1 Câu 5,6

Chạy mô hình với các phân phối khác nhau của các biến đầu vào.

1.1 Mô phỏng biến BMN

lyly <- read.csv("C:/Users/LU UYEN/Downloads/dt.csv")
b<-c(12,16,20,24,28)
c<-prop.table(b)
mpBMN<-sample(b,10000,replace=TRUE,prob=c)

1.2 Mô phỏng biến BTT

b1<-c(12,14.8,17.5,20.2,23)
d1<-round(b1)
c1<-prop.table(d1)
mpBTT<-sample(d1,10000,replace=TRUE,prob=c1)

1.3 Mô phỏng biến BTCSB

b2<-c(8.99,10.2,11.5,12.8,14)
d2<-round(b2)
c2<-prop.table(d2)
mpBTCSB<-sample(d2,10000,replace=TRUE,prob=c2)

1.4 Mô phỏng biến XL

b3<-c(4.99,7,9,11,13)
d3<-round(b3)
c3<-prop.table(d3)
mpXL<-sample(d3,10000,replace=TRUE,prob=c3)

1.5 Mô phỏng biến XXC

b4<-c(27,30,33,36,39)
d4<-round(b4)
c4<-prop.table(d4)
mpXXC<-sample(d4,10000,replace=TRUE,prob=c4)

1.6 Mô phỏng biến NECR

b5<-c(14,16.8,19.5,22.2,25)
d5<-round(b5)
c5<-prop.table(d5)
mpNECR<-sample(d5,10000,replace=TRUE,prob=c5)

1.7 Mô phỏng biến ST

b6<-c(9.99,11.2,12.5,13.8,15)
d6<-round(b6)
c6<-prop.table(d6)
mpST<-sample(d6,10000,replace=TRUE,prob=c6)

1.8 Mô phỏng biến TS

b7<-c(18,21.5,25,28.5,32)
d7<-round(b7)
c7<-prop.table(d7)
mpTS<-sample(d7,10000,replace=TRUE,prob=c7)

1.9 Mô phỏng biến CP

b8<-c(11,13.8,16.5,19.2,22)
d8<-round(b8)
c8<-prop.table(d8)
mpCP<-sample(d8,10000,replace=TRUE,prob=c8)

1.10 Mô phỏng lợi nhuận

profit=mpBMN*15000 + mpBTT*10000 + mpBTCSB*20000 + mpXL*20000 + mpXXC*10000 + mpNECR*15000 + mpST*10000 + mpTS*25000 + mpCP*12000 - 243500 - 148000
hist(profit)

summary(profit)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## 1480500 2050500 2181500 2177885 2310500 2727500

1.11 Phân tích lợi nhuận quán lyly

r<-table(cut(profit, breaks=3))
r
## 
##  (1.48e+06,1.9e+06]  (1.9e+06,2.31e+06] (2.31e+06,2.73e+06] 
##                 671                6874                2455
prop.table(r)
## 
##  (1.48e+06,1.9e+06]  (1.9e+06,2.31e+06] (2.31e+06,2.73e+06] 
##              0.0671              0.6874              0.2455
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.3.1
r1<- data.frame(Category = c("thấp","vừa","cao"), Value = c(0.0741,0.7007,0.2252))
ggplot(r1, aes(x = Category, y = Value)) +
  geom_bar(stat = "identity") +
  labs(x = "Categories", y = "Values", title = "Đồ thị phân tích lợi nhuận quán Lyly")

  • Số ngày quán lyly có lợi nhuận ở mức cao (khoảng từ 2310000 VNĐ đến 2720000 VNĐ ) chiếm tỉ lệ 22.52%.

  • Số ngày quán lyly có lợi nhuận ở mức vừa (khoảng từ 1910000 VNĐ đến 2310000 VNĐ) chiếm tỉ lệ 70.07%.

  • Số ngày quán lyly có lợi nhuận ở mức thấp (khoảng từ 1500000 VNĐ đến 1910000 VNĐ) chiếm tỷ lệ 7.41%.

2 Câu 4

2.1 Công thức tính lợi nhuận

Lợi nhuận = Doanh thu - chi phí cố định - chi phí biến đổi

Doanh thu = BMNx15000 + BTTx10000 + BTCSBx20000 + XLx20000 + XXCx10000 + NECRx15000 + STx10000 + TSx25000 + CPx12000

chi phí cố định trong 730 ngày: 177.755.000đ

chi phí biến đổi trong 730 ngày: 108.000.000đ

2.2 Xây dựng mô hình

profit = -(243500 + 148000) + BMNx15000 + BTTx10000 + BTCSBx20000 + XLx20000 + XXCx10000 + NECRx15000 + STx10000 + TSx25000 + CPx12000

3 Câu 3

Xác định phân phối cho các biến(ngẫu nhiên) đầu vào, giải thích.

3.1 Biến BMN

Kiểm định phân phối chuẩn

lyly <- read.csv("C:/Users/LU UYEN/Downloads/dt.csv")
library("ggplot2")
hist.BMN = ggplot(data = lyly,aes(BMN))+
  geom_histogram(aes(y=..density..),color="black",fill="white")+
  stat_function(fun = dnorm,
                args = list(mean = mean(lyly$BMN,na.rm = TRUE),
                            sd = sd(lyly$BMN,na.rm = TRUE)),
                color ='blue',size = 1)
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
hist.BMN
## Warning: The dot-dot notation (`..density..`) was deprecated in ggplot2 3.4.0.
## ℹ Please use `after_stat(density)` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

-> Dựa vào biểu đồ trên ta thấy biểu đồ histogram với đường cong biểu diễn cho phân phối chuẩn không khớp với nhau nên ta có thể nói biến BMN không tuân theo phân phối chuẩn.

Kiểm định phân phối Lognormal

Giả thuyết:

\(H_0\):BMN tuân theo phân phối Lognormal

\(H_1\):BMN không tuân theo phân phối Lognormal

ks.test(lyly$BMN, "plnorm", meanlog = mean(log(lyly$BMN)), sdlog = sd(log(lyly$BMN)))
## Warning in ks.test.default(lyly$BMN, "plnorm", meanlog = mean(log(lyly$BMN)), :
## ties should not be present for the Kolmogorov-Smirnov test
## 
##  Asymptotic one-sample Kolmogorov-Smirnov test
## 
## data:  lyly$BMN
## D = 0.10839, p-value = 7.117e-08
## alternative hypothesis: two-sided

Vì p_value = 7.117e-08 < 0.05 nên ta bác bỏ giả thuyết \(H_0\). Nghĩa là BMN không có phân phối Lognormal.

Phân phối t

Giả thuyết:

\(H_0\): BMN tuân theo phân phối t

\(H_1\): BMN không tuân theo phân phối t

t.test(lyly$BMN)
## 
##  One Sample t-test
## 
## data:  lyly$BMN
## t = 110.25, df = 729, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  19.91294 20.63501
## sample estimates:
## mean of x 
##  20.27397

Vì p_value < 2.2e-16 < 0.05 nên ta bác bỏ giả thuyết \(H_0\). Nghĩa là BMN không có phân phối t.

3.2 Biến BTT

Kiểm định phân phối chuẩn

library("ggpubr")
## Warning: package 'ggpubr' was built under R version 4.3.1
qqplot1 = ggqqplot(lyly$BTT)
qqplot1

hist.BTT = ggplot(data = lyly,aes(BTT))+
  geom_histogram(aes(y=..density..),color="black",fill="white")+
  stat_function(fun = dnorm,
                args = list(mean = mean(lyly$BTT,na.rm = TRUE),
                            sd = sd(lyly$BTT,na.rm = TRUE)),
                color ='blue',size = 1)
hist.BTT
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Giả thuyết:

\(H_0\): BTT tuân theo phân phối chuẩn

\(H_1\): BTT không tuân theo phân phối chuẩn

shapiro.test(lyly$BTT)
## 
##  Shapiro-Wilk normality test
## 
## data:  lyly$BTT
## W = 0.94668, p-value = 1.482e-15

Với p_value = 1.482e-15 < 0.05 , bác bỏ \(H_0\) nên dãy số liệu này không có phân phối chuẩn.

Kiểm định phân phối Lognomal

Giả thuyết:

\(H_0\):BTT tuân theo phân phối Lognormal

\(H_1\):BTT không tuân theo phân phối Lognormal

ks.test(lyly$BTT, "plnorm", meanlog = mean(log(lyly$BTT)), sdlog = sd(log(lyly$BTT)))
## Warning in ks.test.default(lyly$BTT, "plnorm", meanlog = mean(log(lyly$BTT)), :
## ties should not be present for the Kolmogorov-Smirnov test
## 
##  Asymptotic one-sample Kolmogorov-Smirnov test
## 
## data:  lyly$BTT
## D = 0.11371, p-value = 1.268e-08
## alternative hypothesis: two-sided

Vì p_value = 1.268e-08 < 0.05 nên ta bác bỏ giả thuyết \(H_0\). Nghĩa là BTT không có phân phối Lognormal.

Phân phối t

Giả thuyết:

\(H_0\): BTT tuân theo phân phối t

\(H_1\): BTT không tuân theo phân phối t

t.test(lyly$BTT)
## 
##  One Sample t-test
## 
## data:  lyly$BTT
## t = 140.93, df = 729, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  17.24811 17.73546
## sample estimates:
## mean of x 
##  17.49178

Vì p_value < 2.2e-16 < 0.05 nên ta bác bỏ giả thuyết \(H_0\). Nghĩa là BTT không có phân phối t.

3.3 Biến BTCSB

Kiểm định phân phối chuẩn

hist.BTCSB = ggplot(data = lyly,aes(BTCSB))+
  geom_histogram(aes(y=..density..),color="black",fill="white")+
  stat_function(fun = dnorm,
                args = list(mean = mean(lyly$BTCSB,na.rm = TRUE),
                            sd = sd(lyly$BTCSB,na.rm = TRUE)),
                color ='blue',size = 1)
hist.BTCSB
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Giả thuyết:

\(H_0\): BTCSB tuân theo phân phối chuẩn

\(H_1\): BTCSB không tuân theo phân phối chuẩn

shapiro.test(lyly$BTCSB)
## 
##  Shapiro-Wilk normality test
## 
## data:  lyly$BTCSB
## W = 0.90441, p-value < 2.2e-16

Với p_value < 2.2e-16 < 0.05 , bác bỏ \(H_0\) nên dãy số liệu này không có phân phối chuẩn.

Kiểm định phân phối Lognomal

Giả thuyết:

\(H_0\):BTCSB tuân theo phân phối Lognormal

\(H_1\):BTCSB không tuân theo phân phối Lognormal

ks.test(lyly$BTCSB, "plnorm", meanlog = mean(log(lyly$BTCSB)), sdlog = sd(log(lyly$BTCSB)))
## Warning in ks.test.default(lyly$BTCSB, "plnorm", meanlog =
## mean(log(lyly$BTCSB)), : ties should not be present for the Kolmogorov-Smirnov
## test
## 
##  Asymptotic one-sample Kolmogorov-Smirnov test
## 
## data:  lyly$BTCSB
## D = 0.16231, p-value < 2.2e-16
## alternative hypothesis: two-sided

Vì p_value < 2.2e-16 < 0.05 nên ta bác bỏ giả thuyết \(H_0\). Nghĩa là BTCSB không có phân phối Lognormal.

Phân phối t

Giả thuyết:

\(H_0\): BTCSB tuân theo phân phối t

\(H_1\): BTCSB không tuân theo phân phối t

t.test(lyly$BTCSB)
## 
##  One Sample t-test
## 
## data:  lyly$BTCSB
## t = 182.75, df = 729, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  11.44964 11.69831
## sample estimates:
## mean of x 
##  11.57397

Vì p_value < 2.2e-16 < 0.05 nên ta bác bỏ giả thuyết \(H_0\). Nghĩa là BTCSB không có phân phối t.

3.4 Biến XL

Kiểm định phân phối chuẩn

hist.XL = ggplot(data = lyly,aes(XL))+
  geom_histogram(aes(y=..density..),color="black",fill="white")+
  stat_function(fun = dnorm,
                args = list(mean = mean(lyly$XL,na.rm = TRUE),
                            sd = sd(lyly$XL,na.rm = TRUE)),
                color ='blue',size = 1)
hist.XL
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Giả thuyết:

\(H_0\): XL tuân theo phân phối chuẩn

\(H_1\): XL không tuân theo phân phối chuẩn

shapiro.test(lyly$XL)
## 
##  Shapiro-Wilk normality test
## 
## data:  lyly$XL
## W = 0.92958, p-value < 2.2e-16

Với p_value < 2.2e-16 < 0.05 , bác bỏ \(H_0\) nên dãy số liệu này không có phân phối chuẩn.

Kiểm định phân phối Lognomal

Giả thuyết:

\(H_0\):XL tuân theo phân phối Lognormal

\(H_1\):XL không tuân theo phân phối Lognormal

ks.test(lyly$XL, "plnorm", meanlog = mean(log(lyly$XL)), sdlog = sd(log(lyly$XL)))
## Warning in ks.test.default(lyly$XL, "plnorm", meanlog = mean(log(lyly$XL)), :
## ties should not be present for the Kolmogorov-Smirnov test
## 
##  Asymptotic one-sample Kolmogorov-Smirnov test
## 
## data:  lyly$XL
## D = 0.12267, p-value = 5.751e-10
## alternative hypothesis: two-sided

Vì p_value = 5.751e-10 < 0.05 nên ta bác bỏ giả thuyết \(H_0\). Nghĩa là XL không có phân phối Lognormal.

Phân phối t

Giả thuyết:

\(H_0\): XL tuân theo phân phối t

\(H_1\): XL không tuân theo phân phối t

t.test(lyly$XL)
## 
##  One Sample t-test
## 
## data:  lyly$XL
## t = 93.521, df = 729, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  8.768154 9.144174
## sample estimates:
## mean of x 
##  8.956164

Vì p_value < 2.2e-16 < 0.05 nên ta bác bỏ giả thuyết \(H_0\). Nghĩa là XL không có phân phối t.

3.5 Biến XXC

Kiểm định phân phối chuẩn

hist.XXC = ggplot(data = lyly,aes(XXC))+
  geom_histogram(aes(y=..density..),color="black",fill="white")+
  stat_function(fun = dnorm,
                args = list(mean = mean(lyly$XXC,na.rm = TRUE),
                            sd = sd(lyly$XXC,na.rm = TRUE)),
                color ='blue',size = 1)
hist.XXC
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Giả thuyết:

\(H_0\): XXC tuân theo phân phối chuẩn

\(H_1\): XXC không tuân theo phân phối chuẩn

shapiro.test(lyly$XXC)
## 
##  Shapiro-Wilk normality test
## 
## data:  lyly$XXC
## W = 0.94664, p-value = 1.462e-15

Với p_value = 1.462e-15 < 0.05 , bác bỏ \(H_0\) nên dãy số liệu này không có phân phối chuẩn.

Kiểm định phân phối Lognomal

Giả thuyết:

\(H_0\):XXC tuân theo phân phối Lognormal

\(H_1\):XXC không tuân theo phân phối Lognormal

ks.test(lyly$XXC, "plnorm", meanlog = mean(log(lyly$XXC)), sdlog = sd(log(lyly$XXC)))
## Warning in ks.test.default(lyly$XXC, "plnorm", meanlog = mean(log(lyly$XXC)), :
## ties should not be present for the Kolmogorov-Smirnov test
## 
##  Asymptotic one-sample Kolmogorov-Smirnov test
## 
## data:  lyly$XXC
## D = 0.10238, p-value = 4.519e-07
## alternative hypothesis: two-sided

Vì p_value = 4.519e-07 < 0.05 nên ta bác bỏ giả thuyết \(H_0\). Nghĩa là XXC không có phân phối Lognormal.

Phân phối t

Giả thuyết:

\(H_0\): XXC tuân theo phân phối t

\(H_1\): XXC không tuân theo phân phối t

t.test(lyly$XXC)
## 
##  One Sample t-test
## 
## data:  lyly$XXC
## t = 243.17, df = 729, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  32.99447 33.53156
## sample estimates:
## mean of x 
##  33.26301

Vì p_value < 2.2e-16 < 0.05 nên ta bác bỏ giả thuyết \(H_0\). Nghĩa là XXC không có phân phối t.

3.6 Biến NECR

Kiểm định phân phối chuẩn

hist.NECR = ggplot(data = lyly,aes(NECR))+
  geom_histogram(aes(y=..density..),color="black",fill="white")+
  stat_function(fun = dnorm,
                args = list(mean = mean(lyly$NECR,na.rm = TRUE),
                            sd = sd(lyly$NECR,na.rm = TRUE)),
                color ='blue',size = 1)
hist.NECR
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Giả thuyết:

\(H_0\): NECR tuân theo phân phối chuẩn

\(H_1\): NECR không tuân theo phân phối chuẩn

shapiro.test(lyly$NECR)
## 
##  Shapiro-Wilk normality test
## 
## data:  lyly$NECR
## W = 0.94372, p-value = 5.108e-16

Với p_value = 5.108e-16 < 0.05 , bác bỏ \(H_0\) nên dãy số liệu này không có phân phối chuẩn.

Kiểm định phân phối Lognomal

Giả thuyết:

\(H_0\):NECR tuân theo phân phối Lognormal

\(H_1\):NECR không tuân theo phân phối Lognormal

ks.test(lyly$NECR, "plnorm", meanlog = mean(log(lyly$NECR)), sdlog = sd(log(lyly$NECR)))
## Warning in ks.test.default(lyly$NECR, "plnorm", meanlog = mean(log(lyly$NECR)),
## : ties should not be present for the Kolmogorov-Smirnov test
## 
##  Asymptotic one-sample Kolmogorov-Smirnov test
## 
## data:  lyly$NECR
## D = 0.10105, p-value = 6.704e-07
## alternative hypothesis: two-sided

Vì p_value = 6.704e-07 < 0.05 nên ta bác bỏ giả thuyết \(H_0\). Nghĩa là NECR không có phân phối Lognormal.

