHARE_OTHER = if_else(grepl("Other", SHARE_REASON), SHARE_OTHER, NA),
DNSHARE_OTHER = if_else(grepl("Other", DNSHARE_REASON), DNSHARE_OTHER, NA)
)
clean_entertainment_data |>
pivot_longer(cols = c(SHARE_REASON,DNSHARE_REASON)) |>
mutate(
name = if_else(name == "DNSHARE_REASON","Not sharing", "Sharing")
) |>
filter(!grepl("Other",value)) |>
filter(!is.na(value)) |>
group_by(value,video,name) |> count() |>
ggplot(aes(reorder(value,n),n)) +
geom_col() +
coord_flip() +
facet_grid(rows = vars(name),scales = "free",cols = vars(video)) +
labs(x="DeepFake Entertainment Videos", y="") +
theme_pubclean()
# Sharing and not sharing reasons on Real videos
clean_entertainment_data <-study2_data_all_ent |>
# just using select is not working so needed to call directly from package
dplyr::select(ResponseId, matches ("_R_")) |>
pivot_longer(-ResponseId) |>
separate(name,
into = c("video", "realness", "name"),
extra = "merge") |>
mutate(
name = sub("REAS.*", "REASON", name),
video = as_numeric(sub("P","",video))
) |>
pivot_wider() |>
filter(!is.na(SHARE)) |>
separate_rows(SHARE_REASON, sep = ",") |>
separate_rows(DNSHARE_REASON, sep = ",") |>
mutate(
SHARE_OTHER = if_else(grepl("Other", SHARE_REASON), SHARE_OTHER, NA),
DNSHARE_OTHER = if_else(grepl("Other", DNSHARE_REASON), DNSHARE_OTHER, NA)
)
clean_entertainment_data |>
pivot_longer(cols = c(SHARE_REASON,DNSHARE_REASON)) |>
mutate(
name = if_else(name == "DNSHARE_REASON","Not sharing", "Sharing")
) |>
filter(!grepl("Other",value)) |>
filter(!is.na(value)) |>
group_by(value,video,name) |> count() |>
ggplot(aes(reorder(value,n),n)) +
geom_col() +
coord_flip() +
facet_grid(rows = vars(name),scales = "free",cols = vars(video)) +
labs(x="Real Entertainment Videos ", y="") +
theme_pubclean()
#########################################
## DEEPFAKES DNSHARING REASONS FOR OVERAL DATA
#########################################
all_deepfake_clean_entertainment_data <-study2_data_all_ent |>
# just using select is not working so needed to call directly from package
dplyr::select(ResponseId, matches ("_DF_")) |>
pivot_longer(-ResponseId) |>
separate(name,
into = c("video", "realness", "name"),
extra = "merge") |>
mutate(
name = sub("REAS.*", "REASON", name),
#video = as_numeric(sub("P","",video))
) |>
pivot_wider() |>
filter(!is.na(SHARE)) |>
separate_rows(SHARE_REASON, sep = ",") |>
separate_rows(DNSHARE_REASON, sep = ",") |>
mutate(
SHARE_OTHER = if_else(grepl("Other", SHARE_REASON), SHARE_OTHER, NA),
DNSHARE_OTHER = if_else(grepl("Other", DNSHARE_REASON), DNSHARE_OTHER, NA)
)
# Table with RespondID, DNSharing reasons and entertainment
tab_deepfake_DN_entertainment<- all_deepfake_clean_entertainment_data |>
dplyr::select(ResponseId, DNSHARE_REASON, video)
ggplot(data = tab_deepfake_DN_entertainment, aes(x = DNSHARE_REASON)) +
geom_bar(position = "dodge") + theme(axis.text.x = element_text(angle = 90, hjust =0 )) + coord_flip()+
labs(title = "trmt+cntrl DF ENTERTAINMENT", x="DNSharing DeepFake Entertainment Videos", y="")
#########################################
## DEEPFAKES SHARING REASONS FOR OVERAL DATA by video level
#########################################
ggplot(data = tab_deepfake_DN_entertainment, aes(x = DNSHARE_REASON, fill= video)) +
geom_bar(position = "dodge") + theme(axis.text.x = element_text(angle = 90, hjust =0 )) + coord_flip()+
labs(title= "Trmtn+ Control DF DNSHARE ", x="Resons DNSharing DeepFake Entertainment Videos", y="")
#########################################
## DEEPFAKES SHARING REASONS FOR OVERAL DATA
#########################################
tab_deepfake_Share_entertainment<- all_deepfake_clean_entertainment_data |>
dplyr::select(ResponseId, SHARE_REASON, video)
ggplot(data = tab_deepfake_Share_entertainment, aes(x = SHARE_REASON)) +
geom_bar(position = "dodge") + theme(axis.text.x = element_text(angle = 90, hjust =0 )) + coord_flip() +
