Introduction Prompt

You’re a Data Scientist / Business Analyst working for a new eCommerce company called A&B Co. (similar to Amazon) and you’ve been asked to prepare a presentation for the Vice President of Sales and the Vice President of Operations that summarizes sales and operations thus far. The summary should include (at a minimum) a summary of current state the business, current customer satisfaction, and a proposal of 2-3 areas where the company can improve. Here are some facts:

Your presentation should not have more than 10 slides of content, and the presentation itself should only take ~15 minutes.

Rundown

I’m downloading data from here to determine the status of the business, and customer satisfaction. Then afterwards I will make a powerpoint presentation of the findings here.

Prepare/Process

Steps

  • load relevant packages

  • create joined tables

  • clean and manipulate data

  • graph and model the data

Loading relevant package*

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.2     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.2     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

Reading in all .csv files and getting a glimpse

files <- list.files("~/RStudio_Data/A&B/archive", ".csv", full.names = TRUE)

for (i in seq_along(files)) 
{
csvs <- read.csv(files[i])
names <- basename(files[i])
assign(names, csvs)
}

for (file in ls(pattern = ".csv")) {
  cat(paste0("**File: ", file, "**\n"))
  glimpse(get(file))
}
## **File: olist_customers_dataset.csv**
## Rows: 99,441
## Columns: 5
## $ customer_id              <chr> "06b8999e2fba1a1fbc88172c00ba8bc7", "18955e83…
## $ customer_unique_id       <chr> "861eff4711a542e4b93843c6dd7febb0", "290c77bc…
## $ customer_zip_code_prefix <int> 14409, 9790, 1151, 8775, 13056, 89254, 4534, …
## $ customer_city            <chr> "franca", "sao bernardo do campo", "sao paulo…
## $ customer_state           <chr> "SP", "SP", "SP", "SP", "SP", "SC", "SP", "MG…
## **File: olist_geolocation_dataset.csv**
## Rows: 1,000,163
## Columns: 5
## $ geolocation_zip_code_prefix <int> 1037, 1046, 1046, 1041, 1035, 1012, 1047, …
## $ geolocation_lat             <dbl> -23.54562, -23.54608, -23.54613, -23.54439…
## $ geolocation_lng             <dbl> -46.63929, -46.64482, -46.64295, -46.63950…
## $ geolocation_city            <chr> "sao paulo", "sao paulo", "sao paulo", "sa…
## $ geolocation_state           <chr> "SP", "SP", "SP", "SP", "SP", "SP", "SP", …
## **File: olist_order_items_dataset.csv**
## Rows: 112,650
## Columns: 7
## $ order_id            <chr> "00010242fe8c5a6d1ba2dd792cb16214", "00018f77f2f03…
## $ order_item_id       <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1,…
## $ product_id          <chr> "4244733e06e7ecb4970a6e2683c13e61", "e5f2d52b80218…
## $ seller_id           <chr> "48436dade18ac8b2bce089ec2a041202", "dd7ddc04e1b6c…
## $ shipping_limit_date <chr> "2017-09-19 09:45:35", "2017-05-03 11:05:13", "201…
## $ price               <dbl> 58.90, 239.90, 199.00, 12.99, 199.90, 21.90, 19.90…
## $ freight_value       <dbl> 13.29, 19.93, 17.87, 12.79, 18.14, 12.69, 11.85, 7…
## **File: olist_order_payments_dataset.csv**
## Rows: 103,886
## Columns: 5
## $ order_id             <chr> "b81ef226f3fe1789b1e8b2acac839d17", "a9810da82917…
## $ payment_sequential   <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
## $ payment_type         <chr> "credit_card", "credit_card", "credit_card", "cre…
## $ payment_installments <int> 8, 1, 1, 8, 2, 2, 1, 3, 6, 1, 8, 1, 1, 5, 4, 10, …
## $ payment_value        <dbl> 99.33, 24.39, 65.71, 107.78, 128.45, 96.12, 81.16…
## **File: olist_order_reviews_dataset.csv**
## Rows: 99,224
## Columns: 7
## $ review_id               <chr> "7bc2406110b926393aa56f80a40eba40", "80e641a11…
## $ order_id                <chr> "73fc7af87114b39712e6da79b0a377eb", "a548910a1…
## $ review_score            <int> 4, 5, 5, 5, 5, 1, 5, 5, 5, 4, 5, 5, 4, 4, 3, 5…
## $ review_comment_title    <chr> "", "", "", "", "", "", "", "", "", "recomendo…
## $ review_comment_message  <chr> "", "", "", "Recebi bem antes do prazo estipul…
## $ review_creation_date    <chr> "2018-01-18 00:00:00", "2018-03-10 00:00:00", …
## $ review_answer_timestamp <chr> "2018-01-18 21:46:59", "2018-03-11 03:05:13", …
## **File: olist_orders_dataset.csv**
## Rows: 99,441
## Columns: 8
## $ order_id                      <chr> "e481f51cbdc54678b7cc49136f2d6af7", "53c…
## $ customer_id                   <chr> "9ef432eb6251297304e76186b10a928d", "b08…
## $ order_status                  <chr> "delivered", "delivered", "delivered", "…
## $ order_purchase_timestamp      <chr> "2017-10-02 10:56:33", "2018-07-24 20:41…
## $ order_approved_at             <chr> "2017-10-02 11:07:15", "2018-07-26 03:24…
## $ order_delivered_carrier_date  <chr> "2017-10-04 19:55:00", "2018-07-26 14:31…
## $ order_delivered_customer_date <chr> "2017-10-10 21:25:13", "2018-08-07 15:27…
## $ order_estimated_delivery_date <chr> "2017-10-18 00:00:00", "2018-08-13 00:00…
## **File: olist_products_dataset.csv**
## Rows: 32,951
## Columns: 9
## $ product_id                 <chr> "1e9e8ef04dbcff4541ed26657ea517e5", "3aa071…
## $ product_category_name      <chr> "perfumaria", "artes", "esporte_lazer", "be…
## $ product_name_lenght        <int> 40, 44, 46, 27, 37, 60, 56, 56, 57, 36, 54,…
## $ product_description_lenght <int> 287, 276, 250, 261, 402, 745, 1272, 184, 16…
## $ product_photos_qty         <int> 1, 1, 1, 1, 4, 1, 4, 2, 1, 1, 1, 4, 3, 2, 4…
## $ product_weight_g           <int> 225, 1000, 154, 371, 625, 200, 18350, 900, …
## $ product_length_cm          <int> 16, 30, 18, 26, 20, 38, 70, 40, 27, 17, 16,…
## $ product_height_cm          <int> 10, 18, 9, 4, 17, 5, 24, 8, 13, 10, 10, 19,…
## $ product_width_cm           <int> 14, 20, 15, 26, 13, 11, 44, 40, 17, 12, 16,…
## **File: olist_sellers_dataset.csv**
## Rows: 3,095
## Columns: 4
## $ seller_id              <chr> "3442f8959a84dea7ee197c632cb2df15", "d1b65fc7de…
## $ seller_zip_code_prefix <int> 13023, 13844, 20031, 4195, 12914, 20920, 55325,…
## $ seller_city            <chr> "campinas", "mogi guacu", "rio de janeiro", "sa…
## $ seller_state           <chr> "SP", "SP", "RJ", "SP", "SP", "RJ", "PE", "SP",…
## **File: product_category_name_translation.csv**
## Rows: 71
## Columns: 2
## $ product_category_name         <chr> "beleza_saude", "informatica_acessorios"…
## $ product_category_name_english <chr> "health_beauty", "computers_accessories"…