Phân phối t

Giả thuyết:

\(H_0\): NECR tuân theo phân phối t

\(H_1\): NECR không tuân theo phân phối t

t.test(lyly$NECR)
## 
##  One Sample t-test
## 
## data:  lyly$NECR
## t = 153.77, df = 729, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  19.26861 19.76701
## sample estimates:
## mean of x 
##  19.51781

Vì p_value < 2.2e-16 < 0.05 nên ta bác bỏ giả thuyết \(H_0\). Nghĩa là NECR không có phân phối t.

3.7 Biến ST

Kiểm định phân phối chuẩn

hist.ST = ggplot(data = lyly,aes(ST))+
  geom_histogram(aes(y=..density..),color="black",fill="white")+
  stat_function(fun = dnorm,
                args = list(mean = mean(lyly$ST,na.rm = TRUE),
                            sd = sd(lyly$ST,na.rm = TRUE)),
                color ='blue',size = 1)
hist.ST
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Giả thuyết:

\(H_0\): ST tuân theo phân phối chuẩn

\(H_1\): ST không tuân theo phân phối chuẩn

shapiro.test(lyly$ST)
## 
##  Shapiro-Wilk normality test
## 
## data:  lyly$ST
## W = 0.90708, p-value < 2.2e-16

Với p_value < 2.2e-16 < 0.05 , bác bỏ \(H_0\) nên dãy số liệu này không có phân phối chuẩn.

Kiểm định phân phối Lognomal

Giả thuyết:

\(H_0\):ST tuân theo phân phối Lognormal

\(H_1\):ST không tuân theo phân phối Lognormal

ks.test(lyly$ST, "plnorm", meanlog = mean(log(lyly$ST)), sdlog = sd(log(lyly$ST)))
## Warning in ks.test.default(lyly$ST, "plnorm", meanlog = mean(log(lyly$ST)), :
## ties should not be present for the Kolmogorov-Smirnov test
## 
##  Asymptotic one-sample Kolmogorov-Smirnov test
## 
## data:  lyly$ST
## D = 0.13134, p-value = 2.308e-11
## alternative hypothesis: two-sided

Vì p_value = 2.308e-11 < 0.05 nên ta bác bỏ giả thuyết \(H_0\). Nghĩa là ST không có phân phối Lognormal.

Phân phối t

Giả thuyết:

\(H_0\): ST tuân theo phân phối t

\(H_1\): ST không tuân theo phân phối t

t.test(lyly$ST)
## 
##  One Sample t-test
## 
## data:  lyly$ST
## t = 196.7, df = 729, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  12.27759 12.52515
## sample estimates:
## mean of x 
##  12.40137

Vì p_value < 2.2e-16 < 0.05 nên ta bác bỏ giả thuyết \(H_0\). Nghĩa là ST không có phân phối t.

3.8 Biến TS

Kiểm định phân phối chuẩn

hist.TS = ggplot(data = lyly,aes(TS))+
  geom_histogram(aes(y=..density..),color="black",fill="white")+
  stat_function(fun = dnorm,
                args = list(mean = mean(lyly$TS,na.rm = TRUE),
                            sd = sd(lyly$TS,na.rm = TRUE)),
                color ='blue',size = 1)
hist.TS
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Giả thuyết:

\(H_0\): TS tuân theo phân phối chuẩn

\(H_1\): TS không tuân theo phân phối chuẩn

shapiro.test(lyly$TS)
## 
##  Shapiro-Wilk normality test
## 
## data:  lyly$TS
## W = 0.94639, p-value = 1.336e-15

Với p_value = 1.336e-15 < 0.05 , bác bỏ \(H_0\) nên dãy số liệu này không có phân phối chuẩn.

Kiểm định phân phối Lognomal

Giả thuyết:

\(H_0\):TS tuân theo phân phối Lognormal

\(H_1\):TS không tuân theo phân phối Lognormal

ks.test(lyly$TS, "plnorm", meanlog = mean(log(lyly$TS)), sdlog = sd(log(lyly$TS)))
## Warning in ks.test.default(lyly$TS, "plnorm", meanlog = mean(log(lyly$TS)), :
## ties should not be present for the Kolmogorov-Smirnov test
## 
##  Asymptotic one-sample Kolmogorov-Smirnov test
## 
## data:  lyly$TS
## D = 0.097254, p-value = 2.013e-06
## alternative hypothesis: two-sided

Vì p_value = 2.013e-06 < 0.05 nên ta bác bỏ giả thuyết \(H_0\). Nghĩa là TS không có phân phối Lognormal.

Phân phối t

Giả thuyết:

\(H_0\): TS tuân theo phân phối t

\(H_1\): TS không tuân theo phân phối t

t.test(lyly$TS)
## 
##  One Sample t-test
## 
## data:  lyly$TS
## t = 158.16, df = 729, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  24.70997 25.33113
## sample estimates:
## mean of x 
##  25.02055

Vì p_value < 2.2e-16 < 0.05 nên ta bác bỏ giả thuyết \(H_0\). Nghĩa là TS không có phân phối t.

3.9 Biến CP

Kiểm định phân phối chuẩn

hist.CP = ggplot(data = lyly,aes(CP))+
  geom_histogram(aes(y=..density..),color="black",fill="white")+
  stat_function(fun = dnorm,
                args = list(mean = mean(lyly$CP,na.rm = TRUE),
                            sd = sd(lyly$CP,na.rm = TRUE)),
                color ='blue',size = 1)
hist.CP
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Giả thuyết:

\(H_0\): CP tuân theo phân phối chuẩn

\(H_1\): CP không tuân theo phân phối chuẩn

shapiro.test(lyly$CP)
## 
##  Shapiro-Wilk normality test
## 
## data:  lyly$CP
## W = 0.92951, p-value < 2.2e-16

Với p_value < 2.2e-16 < 0.05 , bác bỏ \(H_0\) nên dãy số liệu này không có phân phối chuẩn.

Kiểm định phân phối Lognomal

Giả thuyết:

\(H_0\):CP tuân theo phân phối Lognormal

\(H_1\):CP không tuân theo phân phối Lognormal

ks.test(lyly$CP, "plnorm", meanlog = mean(log(lyly$CP)), sdlog = sd(log(lyly$CP)))
## Warning in ks.test.default(lyly$CP, "plnorm", meanlog = mean(log(lyly$CP)), :
## ties should not be present for the Kolmogorov-Smirnov test
## 
##  Asymptotic one-sample Kolmogorov-Smirnov test
## 
## data:  lyly$CP
## D = 0.13328, p-value = 1.09e-11
## alternative hypothesis: two-sided

Vì p_value = 1.09e-11 < 0.05 nên ta bác bỏ giả thuyết \(H_0\). Nghĩa là CP không có phân phối Lognormal.

Phân phối t

Giả thuyết:

\(H_0\): CP tuân theo phân phối t

\(H_1\): CP không tuân theo phân phối t

t.test(lyly$CP)
## 
##  One Sample t-test
## 
## data:  lyly$CP
## t = 127.35, df = 729, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
##  16.48572 17.00195
## sample estimates:
## mean of x 
##  16.74384

Vì p_value < 2.2e-16 < 0.05 nên ta bác bỏ giả thuyết \(H_0\). Nghĩa là CP không có phân phối t.

4 Câu 2

Chọn và giải thích về đối tượng(vấn đề) cần mô phỏng(có ít nhất 6 biến ngẫu nhiên đầu vào).

4.1 Chọn đối tượng cần mô phỏng

Mô phỏng về lợi nhuận của cửa hàng bán đồ ăn vặt LyLy

*Doanh thu:

Doanh thu là toàn bộ phần tiền thu được trong quá trình mua bán, trao đổi hàng hóa, cung cấp dịch vụ của một cá nhân, tổ chức. Dựa vào doanh thu thực tế có thể xây dựng bảng báo cáo doanh thu cho cá nhân, tổ chức đó.

Doanh thu=giá bán*số lượng bán được

4.2 Giải thích về đối tượng mô phỏng

4.2.1 Dữ liệu đầu vào

Tiệm LyLy là một tiệm bán đồ ăn vặt gồm các món như sau: bánh mỳ nướng, bánh tráng trộn, bánh tráng cuộn sốt bơ, xoài lắc, xúc xích chiên; và các loại nước uống như: nước ép cà rốt, sting, trà sữa, cà phê.