labs(title = "OVERAL SHARING DF", x="Resons for Sharing DeepFake Entertainment Videos", y="")
#########################################
## DEEPFAKES SHARING REASONS FOR OVERAL DATA Group by video
#########################################
ggplot(data = tab_deepfake_Share_entertainment, aes(x = SHARE_REASON, fill = video)) +
geom_bar(position = "dodge") + theme(axis.text.x = element_text(angle = 90, hjust =0 )) + coord_flip()+
labs(title= "OVERAL SHARING DF by Vedio", x="Resons for not Sharing DeepFake Entertainment Videos", y="")
## DEEPFAKE VIDEO: TREATMENT AND CONTROL DEEPFAKES DNSHARING and SHARING
based on Active and Control cases
#########################################
## TREATMENT DN SHARE REASONS #########
##########################################
trmt_all_deepfake_clean_entertainment_data <-study2_data_all_ent |>
# just using select is not working so needed to call directly from package
mutate (condition = if_else(is.na(CTRL_JUDGING_IMPACT), "Treatment", "Control" )) |>
filter (condition == "Treatment")|>
dplyr::select(ResponseId, matches("_DF_"))|>
pivot_longer(-ResponseId) |>
separate(name,
into = c("video", "realness", "name"),
extra = "merge") |>
mutate(
name = sub("REAS.*", "REASON", name),
#video = as_numeric(sub("P","",video))
) |>
pivot_wider() |>
filter(!is.na(SHARE)) |>
separate_rows(SHARE_REASON, sep = ",") |>
separate_rows(DNSHARE_REASON, sep = ",") |>
mutate(
SHARE_OTHER = if_else(grepl("Other", SHARE_REASON), SHARE_OTHER, NA),
DNSHARE_OTHER = if_else(grepl("Other", DNSHARE_REASON), DNSHARE_OTHER, NA)
)
####################################
# Treatment Condition DNSHARE
####################################
# Table with RespondID, DNSharing reasons and entertainment
trmt_tab_deepfake_DN_entertainment<- trmt_all_deepfake_clean_entertainment_data |>
dplyr::select(ResponseId, DNSHARE_REASON, video)
ggplot(data = trmt_tab_deepfake_DN_entertainment, aes(x = DNSHARE_REASON)) +
geom_bar(position = "dodge") + theme(axis.text.x = element_text(angle = 90, hjust =0 )) + coord_flip() +
labs(title = "TREATMENT CONDITION DNSHARE DF", x="DNSHARE DeepFake Entertainment Videos", y="")
##### The DN share reasons group by videos #######
ggplot(data = trmt_tab_deepfake_DN_entertainment, aes(x = DNSHARE_REASON, fill= video)) +
geom_bar(position = "dodge") + theme(axis.text.x = element_text(angle = 90, hjust =0 )) + coord_flip() +
labs(title = "TREATMENT CONDITION DNSHare DF", x="DNSHARE DeepFake Entertainment Videos", y="")
####################################
# Control Condition DNSHARE
####################################
cntrl_all_deepfake_clean_entertainment_data <-study2_data_all_ent |>
# just using select is not working so needed to call directly from package
mutate (condition = if_else(is.na(CTRL_JUDGING_IMPACT), "Treatment", "Control" )) |>
filter (condition == "Control")|>
dplyr::select(ResponseId, matches("_DF_"))|>
pivot_longer(-ResponseId) |>
separate(name,
into = c("video", "realness", "name"),
extra = "merge") |>
mutate(
name = sub("REAS.*", "REASON", name),
#video = as_numeric(sub("P","",video))
) |>
pivot_wider() |>
filter(!is.na(SHARE)) |>
separate_rows(SHARE_REASON, sep = ",") |>
separate_rows(DNSHARE_REASON, sep = ",") |>
mutate(
SHARE_OTHER = if_else(grepl("Other", SHARE_REASON), SHARE_OTHER, NA),
DNSHARE_OTHER = if_else(grepl("Other", DNSHARE_REASON), DNSHARE_OTHER, NA)
)
####################################
# Control Condition SHARE
####################################
# Table with control RespondID, DNSharing reasons and entertainment
cntrl_tab_deepfake_DN_entertainment<- cntrl_all_deepfake_clean_entertainment_data |>
dplyr::select(ResponseId, DNSHARE_REASON, video)
ggplot(data = cntrl_tab_deepfake_DN_entertainment, aes(x = DNSHARE_REASON)) +
geom_bar(position = "dodge") + theme(axis.text.x = element_text(angle = 90, hjust =0 )) + coord_flip() +
labs(title = "CONTROL CONDITION DNShare DF", x="DNSHARE DeepFake Entertainment Videos", y="")