Joining tables together

# translating

product_translated <- left_join(product_category_name_translation.csv, olist_products_dataset.csv, 
           by = "product_category_name", "product_category_name_english")
product_translated2 <- left_join(product_translated, olist_order_items_dataset.csv, 
                                by = "product_id", "order_id")
# joining other tables together

CustomerSellerProduct <- inner_join(olist_order_items_dataset.csv, product_translated) %>% 
  inner_join(product_translated2, olist_order_reviews_dataset.csv, 
             by = "order_id", relationship = "many-to-many") %>% 
  inner_join(olist_order_reviews_dataset.csv, olist_order_reviews_dataset.csv, 
             by = "order_id", relationship = "many-to-many")
## Joining with `by = join_by(product_id)`

Cleaning and Manipulating

Filtering the data as directed…

CustomerSellerProduct <- na.omit(distinct(CustomerSellerProduct))

min(CustomerSellerProduct$shipping_limit_date.x)
## [1] "2016-09-19 00:15:34"
max(CustomerSellerProduct$shipping_limit_date.x)
## [1] "2020-04-09 22:35:08"
CustomerSellerProduct <- filter(CustomerSellerProduct,
       shipping_limit_date.x > as.Date("2017-01-01") &
       shipping_limit_date.x < as.Date("2018-09-01") &
       shipping_limit_date.y > as.Date("2017-01-01") &
       shipping_limit_date.y < as.Date("2018-09-01") &
       review_creation_date > as.Date("2017-01-01") &
       review_creation_date < as.Date("2018-09-01") &
       review_answer_timestamp > as.Date("2017-01-01") &
       review_answer_timestamp < as.Date("2018-09-01")
)
min(CustomerSellerProduct$shipping_limit_date.x)
## [1] "2017-01-09 11:56:06"
max(CustomerSellerProduct$shipping_limit_date.x)
## [1] "2018-08-31 19:50:11"