Địa chỉ quán: Sùng Nhơn, Đức Linh, Bình Thuận

Thời gian mô phỏng: 730 ngày

*Bảng thống kế số lượng bán được mỗi ngày trong 730 ngày

lyly <- read.csv("C:/Users/LU UYEN/Downloads/dt.csv")
summary(lyly)
##       BMN             BTT            BTCSB             XL        
##  Min.   :12.00   Min.   :12.00   Min.   : 9.00   Min.   : 5.000  
##  1st Qu.:16.00   1st Qu.:15.00   1st Qu.:10.00   1st Qu.: 7.000  
##  Median :21.00   Median :17.00   Median :12.00   Median : 9.000  
##  Mean   :20.27   Mean   :17.49   Mean   :11.57   Mean   : 8.956  
##  3rd Qu.:24.00   3rd Qu.:20.00   3rd Qu.:13.00   3rd Qu.:11.000  
##  Max.   :28.00   Max.   :23.00   Max.   :14.00   Max.   :13.000  
##       XXC             NECR             ST             TS              CP       
##  Min.   :27.00   Min.   :14.00   Min.   :10.0   Min.   :18.00   Min.   :11.00  
##  1st Qu.:30.00   1st Qu.:17.00   1st Qu.:11.0   1st Qu.:21.00   1st Qu.:14.00  
##  Median :33.00   Median :19.00   Median :12.0   Median :25.00   Median :17.00  
##  Mean   :33.26   Mean   :19.52   Mean   :12.4   Mean   :25.02   Mean   :16.74  
##  3rd Qu.:36.00   3rd Qu.:22.00   3rd Qu.:14.0   3rd Qu.:29.00   3rd Qu.:20.00  
##  Max.   :39.00   Max.   :25.00   Max.   :15.0   Max.   :32.00   Max.   :22.00
lyly
##     BMN BTT BTCSB XL XXC NECR ST TS CP
## 1    26  19    12 12  39   24 10 24 15
## 2    27  20    10  7  39   25 10 21 16
## 3    13  23    11  9  27   24 10 22 11
## 4    15  18     9 11  35   20 12 31 14
## 5    18  18    13  8  38   18 10 21 15
## 6    20  14    12  6  38   14 13 25 21
## 7    26  22    11  9  36   19 10 21 22
## 8    21  22     9 13  29   20 14 28 18
## 9    12  20    10  8  33   17 15 28 14
## 10   26  18    13  9  32   24 11 25 19
## 11   25  18     9  9  32   16 10 31 20
## 12   16  12    11  8  33   25 10 22 22
## 13   12  21    12  7  31   21 11 22 16
## 14   17  13    11 10  38   25 15 19 19
## 15   28  16    10  9  30   25 12 23 17
## 16   16  19    13  8  39   17 13 18 19
## 17   15  18    13 10  34   21 15 19 20
## 18   27  16     9  8  27   18 10 18 17
## 19   23  13    12 11  38   17 12 26 15
## 20   25  16     9 12  33   14 12 25 16
## 21   15  13    14  7  33   25 10 23 15
## 22   12  20    13 12  39   20 14 32 13
## 23   25  19    11  5  35   17 14 25 19
## 24   24  20    13 10  31   25 13 32 11
## 25   28  14    10 10  39   19 13 20 21
## 26   19  16    13  9  38   22 14 28 16
## 27   28  17     9 13  31   21 11 21 15
## 28   22  18    14  5  30   20 10 19 12
## 29   16  20    12  8  33   18 11 31 13
## 30   18  22    14 13  31   16 10 21 17
## 31   15  14    11  7  33   16 10 20 22
## 32   15  21    14  7  31   20 15 29 18
## 33   28  23    13  7  39   17 12 21 22
## 34   27  22    10  8  30   22 14 28 17
## 35   17  23    10  7  35   15 13 18 17
## 36   21  14    13 13  28   25 10 27 13
## 37   25  21    12  6  31   18 12 28 19
## 38   27  14    10 11  32   19 14 25 14
## 39   27  14     9  8  38   17 10 31 15
## 40   14  16    12 10  27   22 15 29 12
## 41   24  14    11  5  35   16 15 27 21
## 42   24  15    11  8  35   21 10 20 16
## 43   17  14    14 11  28   18 10 22 16
## 44   16  15     9  6  28   19 13 25 18
## 45   15  23    11  7  27   18 12 21 14
## 46   16  21    13 11  33   25 13 18 15
## 47   24  16     9 11  33   24 14 31 21
## 48   16  20     9  9  38   18 15 26 19
## 49   18  16     9  9  30   23 10 31 21
## 50   15  17    13  6  34   18 12 29 21
## 51   21  23    13  6  29   22 11 30 11
## 52   14  13    12 13  39   25 12 19 21
## 53   21  22    14 11  34   17 12 25 17
## 54   28  16    12 12  32   22 12 30 20
## 55   27  13    10 10  29   24 12 27 14
## 56   21  15    14  7  39   18 13 28 12
## 57   25  17    13  9  29   22 10 20 16
## 58   17  12    13 10  36   20 14 30 16
## 59   18  14     9  5  30   20 10 23 18
## 60   15  17    13 10  31   19 10 22 12
## 61   13  22    10  5  35   15 15 32 20
## 62   28  15     9  9  27   14 13 27 19
## 63   28  20    12  6  29   25 12 22 22
## 64   25  22     9  9  31   24 10 27 21
## 65   24  18    11  6  38   23 13 27 15
## 66   25  15    13  9  36   14 11 22 17
## 67   16  22    14  6  33   15 15 21 21
## 68   22  18    13  6  28   20 13 23 22
## 69   27  17    14  6  32   25 15 31 14
## 70   14  20    11  9  36   25 12 29 18
## 71   12  15    14  6  35   20 14 27 14
## 72   25  16    12 13  36   15 14 26 19
## 73   12  23    12  7  33   25 13 20 12
## 74   14  17    12 13  33   21 13 20 19
## 75   27  12    12 11  34   24 12 21 19
## 76   28  18    10  7  39   20 15 25 13
## 77   17  18    12 11  27   19 15 21 19
## 78   17  23    13  7  39   23 12 20 13
## 79   22  15     9  6  30   21 10 21 13
## 80   24  16    14 12  35   19 10 30 18
## 81   26  21    13  6  28   14 13 21 15
## 82   27  12    12  9  35   24 11 20 17
## 83   12  17    10 11  27   24 10 22 14
## 84   22  19    10  6  33   18 11 31 11
## 85   20  18     9 10  38   23 13 21 21
## 86   17  23    14  8  36   17 14 28 18
## 87   16  22    12 11  35   20 13 26 15
## 88   25  18    13  9  35   18 12 24 18
## 89   27  22    11 13  39   22 14 22 12
## 90   28  14    10 10  37   24 11 28 17
## 91   23  22    11  8  33   14 15 20 21
## 92   19  17    14 12  35   21 13 27 18
## 93   23  18    11  7  27   25 12 26 14
## 94   14  14    11  6  30   19 12 25 11
## 95   23  15    14  6  28   14 15 28 17
## 96   25  21    14 12  39   17 13 26 21
## 97   21  16     9  5  33   23 12 26 11
## 98   21  16    11 10  34   25 14 19 17
## 99   20  19    11  8  35   15 15 27 17
## 100  21  16    12 13  28   14 13 31 17
## 101  20  19    10  8  32   18 13 25 12
## 102  28  18    12 10  38   23 13 21 14
## 103  26  16    11 11  32   21 15 25 15
## 104  21  12    14 13  38   20 13 31 21
## 105  19  20    14 13  33   18 12 21 12
## 106  14  19     9  8  31   23 12 31 18
## 107  28  19    13 12  28   20 14 23 21
## 108  14  16    10  6  38   22 14 18 12
## 109  19  16    11 13  32   22 15 29 20
## 110  27  19    14  9  28   21 10 31 15
## 111  13  17    12  7  30   24 11 21 14
## 112  27  22     9 11  30   14 14 31 16
## 113  16  12    10  7  34   18 15 19 15
## 114  16  15     9 10  38   24 10 28 21
## 115  12  15    13  5  39   19 15 20 16
## 116  16  21    13  9  32   18 15 30 17
## 117  24  17    13  6  35   25 13 28 22
## 118  12  20    12  8  36   22 13 23 18
## 119  14  15    11  6  27   20 13 28 13
## 120  15  14    14  8  28   23 12 32 22
## 121  24  19    11 11  37   19 14 26 13
## 122  15  16    11  9  32   19 15 22 17
## 123  26  21    14 10  39   23 13 21 12
## 124  18  21    14  8  33   25 12 21 11
## 125  20  13    14 12  31   19 12 21 16
## 126  24  21    12 11  36   25 15 21 22
## 127  13  15    11  9  36   17 13 29 19
## 128  14  20    13 13  39   19 13 30 22
## 129  19  13    13 12  32   25 11 21 18
## 130  18  15    12 12  37   16 13 28 20
## 131  19  13    11  5  29   20 13 22 15
## 132  26  12    11  6  30   18 10 31 21
## 133  20  22    11  8  33   24 10 24 12
## 134  13  13    12  7  34   15 14 25 20
## 135  23  20    12  7  32   15 10 23 21
## 136  16  22    13 11  37   19 13 26 14
## 137  25  12    14 10  32   22 13 27 21
## 138  13  15    11 10  35   15 13 21 17
## 139  17  19    10  9  35   16 12 28 21
## 140  28  13    14 12  30   23 15 20 21
## 141  16  23    13  8  34   22 14 31 18
## 142  24  20     9 11  34   16 10 22 21
## 143  14  16    11  5  31   22 11 32 17
## 144  21  20    10  7  37   17 11 20 18
## 145  28  20    10 13  28   21 11 22 16
## 146  27  20    13  5  36   25 12 24 11
## 147  27  19     9  5  36   16 13 24 12
## 148  21  12     9 12  30   19 15 22 14
## 149  22  17    12 10  39   19 14 20 18
## 150  21  14    10  6  31   16 12 26 12
## 151  21  14    12  9  39   17 11 24 20
## 152  26  12    12  6  27   24 12 19 18
## 153  23  21    11 10  32   24 14 25 21
## 154  19  15    14  7  36   17 12 24 21
## 155  20  13    13  6  31   25 15 31 20
## 156  27  15    11  7  34   19 11 20 20
## 157  12  16    11  6  36   22 15 19 13
## 158  14  16    13  5  27   14 14 30 12
## 159  27  17     9  9  28   15 10 23 12
## 160  14  19    14 13  38   19 15 29 13
## 161  28  18    14 11  31   15 10 25 12
## 162  20  23    10 13  27   17 13 19 18
## 163  12  22    11 13  27   21 12 18 12
## 164  19  13    13  6  33   18 15 23 22
## 165  23  16    13  6  33   24 12 18 15
## 166  15  12     9  8  27   24 11 27 16
## 167  24  17     9 12  30   20 12 31 11
## 168  18  18     9 11  32   20 15 27 15
## 169  19  22    11 13  34   16 12 29 22
## 170  14  15    14  6  35   21 13 25 12
## 171  19  13    14 10  39   17 14 30 20
## 172  25  12    13  6  35   20 15 26 16
## 173  25  23    14  9  31   21 13 32 22
## 174  26  21    10 13  32   16 12 21 22
## 175  16  18    13 11  38   18 13 24 11
## 176  14  17     9 13  36   18 10 18 13
## 177  26  20    11  7  33   18 12 29 14
## 178  28  14    13 10  28   24 13 28 20
## 179  23  21    10 13  33   23 15 19 13
## 180  12  15    11  6  37   23 14 19 14
## 181  17  20    12  6  30   19 13 22 14
## 182  23  21    13  8  36   14 12 21 17
## 183  22  17     9  7  34   24 14 25 16
## 184  19  21    11 12  36   16 10 29 15
## 185  20  16     9 11  36   22 11 24 11
## 186  13  16    14  5  36   15 11 32 20
## 187  19  17    12 10  34   17 13 28 19
## 188  16  14    11 12  27   21 10 21 12
## 189  23  20    13  5  35   23 15 28 12
## 190  28  13    11  9  28   15 10 20 22
## 191  22  12    14  8  32   16 11 28 20
## 192  26  19    10  9  36   21 15 28 18
## 193  20  23    10  5  31   25 11 20 21
## 194  13  22    13  5  39   14 15 23 18
## 195  22  12    13  8  33   22 12 29 12
## 196  26  13    11  6  32   21 10 23 13
## 197  18  19    14  7  33   25 12 26 17
## 198  14  14    12 13  31   15 12 20 12
## 199  14  15     9  9  39   21 10 31 14
## 200  25  21    13  8  30   23 11 26 11
## 201  20  18    13  7  32   14 11 27 15
## 202  27  19    13  9  28   20 10 31 21
## 203  12  15    11 10  30   14 11 19 15
## 204  20  14    12  5  32   20 10 25 13
## 205  18  17    13 11  35   19 14 27 20
## 206  27  14    10 10  29   21 12 22 12
## 207  25  20    10  7  32   16 11 27 12
## 208  25  21    10 10  38   20 11 27 15
## 209  26  22     9 13  33   21 11 25 17
## 210  14  23    11  5  29   16 14 22 17
## 211  28  17     9 12  30   23 12 24 21
## 212  26  22    13  9  32   15 14 21 13
## 213  26  13     9 13  39   16 14 22 16
## 214  22  12    11 11  27   15 14 30 20
## 215  24  21    12  9  34   17 15 24 11
## 216  26  17     9  7  39   19 11 19 15
## 217  21  19    13 10  36   16 14 31 20
## 218  28  20    12 12  32   24 14 31 19
## 219  27  21     9 10  35   16 11 30 11
## 220  19  18    10  7  27   19 12 18 18
## 221  26  19    13 13  32   18 12 30 16
## 222  23  18    14  6  37   19 12 28 11
## 223  24  14    12 12  35   19 12 32 21
## 224  22  15    13 11  33   14 11 22 14
## 225  27  16    14 13  27   16 12 31 15
## 226  13  13    13  5  36   19 12 25 17
## 227  24  21    11 13  35   15 10 30 14
## 228  16  17    14 10  33   23 14 20 20
## 229  16  19    10  5  32   20 15 30 15
## 230  28  22     9  9  34   24 12 19 14
## 231  17  20    12  5  28   23 12 19 19
## 232  21  21    12  6  36   18 15 21 13
## 233  23  15    13 10  33   16 15 18 17
## 234  20  21    10 12  29   19 10 31 18
## 235  20  13    10 12  32   24 12 29 13
## 236  24  22    11  8  39   17 11 27 20
## 237  23  17    11  9  37   16 14 30 22
## 238  25  13    14 11  27   16 11 27 21
## 239  27  13    14  6  27   19 13 29 21
## 240  22  23    12 11  27   15 10 32 18
## 241  22  17    14  5  35   16 15 28 11
## 242  17  20    11 11  33   18 14 31 14
## 243  21  19    13 10  32   20 12 19 19
## 244  26  16    14 11  27   23 15 18 19
## 245  15  17    14 10  35   14 13 24 17
## 246  18  17    10  8  32   19 13 31 21
## 247  26  17    11  7  33   20 15 21 11
## 248  21  13    11  7  32   16 13 28 15
## 249  22  13    12 11  35   25 14 23 11
## 250  27  22     9  6  30   14 12 22 11
## 251  17  13    10  5  35   23 11 22 21
## 252  23  15     9  6  27   16 12 22 13
## 253  16  23     9 10  33   24 10 32 11
## 254  20  13    13 12  38   23 12 26 19
## 255  28  20    12  5  30   16 14 28 13
## 256  13  22    13  7  39   14 11 30 22
## 257  17  22    13  5  32   15 12 23 19
## 258  24  16     9  6  35   20 15 31 21
## 259  19  23    11 10  39   18 12 31 15
## 260  16  14    11 13  31   18 11 21 21
## 261  19  14    14  8  35   22 10 20 13
## 262  19  13    12  8  38   24 11 26 19
## 263  14  15    13  7  30   15 10 28 11
## 264  18  14    10 11  32   21 13 27 21
## 265  19  13    11 13  37   21 13 26 18
## 266  20  21    14  8  31   15 13 20 15
## 267  21  20    12  7  34   18 12 22 20
## 268  27  23    10 12  39   18 15 19 20
## 269  22  16     9 12  29   22 10 25 21
## 270  21  12    12 10  39   25 12 21 13
## 271  13  13    10  5  39   14 15 27 21
## 272  20  20    12  6  33   17 10 18 20
## 273  23  20    10 10  29   22 15 32 14
## 274  21  18    12 12  37   21 10 23 22
## 275  16  17    14 11  29   21 14 20 20
## 276  15  16    14  9  36   20 15 22 19
## 277  12  12    12  8  32   23 10 23 19
## 278  28  19    12  6  34   23 14 28 18
## 279  24  19    11  9  35   16 12 19 16
## 280  25  15    13  9  30   24 10 21 22
## 281  24  18    10  7  32   19 11 24 19
## 282  22  21    14  5  39   23 10 24 14
## 283  16  21    12  5  36   21 15 21 16
## 284  19  21    11  9  28   18 15 19 15
## 285  15  12     9 13  37   23 11 27 21
## 286  12  22     9 10  32   17 10 27 22
## 287  13  12    12 12  31   24 11 29 12
## 288  23  20    13 11  38   22 14 23 17
## 289  13  20    13  8  29   24 10 23 16
## 290  20  21    11  8  34   14 14 23 15
## 291  24  21    10 13  37   14 10 23 14
## 292  12  14    10  9  34   24 15 22 14
## 293  14  21    12 11  31   19 13 28 14
## 294  28  23    11  6  34   23 11 28 14
## 295  27  14    13 12  37   25 11 21 22
## 296  28  13     9 13  29   19 10 27 17
## 297  28  20    14  8  38   16 15 32 20
## 298  16  17    10  5  34   15 14 23 21
## 299  18  16    11 12  34   17 11 22 12
## 300  17  20     9  5  31   14 10 28 21
## 301  24  15    11  8  34   18 14 20 21
## 302  27  18    13 13  31   14 11 30 22
## 303  24  23    10 10  30   20 13 21 21
## 304  27  23    12 13  34   23 11 23 18
## 305  24  14     9 13  30   15 12 27 11
## 306  23  19    10  8  33   18 14 22 16
## 307  24  19    10  7  31   19 13 19 15
## 308  20  18    14  6  36   18 11 23 11
## 309  27  12    10 10  33   14 10 29 18
## 310  12  14    12  5  30   24 14 29 15
## 311  28  15    14  8  36   18 13 26 17
## 312  21  18    10  9  39   15 11 19 20
## 313  14  20    14  8  30   14 14 28 17
## 314  23  15    14  6  32   18 10 30 15
## 315  19  14     9  8  27   20 12 18 21
## 316  16  15    11 10  35   14 11 26 18
## 317  26  22    14  6  37   16 14 32 19
## 318  23  17    10  8  37   17 14 25 11
## 319  22  20    12  6  39   17 12 21 21
## 320  16  17     9  9  31   15 11 29 18
## 321  21  19    13  8  33   14 12 25 19
## 322  21  23    11  8  30   19 10 32 18
## 323  23  13    14  6  34   23 11 31 16
## 324  25  15    12 11  39   20 14 21 13
## 325  21  23    11  6  27   15 12 23 21
## 326  27  13    12  5  31   22 13 26 18
## 327  14  19     9 12  37   16 15 32 18
## 328  18  22    14  6  31   25 12 24 19
## 329  26  19    10  7  27   16 12 26 16
## 330  15  23    13 12  32   20 12 23 21
## 331  17  19    10  9  31   20 12 18 14
## 332  26  23    14 13  29   14 11 30 12
## 333  22  19    10  7  27   18 12 26 20
## 334  16  19     9 13  38   21 11 25 18
## 335  21  17     9 12  29   25 10 20 13
## 336  14  15    11 11  37   19 13 31 12
## 337  28  13    11 10  33   16 10 19 16
## 338  13  18    14 13  29   22 12 32 20
## 339  16  18    13 10  38   19 11 24 19
## 340  28  19    10  7  36   18 14 25 15
## 341  27  22    10 11  36   20 12 26 18
## 342  13  15    11  8  32   18 15 30 19
## 343  22  23    10  9  31   16 12 31 22
## 344  20  16    12 10  36   24 10 29 19
## 345  25  16     9  7  37   16 12 27 11
## 346  28  14    13  6  36   20 13 19 20
## 347  21  17    14 13  38   16 12 21 15
## 348  16  23     9  7  31   20 11 31 12
## 349  18  19    11 11  32   16 10 22 21
## 350  15  21    11 10  35   21 14 25 16
## 351  14  16     9 13  31   16 15 28 19
## 352  16  14    14 12  28   22 11 18 11
## 353  28  23    11  8  31   16 11 29 13
## 354  13  22    12  9  37   20 14 25 20
## 355  25  22    13 11  37   21 15 25 11
## 356  22  19    13  6  29   22 12 21 13
## 357  21  13    11  5  37   24 15 31 12
## 358  22  17    12 12  29   19 15 18 15
## 359  24  17    11  7  36   14 15 25 20
## 360  26  15    10  5  28   22 11 27 13
## 361  25  17     9  8  33   21 10 21 15
## 362  16  22    12  5  37   14 13 30 13
## 363  19  16    14  7  28   14 10 23 15
## 364  22  12    11  7  28   16 12 32 14
## 365  20  20    11 11  32   18 13 23 19
## 366  19  19    10  8  27   23 11 24 11
## 367  23  20    13  9  39   21 15 28 14
## 368  13  13    10  6  31   14 13 30 12
## 369  28  17    10  7  38   25 10 25 20
## 370  16  13    11  8  39   23 11 25 12
## 371  21  14     9  9  37   23 13 18 17
## 372  13  15    13  9  38   16 11 22 19
## 373  18  21    14  9  34   20 15 32 20
## 374  17  17    14  6  29   25 11 26 21
## 375  27  12     9  9  29   25 13 28 11
## 376  12  15    11 10  34   15 13 23 13
## 377  15  14    14  7  37   25 11 23 19
## 378  20  13    12  6  35   14 13 30 20
## 379  27  17    11 13  31   24 14 18 13
## 380  18  21    14 11  37   16 10 27 20
## 381  19  15    12 11  30   17 14 21 22
## 382  19  19    13  6  34   22 12 18 21
## 383  16  15    11 12  32   22 15 32 21
## 384  22  21    14 12  36   18 11 32 18
## 385  21  23    10  5  29   24 10 32 20
## 386  13  23     9  5  39   22 10 22 11
## 387  20  19    10  5  31   18 13 23 17
## 388  23  18    11 12  28   20 14 23 18
## 389  25  15    10 12  39   24 13 25 18
## 390  13  15    12 10  27   25 13 31 14
## 391  16  17    13  5  36   18 14 32 20
## 392  15  16    10  5  35   15 15 28 20
## 393  22  16    14 11  35   16 15 29 11
## 394  17  21    13  7  34   22 13 31 16
## 395  25  12    10 10  33   19 11 21 22
## 396  23  17    14  8  28   16 12 23 15
## 397  15  13    10  5  33   15 11 30 20
## 398  15  18    11  9  37   21 15 32 21
## 399  14  14    13 13  35   21 12 26 20
## 400  28  16    10 12  30   17 11 32 12
## 401  16  21    12  9  37   19 14 26 14
## 402  14  14    13  6  37   20 12 31 13
## 403  23  15    14 12  34   21 15 19 22
## 404  16  19     9  9  34   21 11 21 16
## 405  26  13    10  7  32   25 15 27 16
## 406  24  12     9  5  33   16 14 24 22
## 407  13  13    12 10  33   14 11 22 20
## 408  12  22     9 13  30   19 10 19 21
## 409  14  23    11 11  34   20 14 26 18
## 410  25  12     9  6  32   18 14 26 11
## 411  19  15     9  7  38   25 12 29 20
## 412  22  17    10  8  31   14 11 24 20
## 413  20  12    14  5  35   24 13 23 11
## 414  20  18    14 12  32   16 13 22 17
## 415  20  14    12 12  30   16 13 28 16
## 416  14  15    11  8  32   20 14 19 19
## 417  28  16    14  8  37   20 15 21 12
## 418  14  13     9  8  39   15 12 31 19
## 419  17  17    13  9  30   23 10 19 18
## 420  23  12    10  7  32   20 10 22 18
## 421  16  18    12  6  36   22 12 24 18
## 422  22  19    14  9  34   22 14 18 22
## 423  25  12     9  5  30   22 15 32 11
## 424  25  12    14  6  27   21 10 24 18
## 425  17  23    12  9  38   25 13 31 21
## 426  23  15    11  9  31   18 11 25 19
## 427  12  13    14 11  34   22 10 26 22
## 428  13  20     9  6  39   15 11 30 11
## 429  14  21    12  7  29   15 13 18 16
## 430  12  21    12  8  31   17 11 22 19
## 431  21  21    13  7  27   23 13 32 13
## 432  27  14    13 13  28   22 11 25 15
## 433  27  16    13 10  33   23 10 32 22
## 434  21  20    12  8  37   14 12 32 20
## 435  12  19    14 12  27   22 13 27 22
## 436  16  18    14  9  29   20 14 28 11
## 437  22  20     9  8  28   17 12 21 22
## 438  26  23    10 12  27   20 11 29 16
## 439  22  21    11  9  31   25 11 32 20
## 440  15  19    10 13  39   15 10 23 11
## 441  23  21    10 10  27   17 11 18 22
## 442  23  19    13  8  28   16 11 21 18
## 443  28  19     9  8  36   16 12 21 15
## 444  23  23    10 10  39   14 11 22 11
## 445  20  18    14  5  27   23 14 19 14
## 446  18  17    13  8  33   17 11 29 18
## 447  21  12    13  5  35   21 12 27 11
## 448  16  12    13  8  39   14 12 28 18
## 449  12  13    14 13  30   24 13 27 21
## 450  24  22    11 10  39   18 12 18 19
## 451  16  12    10  5  34   17 12 24 16
## 452  12  19    14  6  39   18 12 19 12
## 453  26  16    12  5  39   22 10 22 22
## 454  19  18    12  5  34   18 15 28 22
## 455  14  14    12 11  36   22 12 19 17
## 456  27  18     9  6  35   19 15 19 16
## 457  23  13    10 13  36   24 13 21 16
## 458  16  19    11 11  29   23 13 18 15
## 459  15  16     9 12  29   25 14 19 16
## 460  21  15    12  5  30   24 14 27 11
## 461  18  14    12 12  39   22 12 29 19
## 462  23  16    12  9  37   24 10 32 21
## 463  13  22    11 12  35   21 14 20 15
## 464  14  20    10 10  38   19 11 20 13
## 465  28  19     9 12  31   14 15 23 13
## 466  27  15    14 12  31   14 12 32 14
## 467  16  23    10  5  38   19 10 20 13
## 468  16  17    11  9  27   15 10 24 20
## 469  18  14    10  6  39   24 13 32 19
## 470  27  19    14  5  31   14 10 25 11
## 471  15  22     9 12  28   21 15 18 20
## 472  24  20    14 10  35   17 13 18 18
## 473  22  15    13  5  33   25 12 18 20
## 474  26  20    13  9  30   14 11 23 22
## 475  23  17    10  6  30   19 10 32 22
## 476  18  15    10 12  32   21 15 27 11
## 477  23  19    10 11  31   20 13 19 19
## 478  21  15    11  8  30   24 10 29 18
## 479  15  12    13  6  37   21 13 23 22
## 480  20  17    13 10  30   25 11 20 14
## 481  26  13    10  8  32   25 10 32 20
## 482  27  21    13 12  36   22 10 20 18
## 483  12  14    10 11  34   24 10 26 11
## 484  28  13    14  6  34   14 15 26 19
## 485  19  20    13  8  37   14 13 21 17
## 486  21  12    14 12  31   20 12 30 20
## 487  18  14    11 11  39   22 13 28 19
## 488  13  16    14  8  28   17 13 25 22
## 489  24  13     9 12  32   15 14 18 15
## 490  13  20    13  6  27   18 14 26 15
## 491  15  19     9  9  35   22 12 19 22
## 492  27  17     9  7  32   22 15 22 20
## 493  14  19     9 12  29   19 11 20 14
## 494  17  15    13 11  27   24 12 28 20
## 495  27  21     9  5  30   15 12 27 22
## 496  21  20    14  9  38   16 10 28 20
## 497  16  13    11  9  30   18 13 25 20
## 498  13  19    10 13  39   18 11 28 12
## 499  13  21    13 10  33   21 15 29 18
## 500  23  14    13  8  31   25 11 24 22
## 501  25  16    14  5  37   18 10 21 17
## 502  20  18    13 10  37   18 13 24 11
## 503  23  18    13 13  30   18 10 21 15
## 504  12  12    14 10  37   21 15 30 15
## 505  26  22    12 11  37   23 15 22 15
## 506  15  12    13 13  27   17 14 30 20
## 507  28  14    12 13  32   24 12 31 11
## 508  14  13    11 12  35   19 11 32 18
## 509  24  13    14  6  35   20 14 32 14
## 510  27  16    13  5  34   24 14 20 17
## 511  21  21    12 11  27   18 10 24 13
## 512  16  21    13 11  36   22 15 24 14
## 513  12  21    10 13  39   18 13 30 20
## 514  24  20    13  7  30   16 10 27 14
## 515  18  22     9  7  30   22 12 22 18
## 516  19  23    14 12  31   24 13 27 22
## 517  28  13     9 13  29   18 13 31 21
## 518  27  17     9  9  39   24 11 23 14
## 519  15  21    14 13  39   17 10 25 12
## 520  15  22    13 12  32   16 10 31 11
## 521  23  15    13 13  33   17 10 22 22
## 522  27  13     9  7  39   20 15 32 12
## 523  19  14    12 12  37   14 11 27 20
## 524  19  13    12  7  37   14 14 20 18
## 525  23  12    13  5  28   15 11 18 19
## 526  16  18    13  6  27   25 15 28 19
## 527  17  14    10  7  29   23 14 24 20
## 528  20  21    11  5  38   25 10 26 11
## 529  25  18    12 12  30   16 14 21 17
## 530  22  18    10  8  29   19 10 28 21
## 531  19  22    14 12  31   14 10 27 14
## 532  14  12    11 12  39   23 13 31 11
## 533  14  18    14  8  32   17 12 26 19
## 534  14  16    14  8  29   24 10 28 15
## 535  14  23     9  8  32   17 10 25 11
## 536  16  13     9  6  39   25 10 29 19
## 537  24  21    13  7  29   19 13 22 14
## 538  20  23    12 11  37   25 13 22 17
## 539  25  23    12  6  33   16 13 26 13
## 540  24  16    10  9  31   20 11 29 18
## 541  22  14    13  9  34   17 10 18 21
## 542  20  19    10  5  29   23 12 32 19
## 543  21  22    14  5  37   20 14 22 19
## 544  21  15    11  7  36   25 15 30 19
## 545  28  20    14 13  35   17 15 18 21
## 546  25  21    11 13  30   20 12 24 17
## 547  24  18    10 11  31   24 12 31 19
## 548  20  16    13 12  39   25 10 32 11
## 549  21  13    13 12  28   22 10 28 17
## 550  12  19    13 11  28   15 15 21 12
## 551  12  19    14  6  36   25 12 32 13
## 552  16  19    10 11  38   25 13 27 13
## 553  24  21    13 12  39   24 13 21 21
## 554  19  16    10 11  33   22 14 23 19
## 555  15  19    12  9  33   20 12 32 12
## 556  24  12    14  5  34   15 12 23 21
## 557  25  18    14  9  36   21 13 30 11
## 558  19  17     9  6  38   25 13 30 11
## 559  14  16    14 12  38   15 15 23 18
## 560  21  21    12 13  32   25 14 31 14
## 561  19  13    11  9  30   21 11 25 11
## 562  20  19     9  8  32   20 15 28 18
## 563  21  18    13  5  29   21 13 23 22
## 564  20  21    13  5  35   18 12 23 19
## 565  18  20    11 13  31   19 14 25 15
## 566  22  19    11  7  38   14 15 29 11
## 567  21  17    13 10  39   16 11 25 18
## 568  12  20    14  9  39   17 12 20 18
## 569  13  23    10 13  36   16 11 31 11
## 570  13  14    11 11  32   21 15 19 21
## 571  22  20    10 10  30   16 15 29 20
## 572  20  12     9  7  38   20 11 23 17
## 573  12  12    14  5  38   17 11 26 19
## 574  13  21     9 10  34   23 14 25 21
## 575  14  15     9  7  36   19 10 21 17
## 576  28  13    10 12  30   24 15 21 21
## 577  24  23     9  8  37   14 13 30 15
## 578  21  23    12  5  38   14 12 24 20
## 579  19  15     9  6  34   22 14 25 14
## 580  28  23    13  6  31   14 15 24 16
## 581  19  13     9 12  29   24 12 27 18
## 582  26  18     9 12  37   18 14 27 20
## 583  28  22    12 11  30   25 13 26 11
## 584  18  22    11  9  29   21 12 20 19
## 585  12  16    11 12  27   24 10 29 16
## 586  14  15    13  9  38   19 12 27 21
## 587  23  20     9  9  30   21 14 32 12
## 588  21  12    12 11  27   15 13 20 22
## 589  12  22     9  7  32   18 15 29 16
## 590  15  21    13 12  31   16 10 20 12
## 591  23  18    11  5  39   19 13 19 11
## 592  14  14    10  7  33   25 13 22 17
## 593  13  18    11  9  39   22 14 21 13
## 594  16  20    12  5  38   15 13 25 22
## 595  24  14     9 13  29   17 15 31 16
## 596  22  15    11 13  33   14 12 28 15
## 597  20  19    11 10  39   15 13 32 11
## 598  13  16    10  9  38   20 12 24 22
## 599  23  17    12  5  33   19 15 18 22
## 600  25  18    13  7  29   23 12 20 20
## 601  13  17    12 12  37   17 13 31 11
## 602  23  17    10  5  38   24 14 22 12
## 603  14  21    10  5  34   21 10 26 11
## 604  24  12    12 13  37   16 14 19 12
## 605  23  18    12  5  36   15 10 26 21
## 606  25  22    11 12  35   20 12 26 19
## 607  21  18    10 13  38   19 10 28 13
## 608  12  20     9 12  31   18 12 22 20
## 609  13  17    14  7  34   20 10 22 20
## 610  14  22    12  9  29   20 14 27 19
## 611  28  22    14 11  38   19 11 20 13
## 612  22  21    13  6  39   16 13 27 17
## 613  26  20    10 12  37   23 12 20 22
## 614  27  12    12 10  31   17 15 28 19
## 615  19  19    13  7  37   24 14 19 15
## 616  24  20    13 10  32   22 12 23 16
## 617  18  15    13  9  38   25 14 22 22
## 618  28  20    12 11  27   14 10 24 21
## 619  18  20    14 11  29   20 13 20 20
## 620  14  14    14  8  36   17 13 31 21
## 621  15  23     9  7  30   18 13 32 21
## 622  16  16    14  8  30   17 15 32 12
## 623  15  23    14 12  31   19 15 26 17
## 624  20  15     9  6  30   21 15 32 22
## 625  24  18     9  6  32   17 14 22 21
## 626  28  18    12 11  31   17 13 19 13
## 627  16  19    12 11  38   16 10 27 11
## 628  15  14    14  7  29   14 13 20 14
## 629  12  13    11  9  32   22 11 22 14
## 630  13  16    13  5  37   18 12 26 14
## 631  24  23    10  8  28   15 11 32 15
## 632  12  13    14  7  39   16 10 23 13
## 633  28  12    13  5  35   25 12 25 16
## 634  23  14    14 10  31   22 15 27 20
## 635  23  20    13 10  36   15 10 18 22
## 636  27  20    13 12  33   23 13 26 12
## 637  21  12    11  6  36   19 15 19 18
## 638  26  14    11  8  31   20 10 22 22
## 639  28  17    13  9  28   16 15 21 18
## 640  27  13     9  7  33   18 15 26 20
## 641  19  20    12  9  31   25 10 21 19
## 642  19  23    13 10  39   24 15 20 12
## 643  21  22    13 10  29   23 13 30 19
## 644  28  12     9  9  32   24 10 21 14
## 645  13  22    13  8  28   21 14 25 13
## 646  23  22    14  6  36   24 15 23 15
## 647  23  17     9  5  27   24 14 22 13
## 648  24  14    10  6  39   22 14 26 16
## 649  26  18    11 10  31   24 12 25 20
## 650  18  19    11 12  30   24 11 24 17
## 651  20  15     9  6  34   21 14 23 21
## 652  24  15    13  6  39   16 15 29 17
## 653  13  15    14 11  31   16 14 18 11
## 654  18  16     9 11  33   25 13 24 15
## 655  28  16    12  9  31   19 10 25 18
## 656  13  17     9  5  36   20 13 23 14
## 657  18  18    10 12  29   17 11 32 16
## 658  20  22    13 13  31   25 10 30 11
## 659  15  22    13  9  27   17 12 22 20
## 660  22  15    13 11  37   16 11 29 22
## 661  16  20    10 13  31   23 14 18 20
## 662  28  20    12 10  30   23 15 30 11
## 663  12  15     9  8  27   22 10 25 14
## 664  24  15     9 13  29   25 14 30 12
## 665  23  13     9  5  32   17 13 29 13
## 666  14  23    11 13  34   24 14 25 17
## 667  23  21    13  9  37   24 10 20 22
## 668  18  17    10 10  32   19 11 29 20
## 669  25  12    11  7  37   15 15 19 13
## 670  18  14    12 11  37   19 10 22 22
## 671  15  18    11 13  27   17 13 25 13
## 672  21  19    10  5  39   23 11 31 19
## 673  12  16    14 12  30   17 13 21 18
## 674  19  22    11  8  38   15 12 27 12
## 675  22  23    12  9  33   20 13 20 13
## 676  12  19    13  6  34   16 10 20 12
## 677  22  16    14  7  39   15 15 27 22
## 678  22  18    14  9  39   20 10 28 18
## 679  24  19    11  6  31   14 10 29 17
## 680  27  16    12  9  36   15 12 20 22
## 681  24  15    12  5  36   21 11 32 20
## 682  14  22    14 12  36   17 12 21 15
## 683  22  19     9  7  27   21 12 28 17
## 684  25  18    11  6  27   22 11 32 12
## 685  14  12    13 13  34   25 10 18 12
## 686  26  16     9  9  35   18 11 23 22
## 687  15  16     9 13  32   15 12 19 17
## 688  12  13    14  8  27   22 10 19 15
## 689  20  20    13  7  38   21 13 25 17
## 690  12  15    10 11  29   18 10 23 13
## 691  12  18    12 13  29   21 14 25 13
## 692  16  22     9 12  34   22 15 29 21
## 693  13  19    12 12  27   20 14 21 16
## 694  24  14    10 10  37   21 11 18 12
## 695  13  23    14  6  33   19 14 32 14
## 696  19  18    12 12  38   19 15 30 11
## 697  14  22    12 12  39   18 13 20 22
## 698  26  16    10  7  39   21 13 29 20
## 699  22  21    12 13  36   22 10 29 14
## 700  18  22    11 12  37   19 15 29 22
## 701  19  16    14 10  32   14 12 20 21
## 702  28  15    13  8  37   14 13 29 17
## 703  26  14    14 11  39   20 11 21 13
## 704  16  20    14  9  29   18 10 27 21
## 705  23  16     9 13  33   17 12 30 14
## 706  22  18    11 13  39   14 14 21 22
## 707  26  13    14 10  34   17 10 19 16
## 708  20  14    13  7  37   22 11 23 14
## 709  22  15     9  7  31   17 10 32 17
## 710  28  19    11  8  34   23 12 30 13
## 711  25  23    12  6  31   16 14 19 13
## 712  27  17    14  5  30   25 15 32 20
## 713  26  22    11 10  33   20 12 25 22
## 714  19  17    13  6  39   14 15 22 13
## 715  17  16    14  6  37   25 12 32 21
## 716  27  20    11 13  31   25 12 32 19
## 717  22  12    11 11  27   18 12 24 20
## 718  27  16    13  6  30   17 10 21 17
## 719  22  12    12 12  37   19 10 26 11
## 720  28  21    11 12  29   14 13 27 11
## 721  28  23    13  8  36   22 13 32 14
## 722  20  19     9 10  31   25 14 25 14
## 723  20  17    10  7  33   19 14 18 12
## 724  25  16    12  8  35   22 15 27 14
## 725  23  16     9  6  36   14 11 26 20
## 726  16  21    10  5  39   20 10 28 20
## 727  14  22     9 12  35   23 10 25 17
## 728  27  23    13  9  32   22 15 29 22
## 729  19  23    10 12  32   20 10 28 19
## 730  20  14    12 13  35   19 13 20 13