##### The DN share reasons group by videos #######
ggplot(data = cntrl_tab_deepfake_DN_entertainment, aes(x = DNSHARE_REASON, fill= video)) +
geom_bar(position = "dodge") + theme(axis.text.x = element_text(angle = 90, hjust =0 )) + coord_flip() +
labs(title = "CONTROLT CONDITION DNShare vidol level", x="DNSHARE DeepFake Entertainment Videos", y="")
### TREAMENT SHARING ##############
#########################################
## DEEPFAKES ***SHARING based on Active and Control cases
#########################################
trmt_alldeen_deepfake_entertainment_data <-study2_data_all_ent |>
# just using select is not working so needed to call directly from package
mutate (condition = if_else(is.na(CTRL_JUDGING_IMPACT), "Treatment", "Control" )) |>
filter (condition == "Treatment")|>
dplyr::select(ResponseId, matches("_DF_"))|>
pivot_longer(-ResponseId) |>
separate(name,
into = c("video", "realness", "name"),
extra = "merge") |>
mutate(
name = sub("REAS.*", "REASON", name),
#video = as_numeric(sub("P","",video))
) |>
pivot_wider() |>
filter(!is.na(SHARE)) |>
separate_rows(SHARE_REASON, sep = ",") |>
separate_rows(DNSHARE_REASON, sep = ",") |>
mutate(
SHARE_OTHER = if_else(grepl("Other", SHARE_REASON), SHARE_OTHER, NA),
DNSHARE_OTHER = if_else(grepl("Other", DNSHARE_REASON), DNSHARE_OTHER, NA)
)
####################################
# Treatment Condition SHARE
####################################
# Table with RespondID, DNSharing reasons and entertainment
trmt_tab_deepfake_share_entertainment<- trmt_all_deepfake_clean_entertainment_data |>
dplyr::select(ResponseId, SHARE_REASON, video)
ggplot(data = trmt_tab_deepfake_share_entertainment, aes(x = SHARE_REASON)) +
geom_bar(position = "dodge") + theme(axis.text.x = element_text(angle = 90, hjust =0 )) + coord_flip() +
labs(title = "TREATMENT CONDITION SHARE DF", x="SHARE DeepFake Entertainment Videos", y="")
##### The share reasons group by videos #######
ggplot(data = trmt_tab_deepfake_share_entertainment, aes(x = SHARE_REASON, fill= video)) +
geom_bar(position = "dodge") + theme(axis.text.x = element_text(angle = 90, hjust =0 )) + coord_flip() +
labs(title = "TREATMENT CONDITION Share DF", x="SHARE DeepFake Entertainment Videos", y="")
####################################
# Control Condition SHARE
####################################
cntrl_all_deepfake_clean_entertainment_data <-study2_data_all_ent |>
# just using select is not working so needed to call directly from package
mutate (condition = if_else(is.na(CTRL_JUDGING_IMPACT), "Treatment", "Control" )) |>
filter (condition == "Control")|>
dplyr::select(ResponseId, matches("_DF_"))|>
pivot_longer(-ResponseId) |>
separate(name,
into = c("video", "realness", "name"),
extra = "merge") |>
mutate(
name = sub("REAS.*", "REASON", name),
#video = as_numeric(sub("P","",video))
) |>
pivot_wider() |>
filter(!is.na(SHARE)) |>
separate_rows(SHARE_REASON, sep = ",") |>
separate_rows(DNSHARE_REASON, sep = ",") |>
mutate(
SHARE_OTHER = if_else(grepl("Other", SHARE_REASON), SHARE_OTHER, NA),
DNSHARE_OTHER = if_else(grepl("Other", DNSHARE_REASON), DNSHARE_OTHER, NA)
)
####################################
# Control Condition SHARE
####################################
# Table with RespondID, Sharing reasons and entertainment
cntrl_tab_deepfake_share_entertainment<- cntrl_all_deepfake_clean_entertainment_data |>
dplyr::select(ResponseId, SHARE_REASON, video)
ggplot(data = cntrl_tab_deepfake_share_entertainment, aes(x = SHARE_REASON)) +
geom_bar(position = "dodge") + theme(axis.text.x = element_text(angle = 90, hjust =0 )) + coord_flip() +
labs(title = "CONTROL CONDITION SHARE DF", x="SHARE DeepFake Entertainment Videos", y="")
##### The share reasons group by videos #######
ggplot(data = cntrl_tab_deepfake_share_entertainment, aes(x = SHARE_REASON, fill= video)) +
geom_bar(position = "dodge") + theme(axis.text.x = element_text(angle = 90, hjust =0 )) + coord_flip() +