Formatting the data

# Year, Month, Day, Time, -to- , Year, Month.

head(CustomerSellerProduct)
##                           order_id order_item_id.x
## 1 00010242fe8c5a6d1ba2dd792cb16214               1
## 2 00018f77f2f0320c557190d7a144bdd3               1
## 3 000229ec398224ef6ca0657da4fc703e               1
## 4 00024acbcdf0a6daa1e931b038114c75               1
## 5 00042b26cf59d7ce69dfabb4e55b4fd9               1
## 6 00048cc3ae777c65dbb7d2a0634bc1ea               1
##                       product_id.x                      seller_id.x
## 1 4244733e06e7ecb4970a6e2683c13e61 48436dade18ac8b2bce089ec2a041202
## 2 e5f2d52b802189ee658865ca93d83a8f dd7ddc04e1b6c2c614352b383efe2d36
## 3 c777355d18b72b67abbeef9df44fd0fd 5b51032eddd242adc84c38acab88f23d
## 4 7634da152a4610f1595efa32f14722fc 9d7a1d34a5052409006425275ba1c2b4
## 5 ac6c3623068f30de03045865e4e10089 df560393f3a51e74553ab94004ba5c87
## 6 ef92defde845ab8450f9d70c526ef70f 6426d21aca402a131fc0a5d0960a3c90
##   shipping_limit_date.x price.x freight_value.x product_category_name.x
## 1   2017-09-19 09:45:35   58.90           13.29              cool_stuff
## 2   2017-05-03 11:05:13  239.90           19.93                pet_shop
## 3   2018-01-18 14:48:30  199.00           17.87        moveis_decoracao
## 4   2018-08-15 10:10:18   12.99           12.79              perfumaria
## 5   2017-02-13 13:57:51  199.90           18.14      ferramentas_jardim
## 6   2017-05-23 03:55:27   21.90           12.69   utilidades_domesticas
##   product_category_name_english.x product_name_lenght.x
## 1                      cool_stuff                    58
## 2                        pet_shop                    56
## 3                 furniture_decor                    59
## 4                       perfumery                    42
## 5                    garden_tools                    59
## 6                      housewares                    36
##   product_description_lenght.x product_photos_qty.x product_weight_g.x
## 1                          598                    4                650
## 2                          239                    2              30000
## 3                          695                    2               3050
## 4                          480                    1                200
## 5                          409                    1               3750
## 6                          558                    1                450
##   product_length_cm.x product_height_cm.x product_width_cm.x
## 1                  28                   9                 14
## 2                  50                  30                 40
## 3                  33                  13                 33
## 4                  16                  10                 15
## 5                  35                  40                 30
## 6                  24                   8                 15
##   product_category_name.y product_category_name_english.y
## 1              cool_stuff                      cool_stuff
## 2                pet_shop                        pet_shop
## 3        moveis_decoracao                 furniture_decor
## 4              perfumaria                       perfumery
## 5      ferramentas_jardim                    garden_tools
## 6   utilidades_domesticas                      housewares
##                       product_id.y product_name_lenght.y
## 1 4244733e06e7ecb4970a6e2683c13e61                    58
## 2 e5f2d52b802189ee658865ca93d83a8f                    56
## 3 c777355d18b72b67abbeef9df44fd0fd                    59
## 4 7634da152a4610f1595efa32f14722fc                    42
## 5 ac6c3623068f30de03045865e4e10089                    59
## 6 ef92defde845ab8450f9d70c526ef70f                    36
##   product_description_lenght.y product_photos_qty.y product_weight_g.y
## 1                          598                    4                650
## 2                          239                    2              30000
## 3                          695                    2               3050
## 4                          480                    1                200
## 5                          409                    1               3750
## 6                          558                    1                450
##   product_length_cm.y product_height_cm.y product_width_cm.y order_item_id.y
## 1                  28                   9                 14               1
## 2                  50                  30                 40               1
## 3                  33                  13                 33               1
## 4                  16                  10                 15               1
## 5                  35                  40                 30               1
## 6                  24                   8                 15               1
##                        seller_id.y shipping_limit_date.y price.y
## 1 48436dade18ac8b2bce089ec2a041202   2017-09-19 09:45:35   58.90
## 2 dd7ddc04e1b6c2c614352b383efe2d36   2017-05-03 11:05:13  239.90
## 3 5b51032eddd242adc84c38acab88f23d   2018-01-18 14:48:30  199.00
## 4 9d7a1d34a5052409006425275ba1c2b4   2018-08-15 10:10:18   12.99
## 5 df560393f3a51e74553ab94004ba5c87   2017-02-13 13:57:51  199.90
## 6 6426d21aca402a131fc0a5d0960a3c90   2017-05-23 03:55:27   21.90
##   freight_value.y                        review_id review_score
## 1           13.29 97ca439bc427b48bc1cd7177abe71365            5
## 2           19.93 7b07bacd811c4117b742569b04ce3580            4
## 3           17.87 0c5b33dea94867d1ac402749e5438e8b            5
## 4           12.79 f4028d019cb58564807486a6aaf33817            4
## 5           18.14 940144190dcba6351888cafa43f3a3a5            5
## 6           12.69 5e4e50af3b7960b7a10d86ec869509e8            4
##   review_comment_title
## 1                     
## 2                     
## 3                     
## 4                     
## 5                     
## 6                     
##                                                                       review_comment_message
## 1                                             Perfeito, produto entregue antes do combinado.
## 2                                                                                           
## 3 Chegou antes do prazo previsto e o produto surpreendeu pela qualidade. Muito satisfatório.
## 4                                                                                           
## 5                                                    Gostei pois veio no prazo determinado .
## 6                                                                                           
##   review_creation_date review_answer_timestamp
## 1  2017-09-21 00:00:00     2017-09-22 10:57:03
## 2  2017-05-13 00:00:00     2017-05-15 11:34:13
## 3  2018-01-23 00:00:00     2018-01-23 16:06:31
## 4  2018-08-15 00:00:00     2018-08-15 16:39:01
## 5  2017-03-02 00:00:00     2017-03-03 10:54:59
## 6  2017-05-23 00:00:00     2017-05-24 19:00:09
CustomerSellerProduct$shipping_limit_date.x <- format.Date(
  CustomerSellerProduct$shipping_limit_date.x, "%Y-%m")
CustomerSellerProduct$shipping_limit_date.y <- format.Date(
  CustomerSellerProduct$shipping_limit_date.y, "%Y-%m")
CustomerSellerProduct$review_creation_date <- format.Date(
  CustomerSellerProduct$review_creation_date, "%Y-%m")
CustomerSellerProduct$review_answer_timestamp <- format.Date(
  CustomerSellerProduct$review_answer_timestamp, "%Y-%m")