Giá của các món như sau:

-Bánh mỳ nướng(BMN): 15k

-Bánh tráng trộn(BTT): 10k

-Bánh tráng cuộn sốt bơ(BTCSB): 20k

-Xoài lắc(XL): 20k

-Xúc xích chiên(XXC): 10k

-Nước ép cà rốt(NECR): 15k

-Sting(ST): 10k

-Trà sữa(TS): 25k

-Cà phê(CP): 12k

chi phí cố định:

-Mặt bằng có sẵn không cần thuê.

-Nhân viên: 6tr/tháng ->200k/ngày

-Thiết kế, trang trí,sửa chữa:300k/tháng->10k/ngày

-Tủ lạnh:mua cũ giá 5tr->6,8k/ngày

-Tiền điện nước:800k/tháng->26,7k/ngày

chi phí biến đổi:108tr/3 năm ->148k/ngày

4.2.2 Mô hình

Lợi nhuận = -(243500 + 148000) + BMNx15000 + BTTx10000 + BTCSBx20000 + XLx20000 + XXCx10000 + NECRx15000 + STx10000 + TSx25000 + CPx12000

5 Câu 1

Mô phỏng ít nhất 5 biến ngẫu nhiên( có phân phối xác suất khác nhau), mô phỏng, vẽ đồ thị, tính toán các đặc trưng đo lường và giải thích ý nghĩa.

5.1 Phân phối Poission

library("ggplot2")
rpois(200,4.5)
##   [1]  5  5  3  8  4  3  3  5  4  1 10  6  2  3  5  1  1  2  3  3  5  7  3  6  6
##  [26]  0  1  2  5  4  4  3  5  6  4  6  2  5  1  5  6  4  8  5  8  8  9  4 10  8
##  [51]  3  3  3  4  5  2  9  1  5  4  8  7  1  9  7  7  7  6  6  4  4  4  9  6  6
##  [76]  6  6  4  4  2  4  5  3  6  2  5  3  6  7  2  2  6  3  2  5  5  4  4  2  9
## [101]  2  2  4  4  7  4  3  3  8  3  3  4  9 10  4  4  6  3  7  3  1  6  5  4  4
## [126]  3  3  2 10  4  3  7  4  3  7  2  2  2  5  1  4  2  3  6  5  6  9  5  4  5
## [151]  2  3  5  3  4  7  3  2  7  4  6  5  4  2  5  8  6  5  4  4  4  4  4  2  5
## [176]  3  4  9  4  5  4  0  4  8  6  4  3  2  3 10  3  5  6  4  5  5  7  6  3  7
a<-rpois(n=200,lambda=4.5)
summary(a)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   3.000   4.500   4.615   6.000  11.000

-Tạo data frame từ dữ liệu:

dfa<-data.frame(ppa=a)

-Biểu đồ:

ggplot(dfa)+geom_histogram(aes(x = ppa, y = ..density..), binwidth = 0.5, color = "black", fill = "orange") +  geom_density(aes(x = ppa, y = ..density..), color = "red", size = 1) +  labs(x = "Giá trị", y = "Mật độ phân phối") + theme_minimal()

5.2 Phân phối nhị thức

rbinom(n=200,size=5,prob=0.25)
##   [1] 2 0 2 0 1 3 2 1 1 2 2 0 1 0 0 2 3 0 1 2 1 1 1 1 3 2 2 3 1 2 0 2 1 0 1 0 0
##  [38] 2 0 1 1 0 0 2 2 0 1 2 2 1 1 1 2 1 1 2 1 3 2 1 2 0 3 2 1 1 1 0 2 3 2 1 2 1
##  [75] 0 2 1 2 2 1 0 0 0 0 2 1 1 1 0 1 1 2 0 0 1 1 0 0 1 2 1 1 2 1 0 2 2 1 2 2 4
## [112] 0 2 0 2 2 2 2 2 0 2 3 1 2 3 2 1 4 1 1 1 1 2 0 0 1 2 1 3 1 2 0 2 1 0 3 0 1
## [149] 2 1 1 3 0 1 2 0 1 1 0 2 4 1 2 1 0 4 0 1 1 2 1 0 0 2 0 2 0 0 1 0 2 2 2 1 2
## [186] 2 0 0 1 1 1 2 1 2 3 2 1 1 1 1
b <- rbinom(n=200,size=5,prob=0.25)
summary(b)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   1.000   1.000   1.205   2.000   5.000

-Tạo data frame từ dữ liệu:

dfb<-data.frame(ppb=b)

-Biểu đồ:

ggplot(dfb)+geom_histogram(aes(x = ppb, y = ..density..), binwidth = 0.5, color = "black", fill = "orange") +  geom_density(aes(x = ppb, y = ..density..), color = "red", size = 1) +  labs(x = "Giá trị", y = "Mật độ phân phối") + theme_minimal()