labs(title = "CONTROLT CONDITION Deepfake vidol level", x="SHARE DeepFake Entertainment Videos", y="")
#########################################
## REAL DNSHARING REASONS FOR OVERAL DATA
#########################################
all_real_clean_entertainment_data <-study2_data_all_ent |>
# just using select is not working so needed to call directly from package
dplyr::select(ResponseId, matches ("_R_")) |>
pivot_longer(-ResponseId) |>
separate(name,
into = c("video", "realness", "name"),
extra = "merge") |>
mutate(
name = sub("REAS.*", "REASON", name),
#video = as_numeric(sub("P","",video))
) |>
pivot_wider() |>
filter(!is.na(SHARE)) |>
separate_rows(SHARE_REASON, sep = ",") |>
separate_rows(DNSHARE_REASON, sep = ",") |>
mutate(
SHARE_OTHER = if_else(grepl("Other", SHARE_REASON), SHARE_OTHER, NA),
DNSHARE_OTHER = if_else(grepl("Other", DNSHARE_REASON), DNSHARE_OTHER, NA)
)
# Table with RespondID, DNSharing reasons and entertainment
tab_real_DN_entertainment<- all_real_clean_entertainment_data |>
dplyr::select(ResponseId, DNSHARE_REASON, video)
ggplot(data = tab_real_DN_entertainment, aes(x = DNSHARE_REASON)) +
geom_bar(position = "dodge") + theme(axis.text.x = element_text(angle = 90, hjust =0 )) + coord_flip()+
labs(title = "trmt+cntrl Real ENTERTAINMENT", x="DNSharing Real Entertainment Videos", y="")
ggplot(data = tab_real_DN_entertainment, aes(x = DNSHARE_REASON, fill= video)) +
geom_bar(position = "dodge") + theme(axis.text.x = element_text(angle = 90, hjust =0 )) + coord_flip()+
labs(title = "trmt+cntrl Real ENTERTAINMENT", x="DNSharing Real Entertainment Videos", y="")
#########################################
## REAL VIDEOS SHARING REASONS FOR OVERAL DATA
#########################################
tab_real_Share_entertainment<- all_real_clean_entertainment_data |>
dplyr::select(ResponseId, SHARE_REASON, video)
ggplot(data = tab_real_Share_entertainment, aes(x = SHARE_REASON)) +
geom_bar(position = "dodge") + theme(axis.text.x = element_text(angle = 90, hjust =0 )) + coord_flip() +
labs(title = "OVERAL SHARING REAL", x="Resons for Sharing Real Entertainment Videos", y="")
#########################################
## DEEPFAKES SHARING REASONS FOR OVERAL DATA Group by video
#########################################
ggplot(data = tab_real_Share_entertainment, aes(x = SHARE_REASON, fill = video)) +
geom_bar(position = "dodge") + theme(axis.text.x = element_text(angle = 90, hjust =0 )) + coord_flip()+
labs(title= "OVERAL SHARING REAL by Vedio", x="Resons for not Sharing REAL Entertainment Videos", y="")
#########################################
## TREATMENT DN SHARE REASONS FOR REAL #########
##########################################
trmt_all_real_clean_entertainment_data <-study2_data_all_ent |>
# just using select is not working so needed to call directly from package
mutate (condition = if_else(is.na(CTRL_JUDGING_IMPACT), "Treatment", "Control" )) |>
filter (condition == "Treatment")|>
dplyr::select(ResponseId, matches("_R_"))|>
pivot_longer(-ResponseId) |>
separate(name,
into = c("video", "realness", "name"),
extra = "merge") |>
mutate(
name = sub("REAS.*", "REASON", name),
#video = as_numeric(sub("P","",video))
) |>
pivot_wider() |>
filter(!is.na(SHARE)) |>
separate_rows(SHARE_REASON, sep = ",") |>
separate_rows(DNSHARE_REASON, sep = ",") |>
mutate(
SHARE_OTHER = if_else(grepl("Other", SHARE_REASON), SHARE_OTHER, NA),
DNSHARE_OTHER = if_else(grepl("Other", DNSHARE_REASON), DNSHARE_OTHER, NA)
)
####################################
# Treatment Condition DNSHARE
####################################
# Table with RespondID, DNSharing reasons and entertainment
trmt_tab_real_DN_entertainment<- trmt_all_real_clean_entertainment_data |>
dplyr::select(ResponseId, DNSHARE_REASON, video)
ggplot(data = trmt_tab_real_DN_entertainment, aes(x = DNSHARE_REASON)) +