head(CustomerSellerProduct)
##                           order_id order_item_id.x
## 1 00010242fe8c5a6d1ba2dd792cb16214               1
## 2 00018f77f2f0320c557190d7a144bdd3               1
## 3 000229ec398224ef6ca0657da4fc703e               1
## 4 00024acbcdf0a6daa1e931b038114c75               1
## 5 00042b26cf59d7ce69dfabb4e55b4fd9               1
## 6 00048cc3ae777c65dbb7d2a0634bc1ea               1
##                       product_id.x                      seller_id.x
## 1 4244733e06e7ecb4970a6e2683c13e61 48436dade18ac8b2bce089ec2a041202
## 2 e5f2d52b802189ee658865ca93d83a8f dd7ddc04e1b6c2c614352b383efe2d36
## 3 c777355d18b72b67abbeef9df44fd0fd 5b51032eddd242adc84c38acab88f23d
## 4 7634da152a4610f1595efa32f14722fc 9d7a1d34a5052409006425275ba1c2b4
## 5 ac6c3623068f30de03045865e4e10089 df560393f3a51e74553ab94004ba5c87
## 6 ef92defde845ab8450f9d70c526ef70f 6426d21aca402a131fc0a5d0960a3c90
##   shipping_limit_date.x price.x freight_value.x product_category_name.x
## 1               2017-09   58.90           13.29              cool_stuff
## 2               2017-05  239.90           19.93                pet_shop
## 3               2018-01  199.00           17.87        moveis_decoracao
## 4               2018-08   12.99           12.79              perfumaria
## 5               2017-02  199.90           18.14      ferramentas_jardim
## 6               2017-05   21.90           12.69   utilidades_domesticas
##   product_category_name_english.x product_name_lenght.x
## 1                      cool_stuff                    58
## 2                        pet_shop                    56
## 3                 furniture_decor                    59
## 4                       perfumery                    42
## 5                    garden_tools                    59
## 6                      housewares                    36
##   product_description_lenght.x product_photos_qty.x product_weight_g.x
## 1                          598                    4                650
## 2                          239                    2              30000
## 3                          695                    2               3050
## 4                          480                    1                200
## 5                          409                    1               3750
## 6                          558                    1                450
##   product_length_cm.x product_height_cm.x product_width_cm.x
## 1                  28                   9                 14
## 2                  50                  30                 40
## 3                  33                  13                 33
## 4                  16                  10                 15
## 5                  35                  40                 30
## 6                  24                   8                 15
##   product_category_name.y product_category_name_english.y
## 1              cool_stuff                      cool_stuff
## 2                pet_shop                        pet_shop
## 3        moveis_decoracao                 furniture_decor
## 4              perfumaria                       perfumery
## 5      ferramentas_jardim                    garden_tools
## 6   utilidades_domesticas                      housewares
##                       product_id.y product_name_lenght.y
## 1 4244733e06e7ecb4970a6e2683c13e61                    58
## 2 e5f2d52b802189ee658865ca93d83a8f                    56
## 3 c777355d18b72b67abbeef9df44fd0fd                    59
## 4 7634da152a4610f1595efa32f14722fc                    42
## 5 ac6c3623068f30de03045865e4e10089                    59
## 6 ef92defde845ab8450f9d70c526ef70f                    36
##   product_description_lenght.y product_photos_qty.y product_weight_g.y
## 1                          598                    4                650
## 2                          239                    2              30000
## 3                          695                    2               3050
## 4                          480                    1                200
## 5                          409                    1               3750
## 6                          558                    1                450
##   product_length_cm.y product_height_cm.y product_width_cm.y order_item_id.y
## 1                  28                   9                 14               1
## 2                  50                  30                 40               1
## 3                  33                  13                 33               1
## 4                  16                  10                 15               1
## 5                  35                  40                 30               1
## 6                  24                   8                 15               1
##                        seller_id.y shipping_limit_date.y price.y
## 1 48436dade18ac8b2bce089ec2a041202               2017-09   58.90
## 2 dd7ddc04e1b6c2c614352b383efe2d36               2017-05  239.90
## 3 5b51032eddd242adc84c38acab88f23d               2018-01  199.00
## 4 9d7a1d34a5052409006425275ba1c2b4               2018-08   12.99
## 5 df560393f3a51e74553ab94004ba5c87               2017-02  199.90
## 6 6426d21aca402a131fc0a5d0960a3c90               2017-05   21.90
##   freight_value.y                        review_id review_score
## 1           13.29 97ca439bc427b48bc1cd7177abe71365            5
## 2           19.93 7b07bacd811c4117b742569b04ce3580            4
## 3           17.87 0c5b33dea94867d1ac402749e5438e8b            5
## 4           12.79 f4028d019cb58564807486a6aaf33817            4
## 5           18.14 940144190dcba6351888cafa43f3a3a5            5
## 6           12.69 5e4e50af3b7960b7a10d86ec869509e8            4
##   review_comment_title
## 1                     
## 2                     
## 3                     
## 4                     
## 5                     
## 6                     
##                                                                       review_comment_message
## 1                                             Perfeito, produto entregue antes do combinado.
## 2                                                                                           
## 3 Chegou antes do prazo previsto e o produto surpreendeu pela qualidade. Muito satisfatório.
## 4                                                                                           
## 5                                                    Gostei pois veio no prazo determinado .
## 6                                                                                           
##   review_creation_date review_answer_timestamp
## 1              2017-09                 2017-09
## 2              2017-05                 2017-05
## 3              2018-01                 2018-01
## 4              2018-08                 2018-08
## 5              2017-03                 2017-03
## 6              2017-05                 2017-05
# Seller average review score...

seller_scores <- aggregate(review_score ~ seller_id.x, data = CustomerSellerProduct, FUN = mean)
poorly_rated_sellers <- seller_scores[seller_scores$review_score < 3.0, ]

Graph and modeling

Graphing

# total customer satisfaction

CustomerSat <- ggplot(CustomerSellerProduct, aes(review_score)) +
  geom_bar(fill = "steelblue")


# Seller score averages

Seller_Score <- ggplot(data = seller_scores, aes(seller_id.x, review_score)) +
  geom_jitter(aes(color = review_score), size = 1.5) +
  scale_color_gradient(low = "blue4", high = "green2")