5.3 Phân phối chuẩn

rnorm(n=150,mean=20,sd=5)
##   [1] 17.731048 18.719928 14.731169 26.183198 18.853619 23.847915 28.781415
##   [8] 20.083876 30.149942 20.415732 19.824153 32.499031 20.023659 12.282134
##  [15] 25.096610 24.354469 29.753045 21.228297 20.888696 17.775251 21.965025
##  [22] 27.683157 18.079081 16.187460 29.773561 13.012429 17.815646 30.749815
##  [29] 21.073973 15.393610 17.614109 15.326448 20.978518 25.525852 20.875463
##  [36] 14.377121 24.450917 14.736097 24.110669 20.882270 26.624547 18.960890
##  [43] 21.403244 22.680922 21.006013 13.301034 19.209015 22.153706 10.874816
##  [50] 25.426762 19.336230 13.623342 17.449643 23.553215 11.161919 19.262783
##  [57] 22.319777 19.675676 23.572795 20.010882 14.587310 22.580988 18.888325
##  [64] 16.485579 18.268857 15.128405 16.514265 22.045403 16.904189 24.456159
##  [71] 16.164904 22.896625  7.216282 18.130240 23.199636 28.232559 19.853597
##  [78] 17.435735 22.498477 21.739302 -0.769595 26.332303 28.970987 26.250356
##  [85] 27.226880 26.683589 29.001105 20.577100 25.068165 25.471071 13.782257
##  [92] 13.750400 22.592186 20.482338 25.210432 25.325302 25.032452 25.148405
##  [99] 20.442565 24.262108 13.644545 15.694926 14.104331 21.256839 17.772039
## [106] 23.204993 24.485767 17.865253 29.307639 17.972819 21.591080 11.465882
## [113] 22.557816 17.500809 21.694190 12.438699 15.760588 26.969166 13.528737
## [120] 14.255948 18.951711 24.688953 25.096249 19.942542 21.468892 16.153514
## [127] 25.478842 17.843018 25.604472 23.013061 20.035492 21.940409 19.154378
## [134] 25.605734 20.233034 14.766360 18.537166 19.851874 19.012621 14.836260
## [141] 19.299731 16.696334 28.468662 21.489299 19.950721 27.353686 27.522798
## [148] 30.918181 25.152061 19.060742
c<-rnorm(n=500,mean=20,sd=10)
summary(c)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  -6.648  12.917  18.726  19.832  26.145  47.736

-Tạo data frame từ dữ liệu:

dfc<-data.frame(ppc=c)

-Biểu đồ:

ggplot(dfc)+geom_histogram(aes(x = ppc, y = ..density..), binwidth = 0.5, color = "black", fill = "orange") +  geom_density(aes(x = ppc, y = ..density..), color = "red", size = 1) +  labs(x = "Giá trị", y = "Mật độ phân phối") + theme_minimal()

5.4 Phân phối mũ

rexp(n=200,rate=0.5)
##   [1]  1.475407284  0.881164045  0.612190968  1.335797542  1.577009452
##   [6]  3.066436514  0.490278390  1.455807113  0.220403543  1.028386281
##  [11]  5.540685002  0.444340666  0.847545138  0.201612960  5.867208857
##  [16]  1.275989822  6.898937598  3.252568888  5.216023650  3.430361347
##  [21]  1.001092062  1.599938251  2.092687296  2.468870222  0.448665501
##  [26]  0.848326442  4.214183912  2.626932819  2.878632158  1.372476548
##  [31]  0.560487309  2.819625675  4.402528058  3.162256487  1.123347333
##  [36]  0.302341878  1.250963123  0.122228491  2.298109276  0.534843808
##  [41]  1.688005717  1.169490669  2.522225438  0.468441017  1.100921742
##  [46]  0.161686525  0.590158630  3.593683608  0.257088807  0.374088255
##  [51]  2.089210818  5.199910667  0.365259718  4.100115232  2.218686767
##  [56]  0.756785791  1.507853093  0.822849529  1.326326210  0.817285399
##  [61]  5.134770264  1.663635795  0.113714985  2.263464030  1.316917626
##  [66]  0.136138294  1.656653190  1.240886768  8.049717377  0.020266575
##  [71]  0.234947547  0.596559994  2.533050515  2.376320094  3.836495863
##  [76]  7.457863580  0.014338745  4.223881867  3.021370448  0.497537701
##  [81]  3.606749318  1.343172573  2.471945239  0.421345797  4.220610875
##  [86]  0.424691846  2.646011135  1.738320525  0.548392153  0.650288969
##  [91]  0.506639951  2.297246220  6.348589196  1.047287034  3.775938146
##  [96]  7.123095493  1.421437628  1.572303321  0.414734677  1.311422554
## [101]  2.180255752  0.014548059  0.399565991  1.278844178  1.261628165
## [106]  0.063970218  1.836571238  0.281182772  0.381618254  1.213941300
## [111]  1.264412265  1.964512135  2.272816716  1.192440167  2.106699509
## [116]  3.281222500  1.678210094  8.579433418  1.619858699  9.022238351
## [121]  0.667434241  5.825036332  2.735644048  0.022439701  4.223722499
## [126]  2.218588001  0.313722748  0.077468988  0.464539556  5.256907459
## [131]  2.078078471  3.628739148  2.128442136  2.032004442  5.769185185
## [136]  2.189427709 11.577081411  3.684010997  4.722229641  0.200643219
## [141]  5.531351719  0.545134967  1.734967922  0.032546125  1.516306354
## [146]  0.227073139 11.426672404  6.163900737  1.608899204  0.779228004
## [151]  0.518261428  0.195974161  1.495488441  1.145293643  1.345927583
## [156]  3.021613171  1.218336388  2.070030078  5.220758620  0.850094531
## [161]  0.323750853  4.059352863  1.184961431  0.628968400  1.417476445
## [166]  2.946171954  2.050343045  2.880906882  0.432988855  0.696562116
## [171]  0.105188305  1.321203058  0.246976177  6.992993008  1.281581712
## [176]  0.329845585  1.901559315  0.996209998  0.004653416  3.222892457
## [181]  1.114497910  0.599795513  1.051092410  4.173989986  1.874510324
## [186]  1.353036884  0.209787809  2.403338306  0.046140330  2.381706187
## [191]  0.518106197  1.708475144  2.717089768  0.454342530  0.645966592
## [196]  6.133079409  3.351726728  1.838549687  2.760253200  1.127847039
d<-rexp(n=200,rate=0.5)
summary(d)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##  0.01162  0.56053  1.63361  2.26048  2.96519 10.94046

-Tạo data frame từ dữ liệu:

dfd<-data.frame(ppd=d)

-Biểu đồ:

ggplot(dfd)+geom_histogram(aes(x = ppd, y = ..density..), binwidth = 0.5, color = "black", fill = "orange") +  geom_density(aes(x = ppd, y = ..density..), color = "red", size = 1) +  labs(x = "Giá trị", y = "Mật độ phân phối") + theme_minimal()

5.5 Phân phối đều

runif(n=200,min=15,max=35)
##   [1] 19.46354 18.73932 28.16671 15.91424 19.22206 28.03793 31.20830 18.87496
##   [9] 18.85591 34.65098 30.75509 23.60905 20.51525 23.75353 33.80055 30.34482
##  [17] 28.75028 34.60367 18.83545 16.74311 24.97894 21.56799 33.46472 27.50432
##  [25] 29.68521 17.58179 29.79915 26.01901 17.63041 30.56535 27.80557 17.09155
##  [33] 23.46786 21.65605 15.36061 32.92985 21.05085 33.02354 22.58656 16.78544
##  [41] 19.94116 19.12393 30.43645 29.47813 15.04129 28.71660 24.44993 21.03313
##  [49] 28.84718 21.29227 34.71823 18.12591 21.42168 19.15758 31.56499 31.08129
##  [57] 19.52173 20.48738 25.99086 30.65231 17.89235 15.94778 30.74677 27.98179
##  [65] 18.21764 27.55155 15.72390 17.39376 31.29683 29.95349 23.37889 19.05562
##  [73] 25.89491 19.06083 21.53782 31.72785 28.13625 33.08853 34.29805 24.71819
##  [81] 18.50184 28.92279 16.06615 17.21174 28.15413 29.55625 31.43663 24.49901
##  [89] 29.44965 19.39729 17.57230 21.64268 31.18178 33.56773 19.55226 28.08043
##  [97] 19.68328 26.60187 28.22912 33.94281 30.90885 28.18681 15.70643 16.87884
## [105] 17.25585 30.78612 18.33998 15.06503 17.56454 26.05263 28.61254 15.10254
## [113] 28.43498 26.40996 22.05013 17.08428 19.10563 33.33898 24.67937 26.53998
## [121] 19.66982 23.53593 34.50176 19.27633 23.21498 27.70668 22.97779 29.03305
## [129] 16.52579 28.29330 31.06864 21.21374 32.27799 32.73461 31.04891 20.78210
## [137] 23.75040 26.58687 25.96116 16.13374 15.30295 17.93089 24.27990 29.26560
## [145] 23.90987 29.87591 32.29543 23.14152 15.24076 21.47488 15.44370 34.93557
## [153] 29.27431 32.84612 19.81258 24.73267 15.02413 26.13869 29.99023 16.37831
## [161] 25.26373 27.24608 18.14986 24.28462 34.46377 27.02336 34.51271 22.18140
## [169] 26.74150 33.93325 25.47635 19.83486 34.38309 27.76421 16.65551 16.55219
## [177] 29.03773 26.35264 16.27201 20.58516 23.22822 18.05059 33.56418 17.26578
## [185] 16.43593 17.21414 29.09482 24.22488 20.90192 27.88627 34.00224 31.83202
## [193] 23.61787 19.46052 32.40353 33.13188 18.28267 30.90452 31.40879 33.35690
e<-runif(n=200,min=15,max=35)
summary(e)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   15.00   19.57   24.78   24.75   29.28   34.76

-Tạo data frame từ dữ liệu:

dfe<-data.frame(ppe=e)

-Biểu đồ:

ggplot(dfe)+geom_histogram(aes(x = ppe, y = ..density..), binwidth = 0.5, color = "black", fill = "orange") +  geom_density(aes(x = ppe, y = ..density..), color = "red", size = 1) +  labs(x = "Giá trị", y = "Mật độ phân phối") + theme_minimal()