geom_bar(position = "dodge") + theme(axis.text.x = element_text(angle = 90, hjust =0 )) + coord_flip() +
labs(title = "TREATMENT CONDITION DNSHARE REAL", x="DNSHARE Real Entertainment Videos", y="")
##### The DN share reasons group by videos #######
ggplot(data = trmt_tab_real_DN_entertainment, aes(x = DNSHARE_REASON, fill= video)) +
geom_bar(position = "dodge") + theme(axis.text.x = element_text(angle = 90, hjust =0 )) + coord_flip() +
labs(title = "TREATMENT CONDITION DNSHare REAL", x="DNSHARE Real Entertainment Videos", y="")
#########################################
## CONTROL DN SHARE REASONS FOR REAL #########
##########################################
cntrl_all_real_clean_entertainment_data <-study2_data_all_ent |>
# just using select is not working so needed to call directly from package
mutate (condition = if_else(is.na(CTRL_JUDGING_IMPACT), "Treatment", "Control" )) |>
filter (condition == "Control")|>
dplyr::select(ResponseId, matches("_R_"))|>
pivot_longer(-ResponseId) |>
separate(name,
into = c("video", "realness", "name"),
extra = "merge") |>
mutate(
name = sub("REAS.*", "REASON", name),
#video = as_numeric(sub("P","",video))
) |>
pivot_wider() |>
filter(!is.na(SHARE)) |>
separate_rows(SHARE_REASON, sep = ",") |>
separate_rows(DNSHARE_REASON, sep = ",") |>
mutate(
SHARE_OTHER = if_else(grepl("Other", SHARE_REASON), SHARE_OTHER, NA),
DNSHARE_OTHER = if_else(grepl("Other", DNSHARE_REASON), DNSHARE_OTHER, NA)
)
####################################
# Cotrol Condition DNSHARE
####################################
# Table with RespondID, DNSharing reasons and entertainment
cntrl_tab_real_DN_entertainment<- cntrl_all_real_clean_entertainment_data |>
dplyr::select(ResponseId, DNSHARE_REASON, video)
ggplot(data = cntrl_tab_real_DN_entertainment, aes(x = DNSHARE_REASON)) +
geom_bar(position = "dodge") + theme(axis.text.x = element_text(angle = 90, hjust =0 )) + coord_flip() +
labs(title = "CONTROL CONDITION DNSHARE REAL", x="DNSHARE Real Entertainment Videos", y="")
##### The DN share reasons group by videos #######
ggplot(data = cntrl_tab_real_DN_entertainment, aes(x = DNSHARE_REASON, fill= video)) +
geom_bar(position = "dodge") + theme(axis.text.x = element_text(angle = 90, hjust =0 )) + coord_flip() +
labs(title = "CONTROL CONDITION DNSHare REAL", x="DNSHARE Real Entertainment Videos", y="")
### TREAMENT SHARING ##############
#########################################
## REAL ***SHARING based on Active and Control cases
#########################################
trmt_all_real_clean_entertainment_data <-study2_data_all_ent |>
# just using select is not working so needed to call directly from package
mutate (condition = if_else(is.na(CTRL_JUDGING_IMPACT), "Treatment", "Control" )) |>
filter (condition == "Treatment")|>
dplyr::select(ResponseId, matches("_R_"))|>
pivot_longer(-ResponseId) |>
separate(name,
into = c("video", "realness", "name"),
extra = "merge") |>
mutate(
name = sub("REAS.*", "REASON", name),
#video = as_numeric(sub("P","",video))
) |>
pivot_wider() |>
filter(!is.na(SHARE)) |>
separate_rows(SHARE_REASON, sep = ",") |>
separate_rows(DNSHARE_REASON, sep = ",") |>
mutate(
SHARE_OTHER = if_else(grepl("Other", SHARE_REASON), SHARE_OTHER, NA),
DNSHARE_OTHER = if_else(grepl("Other", DNSHARE_REASON), DNSHARE_OTHER, NA)
)
####################################
# Treatment Condition SHARE
####################################
# Table with RespondID, DNSharing reasons and entertainment
trmt_tab_real_share_entertainment<- trmt_all_real_clean_entertainment_data |>
dplyr::select(ResponseId, SHARE_REASON, video)
ggplot(data = trmt_tab_real_share_entertainment, aes(x = SHARE_REASON)) +
geom_bar(position = "dodge") + theme(axis.text.x = element_text(angle = 90, hjust =0 )) + coord_flip() +
labs(title = "TREATMENT CONDITION SHARE REAL", x="SHARE REAL Entertainment Videos", y="")
##### The share reasons group by videos #######
ggplot(data = trmt_tab_real_share_entertainment, aes(x = SHARE_REASON, fill= video)) +