# All seller sales per month.

monthly_revenue <- CustomerSellerProduct %>%
  mutate(month = shipping_limit_date.x) %>%
  group_by(month) %>%
  summarise(total_revenue = sum(price.x))

Seller_Gross_Rev <- ggplot(data = monthly_revenue, aes(x = month, y = total_revenue)) +
  geom_bar(stat = "identity", fill = "steelblue") +
  xlab("Month") +
  ylab("Gross") +
  ggtitle("Gross Seller Sales") +
  theme(axis.text.x = element_text(angle = 45, hjust = 1))

# All seller 

Modeling the data

# modeling the relationship between reviews and seller id

kruskal.test(review_score ~ seller_id.x, data = CustomerSellerProduct)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  review_score by seller_id.x
## Kruskal-Wallis chi-squared = 19972, df = 2988, p-value < 2.2e-16
# modeling the relationship between month and gross estimated

monthly_revenue <- na.omit(monthly_revenue)

library(zoo)
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
monthly_revenue <- CustomerSellerProduct %>%
  mutate(month = as.yearmon(shipping_limit_date.x)) %>%
  group_by(month) %>%
  summarise(total_revenue = sum(price.x))

model <- lm(total_revenue ~ month, data = monthly_revenue)
summary(model)
## 
## Call:
## lm(formula = total_revenue ~ month, data = monthly_revenue)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -315410  -80512   -1936   92756  267522 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -1.389e+09  1.450e+08  -9.577 1.73e-08 ***
## month        6.888e+05  7.188e+04   9.583 1.71e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 154500 on 18 degrees of freedom
## Multiple R-squared:  0.8361, Adjusted R-squared:  0.827 
## F-statistic: 91.82 on 1 and 18 DF,  p-value: 1.715e-08

Analyze

I’ve developed multiple graphs showing valuable insights into the customers satisfaction and buisness gross growth.

customer satisfaction overall

Seller ratings on average

Estimated Gross Revenue

### Disclaimer

First I’d like to say that I chose not to sample the data set to keep the number of observations high for more precise analysis.

Second I’d like to say it’s possible for these results to be subject to human error.

Lastly, thanks for viewing my 3rd case study.

Conclusion

  • Total sales for all sellers grew exponentially until 2018, where growth appeared to be at near flat-line.

  • Total customer satisfaction is relatively high, though some sellers influenced the lower ratings.

  • Poor rated sellers are shown below;