LS0tDQp0aXRsZTogIk1QTk4iDQphdXRob3I6ICJM4buvIFRo4buLIELhuqNvIFV5w6puIg0KZGF0ZTogIjIwMjMtMDctMDkiDQpvdXRwdXQ6IA0KIGh0bWxfZG9jdW1lbnQ6DQogICAgdG9jOiB0cnVlDQogICAgbnVtYmVyX3NlY3Rpb25zOiB5ZXMNCiAgICB0b2NfZmxvYXQ6DQogICAgICBjb2xsYXBzZWQ6IG5vDQogICAgICBkZl9wcmludDogcGFnZWQNCiAgICAgIGhpZ2hsaWdodDoga2F0ZQ0KICAgIGNvZGVfZm9sZGluZzogaGlkZQ0KICAgIGNvZGVfZG93bmxvYWQ6IHRydWUNCi0tLQ0KDQpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0NCmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVFJVRSkNCmBgYA0KDQojIEPDonUgNSw2DQoNCkNo4bqheSBtw7QgaMOsbmggduG7m2kgY8OhYyBwaMOibiBwaOG7kWkga2jDoWMgbmhhdSBj4bunYSBjw6FjIGJp4bq/biDEkeG6p3UgdsOgby4NCg0KIyMgTcO0IHBo4buPbmcgYmnhur9uIEJNTiANCg0KYGBge3J9DQpseWx5IDwtIHJlYWQuY3N2KCJDOi9Vc2Vycy9MVSBVWUVOL0Rvd25sb2Fkcy9kdC5jc3YiKQ0KYjwtYygxMiwxNiwyMCwyNCwyOCkNCmM8LXByb3AudGFibGUoYikNCm1wQk1OPC1zYW1wbGUoYiwxMDAwMCxyZXBsYWNlPVRSVUUscHJvYj1jKQ0KYGBgDQoNCg0KIyMgTcO0IHBo4buPbmcgYmnhur9uIEJUVA0KDQpgYGB7cn0NCmIxPC1jKDEyLDE0LjgsMTcuNSwyMC4yLDIzKQ0KZDE8LXJvdW5kKGIxKQ0KYzE8LXByb3AudGFibGUoZDEpDQptcEJUVDwtc2FtcGxlKGQxLDEwMDAwLHJlcGxhY2U9VFJVRSxwcm9iPWMxKQ0KYGBgDQoNCg0KIyMgTcO0IHBo4buPbmcgYmnhur9uIEJUQ1NCDQoNCmBgYHtyfQ0KYjI8LWMoOC45OSwxMC4yLDExLjUsMTIuOCwxNCkNCmQyPC1yb3VuZChiMikNCmMyPC1wcm9wLnRhYmxlKGQyKQ0KbXBCVENTQjwtc2FtcGxlKGQyLDEwMDAwLHJlcGxhY2U9VFJVRSxwcm9iPWMyKQ0KYGBgDQoNCg0KIyMgTcO0IHBo4buPbmcgYmnhur9uIFhMDQoNCmBgYHtyfQ0KYjM8LWMoNC45OSw3LDksMTEsMTMpDQpkMzwtcm91bmQoYjMpDQpjMzwtcHJvcC50YWJsZShkMykNCm1wWEw8LXNhbXBsZShkMywxMDAwMCxyZXBsYWNlPVRSVUUscHJvYj1jMykNCmBgYA0KDQoNCiMjIE3DtCBwaOG7j25nIGJp4bq/biBYWEMNCg0KYGBge3J9DQpiNDwtYygyNywzMCwzMywzNiwzOSkNCmQ0PC1yb3VuZChiNCkNCmM0PC1wcm9wLnRhYmxlKGQ0KQ0KbXBYWEM8LXNhbXBsZShkNCwxMDAwMCxyZXBsYWNlPVRSVUUscHJvYj1jNCkNCmBgYA0KDQoNCiMjIE3DtCBwaOG7j25nIGJp4bq/biBORUNSDQoNCmBgYHtyfQ0KYjU8LWMoMTQsMTYuOCwxOS41LDIyLjIsMjUpDQpkNTwtcm91bmQoYjUpDQpjNTwtcHJvcC50YWJsZShkNSkNCm1wTkVDUjwtc2FtcGxlKGQ1LDEwMDAwLHJlcGxhY2U9VFJVRSxwcm9iPWM1KQ0KYGBgDQoNCg0KIyMgTcO0IHBo4buPbmcgYmnhur9uIFNUDQoNCmBgYHtyfQ0KYjY8LWMoOS45OSwxMS4yLDEyLjUsMTMuOCwxNSkNCmQ2PC1yb3VuZChiNikNCmM2PC1wcm9wLnRhYmxlKGQ2KQ0KbXBTVDwtc2FtcGxlKGQ2LDEwMDAwLHJlcGxhY2U9VFJVRSxwcm9iPWM2KQ0KYGBgDQoNCg0KIyMgTcO0IHBo4buPbmcgYmnhur9uIFRTDQoNCmBgYHtyfQ0KYjc8LWMoMTgsMjEuNSwyNSwyOC41LDMyKQ0KZDc8LXJvdW5kKGI3KQ0KYzc8LXByb3AudGFibGUoZDcpDQptcFRTPC1zYW1wbGUoZDcsMTAwMDAscmVwbGFjZT1UUlVFLHByb2I9YzcpDQpgYGANCg0KIyMgTcO0IHBo4buPbmcgYmnhur9uIENQDQoNCmBgYHtyfQ0KYjg8LWMoMTEsMTMuOCwxNi41LDE5LjIsMjIpDQpkODwtcm91bmQoYjgpDQpjODwtcHJvcC50YWJsZShkOCkNCm1wQ1A8LXNhbXBsZShkOCwxMDAwMCxyZXBsYWNlPVRSVUUscHJvYj1jOCkNCmBgYA0KDQojIyBNw7QgcGjhu49uZyBs4bujaSBuaHXhuq1uDQoNCmBgYHtyfQ0KcHJvZml0PW1wQk1OKjE1MDAwICsgbXBCVFQqMTAwMDAgKyBtcEJUQ1NCKjIwMDAwICsgbXBYTCoyMDAwMCArIG1wWFhDKjEwMDAwICsgbXBORUNSKjE1MDAwICsgbXBTVCoxMDAwMCArIG1wVFMqMjUwMDAgKyBtcENQKjEyMDAwIC0gMjQzNTAwIC0gMTQ4MDAwDQpoaXN0KHByb2ZpdCkNCnN1bW1hcnkocHJvZml0KQ0KYGBgDQoNCiMjIFBow6JuIHTDrWNoIGzhu6NpIG5odeG6rW4gcXXDoW4gbHlseQ0KDQpgYGB7cn0NCnI8LXRhYmxlKGN1dChwcm9maXQsIGJyZWFrcz0zKSkNCnINCnByb3AudGFibGUocikNCmxpYnJhcnkoZ2dwbG90MikNCnIxPC0gZGF0YS5mcmFtZShDYXRlZ29yeSA9IGMoInRo4bqlcCIsInbhu6thIiwiY2FvIiksIFZhbHVlID0gYygwLjA3NDEsMC43MDA3LDAuMjI1MikpDQpnZ3Bsb3QocjEsIGFlcyh4ID0gQ2F0ZWdvcnksIHkgPSBWYWx1ZSkpICsNCiAgZ2VvbV9iYXIoc3RhdCA9ICJpZGVudGl0eSIpICsNCiAgbGFicyh4ID0gIkNhdGVnb3JpZXMiLCB5ID0gIlZhbHVlcyIsIHRpdGxlID0gIsSQ4buTIHRo4buLIHBow6JuIHTDrWNoIGzhu6NpIG5odeG6rW4gcXXDoW4gTHlseSIpDQpgYGANCg0KLSBT4buRIG5nw6B5IHF1w6FuIGx5bHkgY8OzIGzhu6NpIG5odeG6rW4g4bufIG3hu6ljIGNhbyAoa2hv4bqjbmcgdOG7qyAyMzEwMDAwIFZOxJAgxJHhur9uIDI3MjAwMDAgVk7EkCApIGNoaeG6v20gdOG7iSBs4buHIDIyLjUyJS4NCg0KLSBT4buRIG5nw6B5IHF1w6FuIGx5bHkgY8OzIGzhu6NpIG5odeG6rW4g4bufIG3hu6ljIHbhu6thIChraG/huqNuZyB04burIDE5MTAwMDAgVk7EkCDEkeG6v24gMjMxMDAwMCBWTsSQKSBjaGnhur9tIHThu4kgbOG7hyA3MC4wNyUuDQoNCi0gU+G7kSBuZ8OgeSBxdcOhbiBseWx5IGPDsyBs4bujaSBuaHXhuq1uIOG7nyBt4bupYyB0aOG6pXAgKGtob+G6o25nIHThu6sgMTUwMDAwMCBWTsSQIMSR4bq/biAxOTEwMDAwIFZOxJApIGNoaeG6v20gdOG7tyBs4buHIDcuNDElLg0KDQoNCiMgQ8OidSA0DQoNCiMjIEPDtG5nIHRo4bupYyB0w61uaCBs4bujaSBuaHXhuq1uDQoNCkzhu6NpIG5odeG6rW4gPSBEb2FuaCB0aHUgLSBjaGkgcGjDrSBj4buRIMSR4buLbmggLSBjaGkgcGjDrSBiaeG6v24gxJHhu5VpDQoNCkRvYW5oIHRodSA9IEJNTngxNTAwMCArIEJUVHgxMDAwMCArIEJUQ1NCeDIwMDAwICsgWEx4MjAwMDAgKyBYWEN4MTAwMDAgKyBORUNSeDE1MDAwICsgU1R4MTAwMDAgKyBUU3gyNTAwMCArIENQeDEyMDAwIA0KDQpjaGkgcGjDrSBj4buRIMSR4buLbmggdHJvbmcgNzMwIG5nw6B5OiAxNzcuNzU1LjAwMMSRDQoNCmNoaSBwaMOtIGJp4bq/biDEkeG7lWkgdHJvbmcgNzMwIG5nw6B5OiAxMDguMDAwLjAwMMSRDQoNCiMjIFjDonkgZOG7sW5nIG3DtCBow6xuaA0KDQpwcm9maXQgPSAtKDI0MzUwMCArIDE0ODAwMCkgKyBCTU54MTUwMDAgKyBCVFR4MTAwMDAgKyBCVENTQngyMDAwMCArIFhMeDIwMDAwICsgWFhDeDEwMDAwICsgTkVDUngxNTAwMCArIFNUeDEwMDAwICsgVFN4MjUwMDAgKyBDUHgxMjAwMCANCg0KIyBDw6J1IDMNCg0KWMOhYyDEkeG7i25oIHBow6JuIHBo4buRaSBjaG8gY8OhYyBiaeG6v24obmfhuqt1IG5oacOqbikgxJHhuqd1IHbDoG8sIGdp4bqjaSB0aMOtY2guDQoNCiMjIEJp4bq/biBCTU4NCg0KS2nhu4NtIMSR4buLbmggcGjDom4gcGjhu5FpIGNodeG6qW4NCg0KYGBge3J9DQpseWx5IDwtIHJlYWQuY3N2KCJDOi9Vc2Vycy9MVSBVWUVOL0Rvd25sb2Fkcy9kdC5jc3YiKQ0KbGlicmFyeSgiZ2dwbG90MiIpDQpoaXN0LkJNTiA9IGdncGxvdChkYXRhID0gbHlseSxhZXMoQk1OKSkrDQogIGdlb21faGlzdG9ncmFtKGFlcyh5PS4uZGVuc2l0eS4uKSxjb2xvcj0iYmxhY2siLGZpbGw9IndoaXRlIikrDQogIHN0YXRfZnVuY3Rpb24oZnVuID0gZG5vcm0sDQogICAgICAgICAgICAgICAgYXJncyA9IGxpc3QobWVhbiA9IG1lYW4obHlseSRCTU4sbmEucm0gPSBUUlVFKSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBzZCA9IHNkKGx5bHkkQk1OLG5hLnJtID0gVFJVRSkpLA0KICAgICAgICAgICAgICAgIGNvbG9yID0nYmx1ZScsc2l6ZSA9IDEpDQpoaXN0LkJNTg0KYGBgDQoNCi0+IEThu7FhIHbDoG8gYmnhu4N1IMSR4buTIHRyw6puIHRhIHRo4bqleSBiaeG7g3UgxJHhu5MgaGlzdG9ncmFtIHbhu5tpIMSRxrDhu51uZyBjb25nIGJp4buDdSBkaeG7hW4gY2hvIHBow6JuIHBo4buRaSBjaHXhuqluIGtow7RuZyBraOG7m3AgduG7m2kgbmhhdSBuw6puIHRhIGPDsyB0aOG7gyBuw7NpIGJp4bq/biBCTU4ga2jDtG5nIHR1w6JuIHRoZW8gcGjDom4gcGjhu5FpIGNodeG6qW4uDQoNCktp4buDbSDEkeG7i25oIHBow6JuIHBo4buRaSBMb2dub3JtYWwNCg0KR2nhuqMgdGh1eeG6v3Q6DQoNCiRIXzAkOkJNTiB0dcOibiB0aGVvIHBow6JuIHBo4buRaSBMb2dub3JtYWwNCg0KJEhfMSQ6Qk1OIGtow7RuZyB0dcOibiB0aGVvIHBow6JuIHBo4buRaSBMb2dub3JtYWwNCg0KYGBge3J9DQprcy50ZXN0KGx5bHkkQk1OLCAicGxub3JtIiwgbWVhbmxvZyA9IG1lYW4obG9nKGx5bHkkQk1OKSksIHNkbG9nID0gc2QobG9nKGx5bHkkQk1OKSkpDQpgYGANClbDrCBwX3ZhbHVlID0gNy4xMTdlLTA4IDwgMC4wNSBuw6puIHRhIGLDoWMgYuG7jyBnaeG6oyB0aHV54bq/dCAkSF8wJC4gTmdoxKlhIGzDoCBCTU4ga2jDtG5nIGPDsyBwaMOibiBwaOG7kWkgTG9nbm9ybWFsLg0KDQpQaMOibiBwaOG7kWkgdA0KDQpHaeG6oyB0aHV54bq/dDoNCg0KJEhfMCQ6IEJNTiB0dcOibiB0aGVvIHBow6JuIHBo4buRaSB0DQoNCiRIXzEkOiBCTU4ga2jDtG5nIHR1w6JuIHRoZW8gcGjDom4gcGjhu5FpIHQNCg0KYGBge3J9DQp0LnRlc3QobHlseSRCTU4pDQpgYGANClbDrCBwX3ZhbHVlIDwgMi4yZS0xNiA8IDAuMDUgbsOqbiB0YSBiw6FjIGLhu48gZ2nhuqMgdGh1eeG6v3QgJEhfMCQuIE5naMSpYSBsw6AgQk1OIGtow7RuZyBjw7MgcGjDom4gcGjhu5FpIHQuDQoNCiMjIEJp4bq/biBCVFQNCg0KS2nhu4NtIMSR4buLbmggcGjDom4gcGjhu5FpIGNodeG6qW4NCg0KYGBge3J9DQpsaWJyYXJ5KCJnZ3B1YnIiKQ0KcXFwbG90MSA9IGdncXFwbG90KGx5bHkkQlRUKQ0KcXFwbG90MQ0KYGBgDQoNCmBgYHtyfQ0KaGlzdC5CVFQgPSBnZ3Bsb3QoZGF0YSA9IGx5bHksYWVzKEJUVCkpKw0KICBnZW9tX2hpc3RvZ3JhbShhZXMoeT0uLmRlbnNpdHkuLiksY29sb3I9ImJsYWNrIixmaWxsPSJ3aGl0ZSIpKw0KICBzdGF0X2Z1bmN0aW9uKGZ1biA9IGRub3JtLA0KICAgICAgICAgICAgICAgIGFyZ3MgPSBsaXN0KG1lYW4gPSBtZWFuKGx5bHkkQlRULG5hLnJtID0gVFJVRSksDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgc2QgPSBzZChseWx5JEJUVCxuYS5ybSA9IFRSVUUpKSwNCiAgICAgICAgICAgICAgICBjb2xvciA9J2JsdWUnLHNpemUgPSAxKQ0KaGlzdC5CVFQNCmBgYA0KDQpHaeG6oyB0aHV54bq/dDoNCg0KJEhfMCQ6IEJUVCB0dcOibiB0aGVvIHBow6JuIHBo4buRaSBjaHXhuqluDQoNCiRIXzEkOiBCVFQga2jDtG5nIHR1w6JuIHRoZW8gcGjDom4gcGjhu5FpIGNodeG6qW4NCg0KYGBge3J9DQpzaGFwaXJvLnRlc3QobHlseSRCVFQpDQpgYGANCg0KVuG7m2kgcF92YWx1ZSA9IDEuNDgyZS0xNSA8IDAuMDUgLCBiw6FjIGLhu48gJEhfMCQgbsOqbiBkw6N5IHPhu5EgbGnhu4d1IG7DoHkga2jDtG5nIGPDsyBwaMOibiBwaOG7kWkgY2h14bqpbi4NCg0KS2nhu4NtIMSR4buLbmggcGjDom4gcGjhu5FpIExvZ25vbWFsDQoNCkdp4bqjIHRodXnhur90Og0KDQokSF8wJDpCVFQgdHXDom4gdGhlbyBwaMOibiBwaOG7kWkgTG9nbm9ybWFsDQoNCiRIXzEkOkJUVCBraMO0bmcgdHXDom4gdGhlbyBwaMOibiBwaOG7kWkgTG9nbm9ybWFsDQoNCmBgYHtyfQ0Ka3MudGVzdChseWx5JEJUVCwgInBsbm9ybSIsIG1lYW5sb2cgPSBtZWFuKGxvZyhseWx5JEJUVCkpLCBzZGxvZyA9IHNkKGxvZyhseWx5JEJUVCkpKQ0KYGBgDQpWw6wgcF92YWx1ZSA9IDEuMjY4ZS0wOCA8IDAuMDUgbsOqbiB0YSBiw6FjIGLhu48gZ2nhuqMgdGh1eeG6v3QgJEhfMCQuIE5naMSpYSBsw6AgQlRUIGtow7RuZyBjw7MgcGjDom4gcGjhu5FpIExvZ25vcm1hbC4NCg0KUGjDom4gcGjhu5FpIHQNCg0KR2nhuqMgdGh1eeG6v3Q6DQoNCiRIXzAkOiBCVFQgdHXDom4gdGhlbyBwaMOibiBwaOG7kWkgdA0KDQokSF8xJDogQlRUIGtow7RuZyB0dcOibiB0aGVvIHBow6JuIHBo4buRaSB0DQoNCmBgYHtyfQ0KdC50ZXN0KGx5bHkkQlRUKQ0KYGBgDQpWw6wgcF92YWx1ZSA8IDIuMmUtMTYgPCAwLjA1IG7Dqm4gdGEgYsOhYyBi4buPIGdp4bqjIHRodXnhur90ICRIXzAkLiBOZ2jEqWEgbMOgIEJUVCBraMO0bmcgY8OzIHBow6JuIHBo4buRaSB0Lg0KDQojIyBCaeG6v24gQlRDU0INCg0KS2nhu4NtIMSR4buLbmggcGjDom4gcGjhu5FpIGNodeG6qW4NCg0KYGBge3J9DQpoaXN0LkJUQ1NCID0gZ2dwbG90KGRhdGEgPSBseWx5LGFlcyhCVENTQikpKw0KICBnZW9tX2hpc3RvZ3JhbShhZXMoeT0uLmRlbnNpdHkuLiksY29sb3I9ImJsYWNrIixmaWxsPSJ3aGl0ZSIpKw0KICBzdGF0X2Z1bmN0aW9uKGZ1biA9IGRub3JtLA0KICAgICAgICAgICAgICAgIGFyZ3MgPSBsaXN0KG1lYW4gPSBtZWFuKGx5bHkkQlRDU0IsbmEucm0gPSBUUlVFKSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBzZCA9IHNkKGx5bHkkQlRDU0IsbmEucm0gPSBUUlVFKSksDQogICAgICAgICAgICAgICAgY29sb3IgPSdibHVlJyxzaXplID0gMSkNCmhpc3QuQlRDU0INCmBgYA0KDQpHaeG6oyB0aHV54bq/dDoNCg0KJEhfMCQ6IEJUQ1NCIHR1w