geom_bar(position = "dodge") + theme(axis.text.x = element_text(angle = 90, hjust =0 )) + coord_flip() +
labs(title = "TREATMENT CONDITION Share REAL", x = "SHARE REAL Entertainment Videos", y="")
### CONTROL SHARING ##############
#########################################
## REAL ***SHARING based on Active and Control cases
#########################################
cntrl_all_real_clean_entertainment_data <-study2_data_all_ent |>
# just using select is not working so needed to call directly from package
mutate (condition = if_else(is.na(CTRL_JUDGING_IMPACT), "Treatment", "Control" )) |>
filter (condition == "Control")|>
dplyr::select(ResponseId, matches("_R_"))|>
pivot_longer(-ResponseId) |>
separate(name,
into = c("video", "realness", "name"),
extra = "merge") |>
mutate(
name = sub("REAS.*", "REASON", name),
#video = as_numeric(sub("P","",video))
) |>
pivot_wider() |>
filter(!is.na(SHARE)) |>
separate_rows(SHARE_REASON, sep = ",") |>
separate_rows(DNSHARE_REASON, sep = ",") |>
mutate(
SHARE_OTHER = if_else(grepl("Other", SHARE_REASON), SHARE_OTHER, NA),
DNSHARE_OTHER = if_else(grepl("Other", DNSHARE_REASON), DNSHARE_OTHER, NA)
)
####################################
# Control Condition SHARE
####################################
# Table with RespondID, DNSharing reasons and entertainment
cntrl_tab_real_share_entertainment<- cntrl_all_real_clean_entertainment_data |>
dplyr::select(ResponseId, SHARE_REASON, video)
ggplot(data = cntrl_tab_real_share_entertainment, aes(x = SHARE_REASON)) +
geom_bar(position = "dodge") + theme(axis.text.x = element_text(angle = 90, hjust =0 )) + coord_flip() +
labs(title = "CONTROL CONDITION SHARE REAL", x="SHARE REAL Entertainment Videos", y="")
##### The share reasons group by videos #######
ggplot(data = cntrl_tab_real_share_entertainment, aes(x = SHARE_REASON, fill= video)) +
geom_bar(position = "dodge") + theme(axis.text.x = element_text(angle = 90, hjust =0 )) + coord_flip() +
labs(title = "Control CONDITION Share REAL", x = "SHARE REAL Entertainment Videos", y="")
# Political vidos DF and Real
#########################################
## DEEPFAKES DNSHARING REASONS FOR OVERAL DATA
#########################################
all_deepfake_clean_political_data <-study2_data_raw_pol |>
# just using select is not working so needed to call directly from package
dplyr::select(ResponseId, matches ("_DF_")) |>
pivot_longer(-ResponseId) |>
separate(name,
into = c("video", "realness", "name"),
extra = "merge") |>
mutate(
name = sub("REAS.*", "REASON", name),
#video = as_numeric(sub("P","",video))
) |>
pivot_wider() |>
filter(!is.na(SHARE)) |>
separate_rows(SHARE_REASON, sep = ",") |>
separate_rows(DNSHARE_REASON, sep = ",") |>
mutate(
SHARE_OTHER = if_else(grepl("Other", SHARE_REASON), SHARE_OTHER, NA),
DNSHARE_OTHER = if_else(grepl("Other", DNSHARE_REASON), DNSHARE_OTHER, NA)
)
# Table with RespondID, DNSharing reasons and political
tab_deepfake_DN_political<- all_deepfake_clean_political_data |>
dplyr::select(ResponseId, DNSHARE_REASON, video)
ggplot(data = tab_deepfake_DN_political, aes(x = DNSHARE_REASON)) +
geom_bar(position = "dodge") + theme(axis.text.x = element_text(angle = 90, hjust =0 )) + coord_flip()+
labs(title = "trmt+cntrl DF POLITICAL", x="DNSharing DeepFake POLITICAL Videos", y="")
#########################################
## DEEPFAKES SHARING REASONS FOR OVERAL DATA by video level
#########################################
ggplot(data = tab_deepfake_DN_political, aes(x = DNSHARE_REASON, fill= video)) +
geom_bar(position = "dodge") + theme(axis.text.x = element_text(angle = 90, hjust =0 )) + coord_flip()+
labs(title= "Trmtn+ Control DF DNSHARE ", x="Resons DNSharing DeepFake Political Videos", y="")
#########################################
## DEEPFAKES SHARING REASONS FOR OVERAL POLITICAL DATA
#########################################