##                           seller_id.x review_score
## 11   010da0602d7774602cd1b3f5fb7b709e     1.000000
## 29   02d35243ea2e497335cd0f076b45675d     2.782609
## 30   02dcd3e8e25bee036e32512bcf175493     2.760000
## 48   04aa0a1c5ce6b222003403a3e11c3cc0     2.926829
## 54   052577151711aec5c744fe12e66db3e1     2.250000
## 88   0791d9fc1e30678ecf03d3e55fa108d3     1.627907
## 91   07bf9669d84d1f11be443a9dd938f698     2.777778
## 92   07d75e33f2750d97d467fb57e4dfdd8a     2.500000
## 102  0873d9f8f36123f8d910f4760e788cfb     2.625000
## 105  08ad4ac1388e4420ca531c3edfc46198     2.400000
## 106  08cdbae123ff67ca4e36d9d641ce0119     1.769231
## 117  099095b050cfe8eb1ddff5317587e96e     2.576923
## 123  0aa124728afc1131dff5655f4c6f487b     1.000000
## 124  0aa2205ca24f113f4658a5c536667426     1.727273
## 157  0d83f8e03188682112cc0d93523705cc     1.444444
## 164  0dfbed20065e425d2eaefb101f9816c0     2.666667
## 167  0e982cff76cc0579f632cea8a0e38c9d     2.514286
## 185  101921376b577a4540dc30e9009133ca     2.000000
## 207  1284de4ae8aa26997e748c851557cf0e     2.666667
## 216  134285d1f41da5c13a756ee8142c8a4e     2.166667
## 220  1352e06ae67b410cdae0b2a22361167b     1.000000
## 232  1444c08e64d55fb3c25f0f09c07ffcf2     1.000000
## 237  14f2b3587172b9db894c9bad8dab520b     2.500000
## 239  154bdf805377afea75a3bd158e9eab10     1.000000
## 244  15ac3c501e2599e4917316fde5c5669a     1.000000
## 245  15aec03fe4cf30dfa574cf550f5ff5ff     1.000000
## 246  15b3b1b81484422eb41df68ac87f1f50     1.000000
## 270  17adeba047385fb0c67d8e90b4296d21     1.000000
## 285  191d55f7edb8524d525ed01b20fe32e8     2.333333
## 287  19484c79cef6c062cb177aa4ef2fcc3c     1.000000
## 288  1967a9e2ad6f51802b093147d861df58     1.000000
## 292  1992f8fb6b19fcccd97ca819811e7267     1.000000
## 298  1a932caad4f9d804097d7f8e615baed1     2.928571
## 303  1b4b28463457a256e9a784ebe2a8f630     1.000000
## 306  1b65c144b17e607c0f37f10bb7dfec8d     2.333333
## 322  1ca7077d890b907f89be8c954a02686a     2.670588
## 346  1dfe5347016252a7884b694d4f10f5c4     2.853659
## 348  1e47d8b6546eb3a77b1acddcc9406242     1.000000
## 358  1f7dfad2cb384ea4d2d7e1ffbd78c407     1.000000
## 362  1fbe10c70e30765ed1de86d9f7e98409     1.115385
## 364  1fddcb7b326905d3ad5efe82187db347     1.000000
## 374  2078fe5066350e7d220c0ad3a3bbc6c1     2.000000
## 380  20d53aad4fe5ee93a64f8839609d3586     2.500000
## 382  20fd2d2080ed85fa67fad3fcbb2c1813     1.000000
## 412  244b04680fdbded0acf5aebd9c92b44a     1.000000
## 416  249f0e9905a6e06ad6c6bea7547ab9f6     2.333333
## 420  2528744c5ef5d955adc318720a94d2e7     2.400000
## 430  25debeafbce801fdd479539350185eee     2.000000
## 450  2709af9587499e95e803a6498a5a56e9     1.158120
## 451  270d3ef21830ad0ecf3a6c53d08a533a     2.194444
## 457  278b6e0b20c4f61fefaa0577943d7a35     1.000000
## 474  299c89a525fee36c567f4fe72f038100     2.000000
## 477  2a1348e9addc1af5aaa619b1a3679d6b     2.617647
## 479  2a261b5b644fa05f4f2700eb93544f2c     2.607656
## 480  2a50b7ee5aebecc6fd0ff9784a4747d6     1.000000
## 494  2b3b9ce054da76a7428df143a567b156     1.842105
## 506  2c3d56f92f360fb89d849b84e8f50eae     2.857143
## 513  2cb4700db635baa1c0d4f90ed27b6669     2.000000
## 528  2dd1fb6f0e42a2243b8a01e40cd41216     2.142857
## 534  2e3be8a987a30d7544dbbda6861cc14e     2.857143
## 538  2eb70248d66e0e3ef83659f71b244378     2.781250
## 539  2ec6e37d992a95eaddb3369dcbcc76d9     1.666667
## 543  2f09f7d37a97956d11cc1a7cadd5262b     2.222222
## 561  30c7f28fd3a5897b2c82d152bb760c17     1.666667
## 562  312ba1d77e9c332ef21f9598b7f64cd7     2.583333
## 572  324583d68897f5ddbaf38f6248322176     1.000000
## 574  327b89b872c14d1c0be7235ef4871685     2.333333
## 579  32f1bb9dfa65bc7df5c0d9d95a616be4     2.714286
## 582  3338e7a0710a195872be80e0d2423867     1.000000
## 600  340636a908b13bbe0f4fb63fbe1d0c03     2.500000
## 603  344223b2a90784f64136a8a5da012e7f     2.000000
## 609  34aefe746cd81b7f3b23253ea28bef39     1.000000
## 614  353e21e8bf8de2722b4fae1636664b76     2.000000
## 618  35ef5aa32949680f627efec3c23e705c     2.571429
## 620  3606774ec64634822d78dc2db6d37045     1.000000
## 635  37ceb404da208418c9032f0674e57804     1.000000
## 645  38e6dada03429a47197d5d584d793b41     2.333333
## 647  391bbd13b6452244774beff1824006ed     1.000000
## 669  3a52d63a8f9daf5a28f3626d7eb9bd28     1.000000
## 711  3da38366e7bd9baf6369071f782ecdf0     1.000000
## 728  3f8034bfc6b8b4135534975d49f04c63     1.956522
## 738  3febca52652e7209509ccfe61cbde40e     2.000000
## 740  4003520d80d0bad1d5623f7aa3c63cda     1.000000
## 745  40536e7ca18e1bce252828e5876466cc     1.000000
## 748  4091f77d8c768fc3e81c20761471761d     