6JuIHRoZW8gcGjDom4gcGjhu5FpIGNodeG6qW4NCg0KJEhfMSQ6IEJUQ1NCIGtow7RuZyB0dcOibiB0aGVvIHBow6JuIHBo4buRaSBjaHXhuqluDQoNCmBgYHtyfQ0Kc2hhcGlyby50ZXN0KGx5bHkkQlRDU0IpDQpgYGANCg0KVuG7m2kgcF92YWx1ZSA8IDIuMmUtMTYgPCAwLjA1ICwgYsOhYyBi4buPICRIXzAkIG7Dqm4gZMOjeSBz4buRIGxp4buHdSBuw6B5IGtow7RuZyBjw7MgcGjDom4gcGjhu5FpIGNodeG6qW4uDQoNCktp4buDbSDEkeG7i25oIHBow6JuIHBo4buRaSBMb2dub21hbA0KDQpHaeG6oyB0aHV54bq/dDoNCg0KJEhfMCQ6QlRDU0IgdHXDom4gdGhlbyBwaMOibiBwaOG7kWkgTG9nbm9ybWFsDQoNCiRIXzEkOkJUQ1NCIGtow7RuZyB0dcOibiB0aGVvIHBow6JuIHBo4buRaSBMb2dub3JtYWwNCg0KYGBge3J9DQprcy50ZXN0KGx5bHkkQlRDU0IsICJwbG5vcm0iLCBtZWFubG9nID0gbWVhbihsb2cobHlseSRCVENTQikpLCBzZGxvZyA9IHNkKGxvZyhseWx5JEJUQ1NCKSkpDQpgYGANClbDrCBwX3ZhbHVlIDwgMi4yZS0xNiA8IDAuMDUgbsOqbiB0YSBiw6FjIGLhu48gZ2nhuqMgdGh1eeG6v3QgJEhfMCQuIE5naMSpYSBsw6AgQlRDU0Iga2jDtG5nIGPDsyBwaMOibiBwaOG7kWkgTG9nbm9ybWFsLg0KDQpQaMOibiBwaOG7kWkgdA0KDQpHaeG6oyB0aHV54bq/dDoNCg0KJEhfMCQ6IEJUQ1NCIHR1w6JuIHRoZW8gcGjDom4gcGjhu5FpIHQNCg0KJEhfMSQ6IEJUQ1NCIGtow7RuZyB0dcOibiB0aGVvIHBow6JuIHBo4buRaSB0DQoNCmBgYHtyfQ0KdC50ZXN0KGx5bHkkQlRDU0IpDQpgYGANClbDrCBwX3ZhbHVlIDwgMi4yZS0xNiA8IDAuMDUgbsOqbiB0YSBiw6FjIGLhu48gZ2nhuqMgdGh1eeG6v3QgJEhfMCQuIE5naMSpYSBsw6AgQlRDU0Iga2jDtG5nIGPDsyBwaMOibiBwaOG7kWkgdC4NCg0KIyMgQmnhur9uIFhMDQoNCktp4buDbSDEkeG7i25oIHBow6JuIHBo4buRaSBjaHXhuqluDQpgYGB7cn0NCmhpc3QuWEwgPSBnZ3Bsb3QoZGF0YSA9IGx5bHksYWVzKFhMKSkrDQogIGdlb21faGlzdG9ncmFtKGFlcyh5PS4uZGVuc2l0eS4uKSxjb2xvcj0iYmxhY2siLGZpbGw9IndoaXRlIikrDQogIHN0YXRfZnVuY3Rpb24oZnVuID0gZG5vcm0sDQogICAgICAgICAgICAgICAgYXJncyA9IGxpc3QobWVhbiA9IG1lYW4obHlseSRYTCxuYS5ybSA9IFRSVUUpLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgIHNkID0gc2QobHlseSRYTCxuYS5ybSA9IFRSVUUpKSwNCiAgICAgICAgICAgICAgICBjb2xvciA9J2JsdWUnLHNpemUgPSAxKQ0KaGlzdC5YTA0KYGBgDQoNCkdp4bqjIHRodXnhur90Og0KDQokSF8wJDogWEwgdHXDom4gdGhlbyBwaMOibiBwaOG7kWkgY2h14bqpbg0KDQokSF8xJDogWEwga2jDtG5nIHR1w6JuIHRoZW8gcGjDom4gcGjhu5FpIGNodeG6qW4NCg0KYGBge3J9DQpzaGFwaXJvLnRlc3QobHlseSRYTCkNCmBgYA0KDQpW4bubaSBwX3ZhbHVlIDwgMi4yZS0xNiA8IDAuMDUgLCBiw6FjIGLhu48gJEhfMCQgbsOqbiBkw6N5IHPhu5EgbGnhu4d1IG7DoHkga2jDtG5nIGPDsyBwaMOibiBwaOG7kWkgY2h14bqpbi4NCg0KS2nhu4NtIMSR4buLbmggcGjDom4gcGjhu5FpIExvZ25vbWFsDQoNCkdp4bqjIHRodXnhur90Og0KDQokSF8wJDpYTCB0dcOibiB0aGVvIHBow6JuIHBo4buRaSBMb2dub3JtYWwNCg0KJEhfMSQ6WEwga2jDtG5nIHR1w6JuIHRoZW8gcGjDom4gcGjhu5FpIExvZ25vcm1hbA0KDQpgYGB7cn0NCmtzLnRlc3QobHlseSRYTCwgInBsbm9ybSIsIG1lYW5sb2cgPSBtZWFuKGxvZyhseWx5JFhMKSksIHNkbG9nID0gc2QobG9nKGx5bHkkWEwpKSkNCmBgYA0KVsOsIHBfdmFsdWUgPSA1Ljc1MWUtMTAgPCAwLjA1IG7Dqm4gdGEgYsOhYyBi4buPIGdp4bqjIHRodXnhur90ICRIXzAkLiBOZ2jEqWEgbMOgIFhMIGtow7RuZyBjw7MgcGjDom4gcGjhu5FpIExvZ25vcm1hbC4NCg0KUGjDom4gcGjhu5FpIHQNCg0KR2nhuqMgdGh1eeG6v3Q6DQoNCiRIXzAkOiBYTCB0dcOibiB0aGVvIHBow6JuIHBo4buRaSB0DQoNCiRIXzEkOiBYTCBraMO0bmcgdHXDom4gdGhlbyBwaMOibiBwaOG7kWkgdA0KDQpgYGB7cn0NCnQudGVzdChseWx5JFhMKQ0KYGBgDQpWw6wgcF92YWx1ZSA8IDIuMmUtMTYgPCAwLjA1IG7Dqm4gdGEgYsOhYyBi4buPIGdp4bqjIHRodXnhur90ICRIXzAkLiBOZ2jEqWEgbMOgIFhMIGtow7RuZyBjw7MgcGjDom4gcGjhu5FpIHQuDQoNCiMjIEJp4bq/biBYWEMNCg0KS2nhu4NtIMSR4buLbmggcGjDom4gcGjhu5FpIGNodeG6qW4NCmBgYHtyfQ0KaGlzdC5YWEMgPSBnZ3Bsb3QoZGF0YSA9IGx5bHksYWVzKFhYQykpKw0KICBnZW9tX2hpc3RvZ3JhbShhZXMoeT0uLmRlbnNpdHkuLiksY29sb3I9ImJsYWNrIixmaWxsPSJ3aGl0ZSIpKw0KICBzdGF0X2Z1bmN0aW9uKGZ1biA9IGRub3JtLA0KICAgICAgICAgICAgICAgIGFyZ3MgPSBsaXN0KG1lYW4gPSBtZWFuKGx5bHkkWFhDLG5hLnJtID0gVFJVRSksDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgc2QgPSBzZChseWx5JFhYQyxuYS5ybSA9IFRSVUUpKSwNCiAgICAgICAgICAgICAgICBjb2xvciA9J2JsdWUnLHNpemUgPSAxKQ0KaGlzdC5YWEMNCmBgYA0KDQpHaeG6oyB0aHV54bq/dDoNCg0KJEhfMCQ6IFhYQyB0dcOibiB0aGVvIHBow6JuIHBo4buRaSBjaHXhuqluDQoNCiRIXzEkOiBYWEMga2jDtG5nIHR1w6JuIHRoZW8gcGjDom4gcGjhu5FpIGNodeG6qW4NCg0KYGBge3J9DQpzaGFwaXJvLnRlc3QobHlseSRYWEMpDQpgYGANCg0KVuG7m2kgcF92YWx1ZSA9IDEuNDYyZS0xNSA8IDAuMDUgLCBiw6FjIGLhu48gJEhfMCQgbsOqbiBkw6N5IHPhu5EgbGnhu4d1IG7DoHkga2jDtG5nIGPDsyBwaMOibiBwaOG7kWkgY2h14bqpbi4NCg0KS2nhu4NtIMSR4buLbmggcGjDom4gcGjhu5FpIExvZ25vbWFsDQoNCkdp4bqjIHRodXnhur90Og0KDQokSF8wJDpYWEMgdHXDom4gdGhlbyBwaMOibiBwaOG7kWkgTG9nbm9ybWFsDQoNCiRIXzEkOlhYQyBraMO0bmcgdHXDom4gdGhlbyBwaMOibiBwaOG7kWkgTG9nbm9ybWFsDQoNCmBgYHtyfQ0Ka3MudGVzdChseWx5JFhYQywgInBsbm9ybSIsIG1lYW5sb2cgPSBtZWFuKGxvZyhseWx5JFhYQykpLCBzZGxvZyA9IHNkKGxvZyhseWx5JFhYQykpKQ0KYGBgDQpWw6wgcF92YWx1ZSA9IDQuNTE5ZS0wNyA8IDAuMDUgbsOqbiB0YSBiw6FjIGLhu48gZ2nhuqMgdGh1eeG6v3QgJEhfMCQuIE5naMSpYSBsw6AgWFhDIGtow7RuZyBjw7MgcGjDom4gcGjhu5FpIExvZ25vcm1hbC4NCg0KUGjDom4gcGjhu5FpIHQNCg0KR2nhuqMgdGh1eeG6v3Q6DQoNCiRIXzAkOiBYWEMgdHXDom4gdGhlbyBwaMOibiBwaOG7kWkgdA0KDQokSF8xJDogWFhDIGtow7RuZyB0dcOibiB0aGVvIHBow6JuIHBo4buRaSB0DQoNCmBgYHtyfQ0KdC50ZXN0KGx5bHkkWFhDKQ0KYGBgDQpWw6wgcF92YWx1ZSA8IDIuMmUtMTYgPCAwLjA1IG7Dqm4gdGEgYsOhYyBi4buPIGdp4bqjIHRodXnhur90ICRIXzAkLiBOZ2jEqWEgbMOgIFhYQyBraMO0bmcgY8OzIHBow6JuIHBo4buRaSB0Lg0KDQojIyBCaeG6v24gTkVDUg0KDQpLaeG7g20gxJHhu4tuaCBwaMOibiBwaOG7kWkgY2h14bqpbg0KYGBge3J9DQpoaXN0Lk5FQ1IgPSBnZ3Bsb3QoZGF0YSA9IGx5bHksYWVzKE5FQ1IpKSsNCiAgZ2VvbV9oaXN0b2dyYW0oYWVzKHk9Li5kZW5zaXR5Li4pLGNvbG9yPSJibGFjayIsZmlsbD0id2hpdGUiKSsNCiAgc3RhdF9mdW5jdGlvbihmdW4gPSBkbm9ybSwNCiAgICAgICAgICAgICAgICBhcmdzID0gbGlzdChtZWFuID0gbWVhbihseWx5JE5FQ1IsbmEucm0gPSBUUlVFKSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBzZCA9IHNkKGx5bHkkTkVDUixuYS5ybSA9IFRSVUUpKSwNCiAgICAgICAgICAgICAgICBjb2xvciA9J2JsdWUnLHNpemUgPSAxKQ0KaGlzdC5ORUNSDQpgYGANCg0KR2nhuqMgdGh1eeG6v3Q6DQoNCiRIXzAkOiBORUNSIHR1w6JuIHRoZW8gcGjDom4gcGjhu5FpIGNodeG6qW4NCg0KJEhfMSQ6IE5FQ1Iga2jDtG5nIHR1w6JuIHRoZW8gcGjDom4gcGjhu5FpIGNodeG6qW4NCg0KYGBge3J9DQpzaGFwaXJvLnRlc3QobHlseSRORUNSKQ0KYGBgDQoNClbhu5tpIHBfdmFsdWUgPSA1LjEwOGUtMTYgPCAwLjA1ICwgYsOhYyBi4buPICRIXzAkIG7Dqm4gZMOjeSBz4buRIGxp4buHdSBuw6B5IGtow7RuZyBjw7MgcGjDom4gcGjhu5FpIGNodeG6qW4uDQoNCktp4buDbSDEkeG7i25oIHBow6JuIHBo4buRaSBMb2dub21hbA0KDQpHaeG6oyB0aHV54bq/dDoNCg0KJEhfMCQ6TkVDUiB0dcOibiB0aGVvIHBow6JuIHBo4buRaSBMb2dub3JtYWwNCg0KJEhfMSQ6TkVDUiBraMO0bmcgdHXDom4gdGhlbyBwaMOibiBwaOG7kWkgTG9nbm9ybWFsDQoNCmBgYHtyfQ0Ka3MudGVzdChseWx5JE5FQ1IsICJwbG5vcm0iLCBtZWFubG9nID0gbWVhbihsb2cobHlseSRORUNSKSksIHNkbG9nID0gc2QobG9nKGx5bHkkTkVDUikpKQ0KYGBgDQpWw6wgcF92YWx1ZSA9IDYuNzA0ZS0wNyA8IDAuMDUgbsOqbiB0YSBiw6FjIGLhu48gZ2nhuqMgdGh1eeG6v3QgJEhfMCQuIE5naMSpYSBsw6AgTkVDUiBraMO0bmcgY8OzIHBow6JuIHBo4buRaSBMb2dub3JtYWwuDQoNClBow6JuIHBo4buRaSB0DQoNCkdp4bqjIHRodXnhur90Og0KDQokSF8wJDogTkVDUiB0dcOibiB0aGVvIHBow6JuIHBo4buRaSB0DQoNCiRIXzEkOiBORUNSIGtow7RuZyB0dcOibiB0aGVvIHBow6JuIHBo4buRaSB0DQoNCmBgYHtyfQ0KdC50ZXN0KGx5bHkkTkVDUikNCmBgYA0KVsOsIHBfdmFsdWUgPCAyLjJlLTE2IDwgMC4wNSBuw6puIHRhIGLDoWMgYuG7jyBnaeG6oyB0aHV54bq/dCAkSF8wJC4gTmdoxKlhIGzDoCBORUNSIGtow7RuZyBjw7MgcGjDom4gcGjhu5FpIHQuDQoNCiMjIEJp4bq/biBTVA0KDQpLaeG7g20gxJHhu4tuaCBwaMOibiBwaOG7kWkgY2h14bqpbg0KYGBge3J9DQpoaXN0LlNUID0gZ2dwbG90KGRhdGEgPSBseWx5LGFlcyhTVCkpKw0KICBnZW9tX2hpc3RvZ3JhbShhZXMoeT0uLmRlbnNpdHkuLiksY29sb3I9ImJsYWNrIixmaWxsPSJ3aGl0ZSIpKw0KICBzdGF0X2Z1bmN0aW9uKGZ1biA9IGRub3JtLA0KICAgICAgICAgICAgICAgIGFyZ3MgPSBsaXN0KG1lYW4gPSBtZWFuKGx5bHkkU1QsbmEucm0gPSBUUlVFKSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICBzZCA9IHNkKGx5bHkkU1QsbmEucm0gPSBUUlVFKSksDQogICAgICAgICAgICAgICAgY29sb3IgPSdibHVlJyxzaXplID0gMSkNCmhpc3QuU1QNCmBgYA0KDQpHaeG6oyB0aHV54bq/dDoNCg0KJEhfMCQ6IFNUIHR1w6JuIHRoZW8gcGjDom4gcGjhu5FpIGNodeG6qW4NCg0KJEhfMSQ6IFNUIGtow7RuZyB0dcOibiB0aGVvIHBow6JuIHBo4buRaSBjaHXhuqluDQoNCmBgYHtyfQ0Kc2hhcGlyby50ZXN0KGx5bHkkU1QpDQpgYGANCg0KVuG7m2kgcF92YWx1ZSA8IDIuMmUtMTYgPCAwLjA1ICwgYsOhYyBi4buPICRIXzAkIG7Dqm4gZMOjeSBz4buRIGxp4buHdSBuw6B5IGtow7RuZyBjw7MgcGjDom4gcGjhu5FpIGNodeG6qW4uDQoNCktp4buDbSDEkeG7i25oIHBow6JuIHBo4buRaSBMb2dub21hbA0KDQpHaeG6oyB0aHV54bq/dDoNCg0KJEhfMCQ6U1QgdHXDom4gdGhlbyBwaMOibiBwaOG7kWkgTG9nbm9ybWFsDQoNCiRIXzEkOlNUIGtow7RuZyB0dcOibiB0aGVvIHBow6JuIHBo4buRaSBMb2dub3JtYWwNCg0KYGBge3J9DQprcy50ZXN0KGx5bHkkU1QsICJwbG5vcm0iLCBtZWFubG9nID0gbWVhbihsb2cobHlseSRTVCkpLCBzZGxvZyA9IHNkKGxvZyhseWx5JFNUKSkpDQpgYGANClbDrCBwX3ZhbHVlID0gMi4zMDhlLTExIDwgMC4wNSBuw6puIHRhIGLDoWMgYuG7jyBnaeG6oyB0aHV54bq/dCAkSF8wJC4gTmdoxKlhIGzDoCBTVCBraMO0bmcgY8OzIHBow6JuIHBo4buRaSBMb2dub3JtYWwuDQoNClBow6JuIHBo4buRaSB0DQoNCkdp4bqjIHRodXnhur90Og0KDQokSF8wJDogU1QgdHXDom4gdGhlbyBwaMOibiBwaOG7kWkgdA0KDQokSF8xJDogU1Qga2jDtG5nIHR1w6JuIHRoZW8gcGjDom4gcGjhu5FpIHQNCg0KYGBge3J9DQp0LnRlc3QobHlseSRTVCkNCmBgYA0KVsOsIHBfdmFsdWUgPCAyLjJlLTE2IDwgMC4wNSBuw6puIHRhIGLDoWMgYuG7jyBnaeG6oyB0aHV54bq/dCAkSF8wJC4gTmdoxKlhIGzDoCBTVCBraMO0bmcgY8OzIHBow6JuIHBo4buRaSB0Lg0KDQojIyBCaeG6v24gVFMNCg0KS2nhu4NtIMSR4buLbmggcGjDom4gcGjhu5FpIGNodeG6qW4NCmBgYHtyfQ0KaGlzdC5UUyA9IGdncGxvdChkYXRhID0gbHlseSxhZXMoVFMpKSsNCiAgZ2VvbV9oaXN0b2dyYW0oYWVzKHk9Li5kZW5zaXR5Li4pLGNvbG9yPSJibGFjayIsZmlsbD0id2hpdGUiKSsNCiAgc3RhdF9mdW5jdGlvbihmdW4gPSBkbm9ybSwNCiAgICAgICAgICAgICAgICBhcmdzID0gbGlzdChtZWFuID0gbWVhbihseWx5JFRTLG5hLnJtID0gVFJVRSksDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgc2QgPSBzZChseWx5JFRTLG5hLnJtID0gVFJVRSkpLA0KICAgICAgICAgICAgICAgIGNvbG9yID0nYmx1ZScsc2l6ZSA9IDEpDQpoaXN0LlRTDQpgYGANCg0KR2nhuqMgdGh1eeG6v3Q6DQoNCiRIXzAkOiBUUyB0dcOibiB0aGVvIHBow6JuIHBo4buRaSBjaHXhuqluDQoNCiRIXzEkOiBUUyBraMO0bmcgdHXDom4gdGhlbyBwaMOibiBwaOG7kWkgY2h14bqpbg0KDQpgYGB7cn0NCnNoYXBpcm8udGVzdChseWx5JFRTKQ0KYGBgDQoNClbhu5tpIHBfdmFsdWUgPSAxLjMzNmUtMTUgPCAwLjA1ICwgYsOhYyBi4buPICRIXzAkIG7Dqm4gZMOjeSBz4buRIGxp4buHdSBuw6B5IGtow7RuZyBjw7MgcGjDom4gcGjhu5FpIGNodeG6qW4uDQoNCktp4buDbSDEkeG7i25oIHBow6JuIHBo4buRaSBMb2dub21hbA0KDQpHaeG6oyB0aHV54bq/dDoNCg0KJEhfMCQ6VFMgdHXDom4gdGhlbyBwaMOibiBwaOG7kWkgTG9nbm9ybWFsDQoNCiRIXzEkOlRTIGtow7RuZyB0dcOibiB0aGVvIHBow6JuIHBo4buRaSBMb2dub3JtYWwNCg0KYGBge3J9DQprcy50ZXN0KGx5bHkkVFMsICJwbG5vcm0iLCBtZWFubG9nID0gbWVhbihsb2cobHlseSRUUykpLCBzZGxvZyA9IHNkKGxvZyhseWx5JFRTKSkpDQpgYGANClbDrCBwX3ZhbHVlID0gMi4wMTNlLTA2IDwgMC4wNSBuw6puIHRhIGLDoWMgYuG7jyBnaeG6oyB0aHV54bq/dCAkSF8wJC4gTmdoxKlhIGzDoCBUUyBraMO0bmcgY8OzIHBow6JuIHBo4buRaSBMb2dub3JtYWwuDQoNClBow6JuIHBo4buRaSB0DQoNCkdp4bqjIHRodXnhur90Og0KDQokSF8wJDogVFMgdHXDom4gdGhlbyBwaMOibiBwaOG7kWkgdA0KDQokSF8xJDogVFMga2jDtG5nIHR1w6JuIHRoZW8gcGjDom4gcGjhu5FpIHQNCg0KYGBge3J9DQp0LnRlc3QobHlseSRUUykNCmBgYA0KVsOsIHBfdmFsdWUgPCAyLjJlLTE2IDwgMC4wNSBuw6puIHRhIGLDoWMgYuG7jyBnaeG6oyB0aHV54bq/dCAkSF8wJC4gTmdoxKlhIGzDoCBUUyBraMO0bmcgY8OzIHBow6JuIHBo4buRaSB0Lg0KDQojIyBCaeG6v24gQ1ANCg0KS2nhu4NtIMSR4buLbmggcGjDom4gcGjhu5FpIGNodeG6qW4NCmBgYHtyfQ0KaGlzdC5DUCA9IGdncGxvdChkYXRhID0gbHlseSxhZXMoQ1ApKSsNCiAgZ2VvbV9oaXN0b2dyYW0oYWVzKHk9Li5kZW5zaXR5Li4pLGNvbG9yPSJibGFjayIsZmlsbD0id2hpdGUiKSsNCiAgc3RhdF9mdW5jdGlvbihmdW4gPSBkbm9ybSwNCiAgICAgICAgICAgICAgICBhcmdzID0gbGlzdChtZWFuID0gbWVhbihseWx5JENQLG5hLnJtID0gVFJVRSksDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgc2QgPSBzZChseWx5JENQLG5hLnJtID0gVFJVRSkpLA0KICAgICAgICAgICAgICAgIGNvbG9yID0nYmx1ZScsc2l6ZSA9IDEpDQpoaXN0LkNQDQpgYGANCg0KR2nhuqMgdGh1eeG6v3Q6DQoNCiRIXzAkOiBDUCB0dcOibiB0aGVvIHBow6JuIHBo4buRaSBjaHXhuqluDQoNCiRIXzEkOiBDUCBraMO0bmcgdHXDom4gdGhlbyBwaMOibiBwaOG7kWkgY2h14bqpbg0KDQpgYGB7cn0NCnNoYXBpcm8udGVzdChseWx5JENQKQ0KYGBgDQoNClbhu5tpIHBfdmFsdWUgPCAyLjJlLTE2IDwgMC4wNSAsIGLDoWMgYuG7jyAkSF8wJCBuw6puIGTDo3kgc+G7kSBsaeG7h3UgbsOgeSBraMO0bmcgY8OzIHBow6JuIHBo4buRaSBjaHXhuqluLg0KDQpLaeG7g20gxJHhu4tuaCBwaMOibiBwaOG7kWkgTG9nbm9tYWwNCg0KR2nhuqMgdGh1eeG6v3Q6DQoNCiRIXzAkOkNQIHR1w6JuIHRoZW8gcGjDom4gcGjhu5FpIExvZ25vcm1hbA0KDQokSF8xJDpDUCBraMO0bmcgdHXDom4gdGhlbyBwaMOibiBwaOG7kWkgTG9nbm9ybWFsDQoNCmBgYHtyfQ0Ka3MudGVzdChseWx5JENQLCAicGxub3JtIiwgbWVhbmxvZyA9IG1lYW4obG9nKGx5bHkkQ1ApKSwgc2Rsb2cgPSBzZChsb2cobHlseSRDUCkpKQ0KYGBgDQpWw6wgcF92YWx1ZSA9IDEuMDllLTExIDwgMC4wNSBuw6puIHRhIGLDoWMgYuG7jyBnaeG6oyB0aHV54bq/dCAkSF8wJC4gTmdoxKlhIGzDoCBDUCBraMO0bmcgY8OzIHBow6JuIHBo4buRaSBMb2dub3JtYWwuDQoNClBow6JuIHBo4buRaSB0DQoNCkdp4bqjIHRodXnhur90Og0KDQokSF8wJDogQ1AgdHXDom4gdGhlbyBwaMOibiBwaOG7kWkgdA0KDQokSF8xJDogQ1Aga2jDtG5nIHR1w6JuIHRoZW8gcGjDom4gcGjhu5FpIHQNCg0KYGBge3J9DQp0LnRlc3QobHlseSRDUCkNCmBgYA0KVsOsIHBfdmFsdWUgPCAyLjJlLTE2IDwgMC4wNSBuw6puIHRhIGLDoWMgYuG7jyBnaeG6oyB0aHV54bq/dCAkSF8wJC4gTmdoxKlhIGzDoCBDUCBraMO0bmcgY8OzIHBow6JuIHBo4buRaSB0Lg0KDQojIEPDonUgMg0KDQpDaOG7jW4gdsOgIGdp4bqjaSB0aMOtY2ggduG7gSDEkeG7kWkgdMaw4bujbmcoduG6pW4gxJHhu4EpIGPhuqduIG3DtCBwaOG7j25nKGPDsyDDrXQgbmjhuqV0IDYgYmnhur9uIG5n4bqrdSBuaGnDqm4gxJHhuqd1IHbDoG8pLg0KDQojIyBDaOG7jW4gxJHhu5FpIHTGsOG7o25nIGPhuqduIG3DtCBwaOG7j25nDQoNCk3DtCBwaOG7j25nIHbhu4EgbOG7o2kgbmh14bqtbiBj4bunYSBj4butYSBow6BuZyBiw6FuIMSR4buTIMSDbiB24bq3dCBMeUx5DQoNCipEb2FuaCB0aHU6DQoNCkRvYW5oIHRodSBsw6AgdG/DoG4gYuG7mSBwaOG6p24gdGnhu4FuIHRodSDEkcaw4bujYyB0cm9uZyBxdcOhIHRyw6xuaCBtdWEgYsOhbiwgdHJhbyDEkeG7lWkgaMOgbmcgaMOzYSwgY3VuZyBj4bqlcCBk4buLY2ggduG7pSBj4bunYSBt4buZdCBjw6EgbmjDom4sIHThu5UgY2jhu6ljLiBE4buxYSB2w6BvIGRvYW5oIHRodSB0aOG7sWMgdOG6vyBjw7MgdGjhu4MgeMOieSBk4buxbmcgYuG6o25nIGLDoW8gY8OhbyBkb2FuaCB0aHUgY2hvIGPDoSBuaMOibiwgdOG7lSBjaOG7qWMgxJHDsy4NCg0KRG9hbmggdGh1PWdpw6EgYsOhbipz4buRIGzGsOG7o25nIGLDoW4gxJHGsOG7o2MNCg0KIyMgR2nhuqNpIHRow61jaCB24buBIMSR4buRaSB0xrDhu6NuZyBtw7QgcGjhu49uZw0KDQojIyMgROG7ryBsaeG7h3UgxJHhuqd1IHbDoG8NCg0KVGnhu4dtIEx5THkgbMOgIG3hu5l0IHRp4buHbSBiw6FuIMSR4buTIMSDbiB24bq3dCBn4buTbSBjw6FjIG3Ds24gbmjGsCBzYXU6IGLDoW5oIG3hu7Mgbsaw4bubbmcsIGLDoW5oIHRyw6FuZyB0cuG7mW4sIGLDoW5oIHRyw6FuZyBjdeG7mW4gc+G7kXQgYsahLCB4b8OgaSBs4bqvYywgeMO6YyB4w61jaCBjaGnDqm47IHbDoCBjw6FjIGxv4bqhaSBuxrDhu5tjIHXhu5FuZyBuaMawOiBuxrDhu5tjIMOpcCBjw6AgcuG7kXQsIHN0aW5nLCB0csOgIHPhu69hLCBjw6AgcGjDqi4NCg0KxJDhu4thIGNo4buJIHF1w6FuOiBTw7luZyBOaMahbiwgxJDhu6ljIExpbmgsIELDrG5oIFRodeG6rW4NCg0KVGjhu51pIGdpYW4gbcO0IHBo4buPbmc6IDczMCBuZ8OgeQ0KDQoqQuG6o25nIHRo4buRbmcga+G6vyBz4buRIGzGsOG7o25nIGLDoW4gxJHGsOG7o2MgbeG7l2kgbmfDoHkgdHJvbmcgNzMwIG5nw6B5DQoNCmBgYHtyfQ0KbHlseSA8LSByZWFkLmNzdigiQzovVXNlcnMvTFUgVVlFTi9Eb3dubG9hZHMvZHQuY3N2IikNCnN1bW1hcnkobHlseSkNCmBgYA0KYGBge3J9DQpseWx5DQpgYGANCg0KDQpHacOhIGPhu6dhIGPDoWMgbcOzbiBuaMawIHNhdToNCg0KLULDoW5oIG3hu7Mgbsaw4bubbmcoQk1OKTogMTVrDQoNCi1Cw6FuaCB0csOhbmcgdHLhu5luKEJUVCk6IDEwaw0KDQotQsOhbmggdHLDoW5nIGN14buZbiBz4buRdCBixqEoQlRDU0IpOiAyMGsNCg0KLVhvw6BpIGzhuq9jKFhMKTogMjBrDQoNCi1Yw7pjIHjDrWNoIGNoacOqbihYWEMpOiAxMGsNCg0KLU7GsOG7m2Mgw6lwIGPDoCBy4buRdChORUNSKTogMTVrDQoNCi1TdGluZyhTVCk6IDEwaw0KDQotVHLDoCBz4buvYShUUyk6IDI1aw0KDQotQ8OgIHBow6ooQ1ApOiAxMmsNCg0KY2hpIHBow60gY+G7kSDEkeG7i25oOg0KDQotTeG6t3QgYuG6sW5nIGPDsyBz4bq1biBraMO0bmcgY+G6p24gdGh1w6ouDQoNCi1OaMOibiB2acOqbjogNnRyL3Row6FuZyAtPjIwMGsvbmfDoHkNCg0KLVRoaeG6v3Qga+G6vywgdHJhbmcgdHLDrSxz4butYSBjaOG7r2E6MzAway90aMOhbmctPjEway9uZ8OgeQ0KDQotVOG7pyBs4bqhbmg6bXVhIGPFqSBnacOhIDV0ci0+Niw4ay9uZ8OgeQ0KDQotVGnhu4FuIMSRaeG7h24gbsaw4bubYzo4MDBrL3Row6FuZy0+MjYsN2svbmfDoHkNCg0KY2hpIHBow60gYmnhur9uIMSR4buVaToxMDh0ci8zIG7Eg20gLT4xNDhrL25nw6B5DQoNCiMjIyBNw7QgaMOsbmgNCg0KTOG7o2kgbmh14bqtbiA9IC0oMjQzNTAwICsgMTQ4MDAwKSArIEJNTngxNTAwMCArIEJUVHgxMDAwMCArIEJUQ1NCeDIwMDAwICsgWEx4MjAwMDAgKyBYWEN4MTAwMDAgKyBORUNSeDE1MDAwICsgU1R4MTAwMDAgKyBUU3gyNTAwMCArIENQeDEyMDAwIA0KDQojIEPDonUgMQ0KDQpNw7QgcGjhu49uZyDDrXQgbmjhuqV0IDUgYmnhur9uIG5n4bqrdSBuaGnDqm4oIGPDsyBwaMOibiBwaOG7kWkgeMOhYyBzdeG6pXQga2jDoWMgbmhhdSksIG3DtCBwaOG7j25nLCB24bq9IMSR4buTIHRo4buLLCB0w61uaCB0b8OhbiBjw6FjIMSR4bq3YyB0csawbmcgxJFvIGzGsOG7nW5nIHbDoCBnaeG6o2kgdGjDrWNoIMO9IG5naMSpYS4NCg0KIyMgUGjDom4gcGjhu5FpIFBvaXNzaW9uDQpgYGB7cn0NCmxpYnJhcnkoImdncGxvdDIiKQ0KcnBvaXMoMjAwLDQuNSkNCmBgYA0KDQpgYGB7cn0NCmE8LXJwb2lzKG49MjAwLGxhbWJkYT00LjUpDQpzdW1tYXJ5KGEpDQpgYGANCg0KLVThuqFvIGRhdGEgZnJhbWUgdOG7qyBk4buvIGxp4buHdToNCmBgYHtyfQ0KZGZhPC1kYXRhLmZyYW1lKHBwYT1hKQ0KYGBgDQoNCi1CaeG7g3UgxJHhu5M6DQpgYGB7cn0NCmdncGxvdChkZmEpK2dlb21faGlzdG9ncmFtKGFlcyh4ID0gcHBhLCB5ID0gLi5kZW5zaXR5Li4pLCBiaW53aWR0aCA9IDAuNSwgY29sb3IgPSAiYmxhY2siLCBmaWxsID0gIm9yYW5nZSIpICsgIGdlb21fZGVuc2l0eShhZXMoeCA9IHBwYSwgeSA9IC4uZGVuc2l0eS4uKSwgY29sb3IgPSAicmVkIiwgc2l6ZSA9IDEpICsgIGxhYnMoeCA9ICJHacOhIHRy4buLIiwgeSA9ICJN4bqtdCDEkeG7mSBwaMOibiBwaOG7kWkiKSArIHRoZW1lX21pbmltYWwoKQ0KYGBgDQoNCiMjIFBow6JuIHBo4buRaSBuaOG7iyB0aOG7qWMNCg0KYGBge3J9DQpyYmlub20obj0yMDAsc2l6ZT01LHByb2I9MC4yNSkNCmBgYA0KDQpgYGB7cn0NCmIgPC0gcmJpbm9tKG49MjAwLHNpemU9NSxwcm9iPTAuMjUpDQpzdW1tYXJ5KGIpDQpgYGANCg0KLVThuqFvIGRhdGEgZnJhbWUgdOG7qyBk4buvIGxp4buHdToNCmBgYHtyfQ0KZGZiPC1kYXRhLmZyYW1lKHBwYj1iKQ0KYGBgDQoNCi1CaeG7g3UgxJHhu5M6DQpgYGB7cn0NCmdncGxvdChkZmIpK2dlb21faGlzdG9ncmFtKGFlcyh4ID0gcHBiLCB5ID0gLi5kZW5zaXR5Li4pLCBiaW53aWR0aCA9IDAuNSwgY29sb3IgPSAiYmxhY2siLCBmaWxsID0gIm9yYW5nZSIpICsgIGdlb21fZGVuc2l0eShhZXMoeCA9IHBwYiwgeSA9IC4uZGVuc2l0eS4uKSwgY29sb3IgPSAicmVkIiwgc2l6ZSA9IDEpICsgIGxhYnMoeCA9ICJHacOhIHRy4buLIiwgeSA9ICJN4bqtdCDEkeG7mSBwaMOibiBwaOG7kWkiKSArIHRoZW1lX21pbmltYWwoKQ0KYGBgDQoNCiMjIFBow6JuIHBo4buRaSBjaHXhuqluDQoNCmBgYHtyfQ0Kcm5vcm0obj0xNTAsbWVhbj0yMCxzZD01KQ0KYGBgDQoNCmBgYHtyfQ0KYzwtcm5vcm0obj01MDAsbWVhbj0yMCxzZD0xMCkNCnN1bW1hcnkoYykNCmBgYA0KDQotVOG6oW8gZGF0YSBmcmFtZSB04burIGThu68gbGnhu4d1Og0KYGBge3J9DQpkZmM8LWRhdGEuZnJhbWUocHBjPWMpDQpgYGANCg0KDQotQmnhu4N1IMSR4buTOg0KYGBge3J9DQpnZ3Bsb3QoZGZjKStnZW9tX2hpc3RvZ3JhbShhZXMoeCA9IHBwYywgeSA9IC4uZGVuc2l0eS4uKSwgYmlud2lkdGggPSAwLjUsIGNvbG9yID0gImJsYWNrIiwgZmlsbCA9ICJvcmFuZ2UiKSArICBnZW9tX2RlbnNpdHkoYWVzKHggPSBwcGMsIHkgPSAuLmRlbnNpdHkuLiksIGNvbG9yID0gInJlZCIsIHNpemUgPSAxKSArICBsYWJzKHggPSAiR2nDoSB0cuG7iyIsIHkgPSAiTeG6rXQgxJHhu5kgcGjDom4gcGjhu5FpIikgKyB0aGVtZV9taW5pbWFsKCkNCmBgYA0KDQojIyBQaMOibiBwaOG7kWkgbcWpDQoNCmBgYHtyfQ0KcmV4cChuPTIwMCxyYXRlPTAuNSkNCmBgYA0KDQpgYGB7cn0NCmQ8LXJleHAobj0yMDAscmF0ZT0wLjUpDQpzdW1tYXJ5KGQpDQpgYGANCg0KLVThuqFvIGRhdGEgZnJhbWUgdOG7qyBk4buvIGxp4buHdToNCmBgYHtyfQ0KZGZkPC1kYXRhLmZyYW1lKHBwZD1kKQ0KYGBgDQoNCi1CaeG7g3UgxJHhu5M6DQpgYGB7cn0NCmdncGxvdChkZmQpK2dlb21faGlzdG9ncmFtKGFlcyh4ID0gcHBkLCB5ID0gLi5kZW5zaXR5Li4pLCBiaW53aWR0aCA9IDAuNSwgY29sb3IgPSAiYmxhY2siLCBmaWxsID0gIm9yYW5nZSIpICsgIGdlb21fZGVuc2l0eShhZXMoeCA9IHBwZCwgeSA9IC4uZGVuc2l0eS4uKSwgY29sb3IgPSAicmVkIiwgc2l6ZSA9IDEpICsgIGxhYnMoeCA9ICJHacOhIHRy4buLIiwgeSA9ICJN4bqtdCDEkeG7mSBwaMOibiBwaOG7kWkiKSArIHRoZW1lX21pbmltYWwoKQ0KYGBgDQoNCg0KIyMgUGjDom4gcGjhu5FpIMSR4buBdQ0KYGBge3J9DQpydW5pZihuPTIwMCxtaW49MTUsbWF4PTM1KQ0KYGBgDQoNCmBgYHtyfQ0KZTwtcnVuaWYobj0yMDAsbWluPTE1LG1heD0zNSkNCnN1bW1hcnkoZSkNCmBgYA0KDQotVOG6oW8gZGF0YSBmcmFtZSB04burIGThu68gbGnhu4d1Og0KYGBge3J9DQpkZmU8LWRhdGEuZnJhbWUocHBlPWUpDQpgYGANCg0KLUJp4buDdSDEkeG7kzoNCmBgYHtyfQ0KZ2dwbG90KGRmZSkrZ2VvbV9oaXN0b2dyYW0oYWVzKHggPSBwcGUsIHkgPSAuLmRlbnNpdHkuLiksIGJpbndpZHRoID0gMC41LCBjb2xvciA9ICJibGFjayIsIGZpbGwgPSAib3JhbmdlIikgKyAgZ2VvbV9kZW5zaXR5KGFlcyh4ID0gcHBlLCB5ID0gLi5kZW5zaXR5Li4pLCBjb2xvciA9ICJyZWQiLCBzaXplID0gMSkgKyAgbGFicyh4ID0gIkdpw6EgdHLhu4siLCB5ID0gIk3huq10IMSR4buZIHBow6JuIHBo4buRaSIpICsgdGhlbWVfbWluaW1hbCgpDQpgYGA=