tab_deepfake_Share_political<- all_deepfake_clean_political_data |>
dplyr::select(ResponseId, SHARE_REASON, video)
ggplot(data = tab_deepfake_Share_political, aes(x = SHARE_REASON)) +
geom_bar(position = "dodge") + theme(axis.text.x = element_text(angle = 90, hjust =0 )) + coord_flip() +
labs(title = "OVERAL SHARING DF", x="Resons for Sharing DeepFake Political Videos", y="")
#########################################
## DEEPFAKES SHARING REASONS FOR OVERAL DATA Group by video
#########################################
ggplot(data = tab_deepfake_Share_political, aes(x = SHARE_REASON, fill = video)) +
geom_bar(position = "dodge") + theme(axis.text.x = element_text(angle = 90, hjust =0 )) + coord_flip()+
labs(title= "OVERAL SHARING DF by Vedio", x="Resons for not Sharing DeepFake Political Videos", y="")
## DNSharing Deepfakes based on Control and Treament groups
#########################################
## TREATMENT DN SHARE REASONS POLITICAL #########
##########################################
trmt_all_deepfake_clean_political_data <-study2_data_raw_pol |>
# just using select is not working so needed to call directly from package
mutate (condition = if_else(is.na(CTRL_JUDGING_IMPACT), "Treatment", "Control" )) |>
filter (condition == "Treatment")|>
dplyr::select(ResponseId, matches("_DF_"))|>
pivot_longer(-ResponseId) |>
separate(name,
into = c("video", "realness", "name"),
extra = "merge") |>
mutate(
name = sub("REAS.*", "REASON", name),
#video = as_numeric(sub("P","",video))
) |>
pivot_wider() |>
filter(!is.na(SHARE)) |>
separate_rows(SHARE_REASON, sep = ",") |>
separate_rows(DNSHARE_REASON, sep = ",") |>
mutate(
SHARE_OTHER = if_else(grepl("Other", SHARE_REASON), SHARE_OTHER, NA),
DNSHARE_OTHER = if_else(grepl("Other", DNSHARE_REASON), DNSHARE_OTHER, NA)
)
####################################
# Treatment Condition DNSHARE
####################################
# Table with RespondID, DNSharing reasons and entertainment
trmt_tab_deepfake_DN_political<- trmt_all_deepfake_clean_political_data |>
dplyr::select(ResponseId, DNSHARE_REASON, video)
ggplot(data = trmt_tab_deepfake_DN_political, aes(x = DNSHARE_REASON)) +
geom_bar(position = "dodge") + theme(axis.text.x = element_text(angle = 90, hjust =0 )) + coord_flip() +
labs(title = "TREATMENT CONDITION DNSHARE DF", x="DNSHARE DeepFake Political Videos", y="")
##### The DN share reasons group by videos #######
ggplot(data = trmt_tab_deepfake_DN_political, aes(x = DNSHARE_REASON, fill= video)) +
geom_bar(position = "dodge") + theme(axis.text.x = element_text(angle = 90, hjust =0 )) + coord_flip() +
labs(title = "TREATMENT CONDITION DNSHare DF", x="DNSHARE DeepFake Political Videos", y="")
## SHARE Deepfake Political Treatment and Control Reasons for
#########################################
## TREATMENT SHARE REASONS POLITICAL #########
##########################################
trmt_all_deepfake_clean_political_data <-study2_data_raw_pol |>
# just using select is not working so needed to call directly from package
mutate (condition = if_else(is.na(CTRL_JUDGING_IMPACT), "Treatment", "Control" )) |>
filter (condition == "Treatment")|>
dplyr::select(ResponseId, matches("_DF_"))|>
pivot_longer(-ResponseId) |>
separate(name,
into = c("video", "realness", "name"),
extra = "merge") |>
mutate(
name = sub("REAS.*", "REASON", name),
#video = as_numeric(sub("P","",video))
) |>
pivot_wider() |>
filter(!is.na(SHARE)) |>
separate_rows(SHARE_REASON, sep = ",") |>
separate_rows(DNSHARE_REASON, sep = ",") |>
mutate(
SHARE_OTHER = if_else(grepl("Other", SHARE_REASON), SHARE_OTHER, NA),
DNSHARE_OTHER = if_else(grepl("Other", DNSHARE_REASON), DNSHARE_OTHER, NA)
)
####################################
# Treatment Condition DNSHARE
####################################
# Table with RespondID, DNSharing reasons and entertainment
trmt_tab_deepfake_share_political<- trmt_all_deepfake_clean_political_data |>