2.750000
## 750  40db9e9aa57f7bb151bcda6b0f9bdbb7     2.500000
## 773  42d4b7e70819438f5ada61c965e92d7e     1.000000
## 784  4342d4b2ba6b161468c63a7e7cfce593     1.263158
## 791  43a5d4a57af536fddc96d08be3afdfcb     1.000000
## 796  443d880f15cbd3572885e1d44bf2c478     2.000000
## 802  44f091b5abab8018f682fce8124b85e5     2.500000
## 807  455f46ef09a9e45667e2981df84b5cc2     1.000000
## 809  458c6fa920810ce2492da71bc26d9eec     2.500000
## 826  48328ec9a579151d9cc6a86d4a59336c     2.000000
## 838  48fb026ed7455a42f5d3e9390ed5088e     2.500000
## 852  4a1917ef994878940e1fb03eeb787ad7     2.400000
## 863  4b1eaadf791bdbbad8c4a35b65236d52     1.666667
## 868  4bc3d93e4a5f88a598d3d8ce4ae510b3     1.000000
## 888  4ce8b55b4bfa4659184e7becc1fba3f2     2.333333
## 894  4d6fb82c629c7a5028bfd973c07b05e0     2.000000
## 901  4dc646b9b9e8e411ef48ba000ea3ac6f     2.000000
## 904  4deebb3199eeafb282ae33229144f94b     2.714286
## 908  4e2627090e6e5b9fabba883a37897683     1.000000
## 909  4e326052e5dbba8adcd512f3450a307e     1.285714
## 910  4e42581f08e8cfc7c090f930bac4552a     1.000000
## 916  4e8dacf3d38f281ae26c3e0321d92d88     2.074074
## 926  4f40d2ed38d1cc945364a7cd202a82c7     1.000000
## 932  5058e8c1e82653974541e83690655b4a     2.609023
## 938  50c361bcf670d16f6df4d52de3dff924     1.000000
## 944  5151aea44289d6c6b090ee31c2132508     1.833333
## 951  51a04a8a6bdcb23deccc82b0b80742cf     1.000000
## 971  52ac6f920b7280e4c6d30dd94de6259b     2.500000
## 975  52f0fe436a347ddad7ed5f9aa4e27eaa     2.588235
## 976  52f6f9f13ba19504c02781132a049e75     2.000000
## 988  538caafddff204241cecbf3a02e6b3cf     2.500000
## 1000 54965bbe3e4f07ae045b90b0b8541f52     2.750000
## 1005 553a440137d6e0cf776aee0bb83ac9f5     1.000000
## 1008 556a6409838156ea299c9d1f9e2dde43     2.666667
## 1011 559d56f3b8f0bc2e5a9a62fe2ce2a39f     2.500000
## 1015 55c96925041a14097b6a7825554f4ad5     2.461538
## 1022 5659d77e8d90378e39b960ad5956f64e     2.500000
## 1023 56642bcb79900e777d68e91915cb4267     2.811111
## 1025 56a8b450e802502ba53a9885ee38e29f     1.000000
## 1046 586a871d4f1221763fddb6ceefdeb95e     1.000000
## 1048 5882f40daf39bc2a465e0cb453ddc222     2.000000
## 1049 58b98ccb79873e04eac4357cacc590d9     1.000000
## 1051 58e4b302b54937e55a678c4d15111da4     2.333333
## 1074 5aaa890629f83706d8d9bfecd8377c1c     1.000000
## 1077 5acd070dd3fe441bbb2ec1f1ede515ee     1.666667
## 1083 5b35136197710e16ac5e7b7c2bd4ea85     2.538462
## 1084 5b51032eddd242adc84c38acab88f23d     2.875000
## 1095 5bc55dbe2f12b6af6d83ed46023e0dc8     2.108108
## 1101 5c603ffb38cbbf25a0e0698941324143     1.000000
## 1104 5ca5d579b5857ee8709479b1047cecc3     1.000000
## 1108 5d043cd5512d4bd2f88e5ccdd5736c38     2.000000
## 1116 5dc4bdaf869e8c77c648078cbe8d59c2     1.000000
## 1142 602044f2c16190c2c6e45eb35c2e21cb     2.666667
## 1149 60ad151920c4f6f3ebbe8cfdf6166779     1.000000
## 1159 61b893c57e33626afb104d4112b1be76     1.000000
## 1160 61c36f0fc4a47f9532e5512b66668e62     1.000000
## 1161 61f159ef6da2d441951d2c0efa719362     1.000000
## 1169 62c50c1af4dfdc4149d25c5222043d39     2.545455
## 1171 630008e0f062605a415d694489f6f82e     2.600000
## 1175 633ecdf879b94b5337cca303328e4a25     1.800000
## 1177 63704069d9bd3a75c1cf59babe56004a     1.000000
## 1182 63bc58679c44e8a998792119fd7ad23e     1.000000
## 1189 64b87978a11c1ea7501a89eabe8c2c1a     2.000000
## 1200 6576fd3e23c88f0e5d4d23f39bba0542     1.000000
## 1208 6614814a00d344b846ae209f95ee7e3f     1.000000
## 1211 6650fcccd8cd2f7e55ffa524f30c4c59     2.250000
## 1216 66d5ae34537110d3affc56174dad2b2f     1.000000
## 1217 66dc1b1632bd6a3e508510c5b3492107     2.983051
## 1219 66fd84ee7528c0c0de85d0f44a73d5ab     2.152174
## 1229 67e43d802fde8cfd3f9580124f8167d1     1.000000
## 1233 685b870da5b52a710782c9c0fefbeb5b     2.000000
## 1235 6861de0f40cacb0602e473c51639f980     1.650000
## 1273 6bef34c5be6f2bbd70aa5165f6df94b1     2.000000
## 1284 6cf476a4ca74498db55cbccdaa9dcfb6     2.000000
## 1285 6d04126aba80df143fd038e711b8fd96     1.000000
## 1293 6dc9bec584588412a6a338830946a3e4     1.800000
## 1300 6e2d3e2dc84fb30f6078f39dd3bddd6f     1.000000
## 1304 6e85dc5ecd97a61094b89b046a509d8e     1.000000
## 1310 6ee85be3693ed79a8e80718743d80655     1.363636
## 1311 6eeed17989b0ae47c9f11ece6f38ea90     2.333333
## 1312 6f1a1263039c76e68f40a8e536b1da6a     2.684211
## 1340 71271995e85f5b8530be99ed54a91b89     2.500000
## 1357 7210cd29727d674c00741e5e387b3ccd     2.592593
## 1364 725af026f869236a8dd0ceb98564d156     2.700000
## 1388 747c1cdcd1737dcfbd1547f6eb6f2cf3     1.375000
## 1393 74bafed391319577bce6f4d2acc0589a     2.666667
## 1399 7586919161935337bf6b6d7ff5779648     