dplyr::select(ResponseId, SHARE_REASON, video)
ggplot(data = trmt_tab_deepfake_share_political, aes(x = SHARE_REASON)) +
geom_bar(position = "dodge") + theme(axis.text.x = element_text(angle = 90, hjust =0 )) + coord_flip() +
labs(title = "TREATMENT CONDITION SHARE DF", x="SHARE DeepFake Political Videos", y="")
##### The share reasons group by videos #######
ggplot(data = trmt_tab_deepfake_share_political, aes(x = SHARE_REASON, fill= video)) +
geom_bar(position = "dodge") + theme(axis.text.x = element_text(angle = 90, hjust =0 )) + coord_flip() +
labs(title = "TREATMENT CONDITION SHare DF", x="SHARE DeepFake Political Videos", y="")
#########################################
## CONTROL SHARE REASONS POLITICAL #########
##########################################
cntrl_all_deepfake_clean_political_data <-study2_data_raw_pol |>
# just using select is not working so needed to call directly from package
mutate (condition = if_else(is.na(CTRL_JUDGING_IMPACT), "Treatment", "Control" )) |>
filter (condition == "Control")|>
dplyr::select(ResponseId, matches("_DF_"))|>
pivot_longer(-ResponseId) |>
separate(name,
into = c("video", "realness", "name"),
extra = "merge") |>
mutate(
name = sub("REAS.*", "REASON", name),
#video = as_numeric(sub("P","",video))
) |>
pivot_wider() |>
filter(!is.na(SHARE)) |>
separate_rows(SHARE_REASON, sep = ",") |>
separate_rows(DNSHARE_REASON, sep = ",") |>
mutate(
SHARE_OTHER = if_else(grepl("Other", SHARE_REASON), SHARE_OTHER, NA),
DNSHARE_OTHER = if_else(grepl("Other", DNSHARE_REASON), DNSHARE_OTHER, NA)
)
####################################
# Control Condition SHARE
####################################
# Table with RespondID, DNSharing reasons and entertainment
cntrl_tab_real_share_political<- cntrl_all_deepfake_clean_political_data |>
dplyr::select(ResponseId, SHARE_REASON, video)
ggplot(data = cntrl_tab_real_share_political, aes(x = SHARE_REASON)) +
geom_bar(position = "dodge") + theme(axis.text.x = element_text(angle = 90, hjust =0 )) + coord_flip() +
labs(title = "CONTROL CONDITION SHARE REAL", x="SHARE REAL Political Videos", y="")
##### The share reasons group by videos #######
ggplot(data = cntrl_tab_real_share_political, aes(x = SHARE_REASON, fill= video)) +
geom_bar(position = "dodge") + theme(axis.text.x = element_text(angle = 90, hjust =0 )) + coord_flip() +
labs(title = "CONTROL CONDITION SHare REAL", x="SHARE REAL Political Videos", y="")
#########################################
## REAL DNSHARING REASONS FOR OVERAL DATA
#########################################
all_real_clean_political_data <-study2_data_raw_pol |>
# just using select is not working so needed to call directly from package
dplyr::select(ResponseId, matches ("_R_")) |>
pivot_longer(-ResponseId) |>
separate(name,
into = c("video", "realness", "name"),
extra = "merge") |>
mutate(
name = sub("REAS.*", "REASON", name),
#video = as_numeric(sub("P","",video))
) |>
pivot_wider() |>
filter(!is.na(SHARE)) |>
separate_rows(SHARE_REASON, sep = ",") |>
separate_rows(DNSHARE_REASON, sep = ",") |>
mutate(
SHARE_OTHER = if_else(grepl("Other", SHARE_REASON), SHARE_OTHER, NA),
DNSHARE_OTHER = if_else(grepl("Other", DNSHARE_REASON), DNSHARE_OTHER, NA)
)
# Table with RespondID, DNSharing reasons and entertainment
tab_real_DN_political<- all_real_clean_political_data |>
dplyr::select(ResponseId, DNSHARE_REASON, video)
ggplot(data = tab_real_DN_political, aes(x = DNSHARE_REASON)) +
geom_bar(position = "dodge") + theme(axis.text.x = element_text(angle = 90, hjust =0 )) + coord_flip()+
labs(title = "trmt+cntrl Real Political", x="DNSharing Real Political Videos", y="")
ggplot(data = tab_real_DN_political, aes(x = DNSHARE_REASON, fill= video)) +
geom_bar(position = "dodge") + theme(axis.text.x = element_text(angle = 90, hjust =0 )) + coord_flip()+
labs(title = "trmt+cntrl Real POLITICAL", x="DNSharing Real POLITICAL Videos", y="")