2.166667
## 1404 762ed976527cddf02787edba70fffa2a     2.166667
## 1412 76d336555bb25f3165d2f0d6da719c40     2.000000
## 1415 76de363de16dacc923eec8daf91df504     2.500000
## 1424 77dcbb67ccb3659bd58eaf5661560a30     1.000000
## 1429 781a66c0d89e30814d49fe8b5e14cd07     1.000000
## 1441 791cfcfe22fe4a771ece27f90017da92     1.500000
## 1445 7994081388d55b9cf976c050653dd359     1.153846
## 1451 79ee721b6f766066a80264402548d359     1.000000
## 1452 7a188843479798ca813108fa7b959286     1.000000
## 1453 7a241947449cc45dbfda4f9d0798d9d0     2.316901
## 1472 7b7f91e98f8c6def45a1407923304402     2.346154
## 1476 7bcd7c5f8631701474db233ccf1c094b     2.500000
## 1485 7c9130f5f3729edd32aa059141d92484     2.500000
## 1486 7caa63f175b1cecbfaadd8b5ab9998c7     1.666667
## 1506 7e3dde9ffba72d5340f9aaf09b4424be     1.000000
## 1510 7e959205cebc10adefcb331f934238a4     1.000000
## 1522 7fdb0720c8d7c9075538b365dc8c3a22     2.200000
## 1535 8132b9bd16876e1b0f8808d43825dd48     1.800000
## 1569 83d7070a0b9a8b4625fa8682b819fabb     1.000000
## 1573 8444e55c1f13cd5c179851e5ca5ebd00     2.552632
## 1578 8501d82f68d23148b6d78bb7c4a42037     1.000000
## 1592 8629a7efec1aab257e58cda559f03ba7     1.000000
## 1596 86649b1632b1c0e6c0bcb2c90a8b75d8     1.000000
## 1598 86bb7c4b535e49a541baf3266b1c95b1     2.916667
## 1612 87f3e35268860433e13d577825aada95     1.000000
## 1614 880eda903e719a5f179f7e9fceb3a69d     1.000000
## 1620 88af55b4a7ca402b27df16f7c7c9b5d2     1.000000
## 1623 88ef59b51bdaa941d10a853429f2b6ce     2.000000
## 1634 89de2d6f23e9746ff309705b23581faa     2.714286
## 1642 8a43128d7f9a3db592b866e6861a6cce     1.666667
## 1644 8a87611c08849ffeeccab52aa798b6c7     2.529412
## 1655 8b87cd0d43d49b9bdf40f56229364d59     2.600000
## 1659 8bd0e3abda539b9479c4b44a691be1ec     1.325000
## 1665 8c3b533c63cca56240f94f1e3a6b18ef     1.363636
## 1675 8cf21434553b02cbd37c0bbd07e041b0     2.500000
## 1678 8d899e15a5925f097cca50faa49b15e3     1.547619
## 1679 8d92f3ea807b89465643c219455e7369     1.000000
## 1690 8e670472e453ba34a379331513d6aab1     1.000000
## 1692 8e6d7754bc7e0f22c96d255ebda59eba     1.571861
## 1698 8f0fbe2cd4d472157dc1cdef6edecaa9     2.333333
## 1714 8ff38bc3969e67c36c48343a07090f66     2.500000
## 1720 90b36c5aeb728d5504a39f435bef0c5f     2.230769
## 1722 90d4125885ab6c86e8820a722be71974     1.000000
## 1724 913fd0ebba70bb919f7254a02239173c     1.000000
## 1739 92992bec39dde5766f590d3b1f46d465     1.000000
## 1742 92d14edfb62ee5ae7fdff70b0f4e7233     1.891892
## 1745 933446e9a59dece7ae9175103820ca8f     1.800000
## 1752 94165aea8a35c3c21499cbcae239b16c     2.000000
## 1762 9523fb39dd240aa958e040f8183d64f3     1.000000
## 1767 9591fc341b1bfb7ef561e2968ec6e011     1.000000
## 1769 9599519be538b98748162a2b48248960     1.000000
## 1773 95ec4458365c4d11f452ccf538377619     2.965517
## 1774 95f83f51203c626648c875dd41874c7f     2.448980
## 1787 96f7c797de9ca20efbe14545bed63eec     1.000000
## 1788 972d0f9cf61b499a4812cf0bfa3ad3c4     2.820000
## 1789 973f21788dfab357250f69a8dcb7ddee     2.600000
## 1797 9803a40e82e45418ab7fb84091af5231     1.980392
## 1800 984c273121e743dd14767befe6cb17f5     1.000000
## 1806 98e164d549402270247f3c96a1a158ef     2.500000
## 1811 9996ae921c50e8dff411ac69c0b4bb8b     2.333333
## 1819 9a208dee8f95cfdf00760c4d627828ec     1.000000
## 1828 9b1050e85becf3ae99c1cf4934c9bc5d     2.500000
## 1834 9bade61a92bed55a25d2b67b9f4ed739     1.800000
## 1838 9bf11dfc0bec77e5a23028043c3c5a8f     1.000000
## 1842 9c351405b754cc5ce3e2ecf277bb034a     1.000000
## 1843 9c3a1c416c765687bc79a04113269929     1.000000
## 1847 9c57bc60cfad5ee62d35d3f1ce4593a1     1.000000
## 1861 9d7a1d34a5052409006425275ba1c2b4     2.481481
## 1862 9da15f4a4ea758d9eeb49000dbe57e22     2.000000
## 1870 9e17b9d64683aebcbb9ee362d06463b4     1.000000
## 1880 9f56a7a649097b166d8ed286ad86a15c     1.000000
## 1892 a0d7fbb07bb5ebc3b05980e750db56f3     1.571429
## 1893 a0e19590a0923cdd0614ea9427713ced     1.000000
## 1909 a21c11ec5c3f03e7cc9f9203bff9e1c6     2.333333
## 1910 a23266650e7c84bb93fbbba502137478     2.642857
## 1911 a247197e2e9c19a6a53a6888cb8b660f     1.000000
## 1917 a2e85714b56b1cb6bb24a9a6e6cad36f     1.000000
## 1925 a36ac007a4d18f865c8d32c3b2402c2d     2.555556
## 1943 a49928bcdf77c55c6d6e05e09a9b4ca5     2.811024
## 1944 a4b6b9b992b46e9ef863637af96e04bc     1.800000
## 1945 a4b8d97cd5d3674eeff96abc99d8ed67     1.000000
## 1947 a4e634166243bbb3a13fa584463fa468     2.000000
## 2004 ab3e0c171fe84a7ba7de130f19cfb485     2.666667
## 2005 ab75b89cc49c9ab3160d0c91565a442a     1.333333
## 2013 ac1ed5fc15901fbc92920361eb4ab350     1.000000
## 2015 ac51cac5e20d69ff485a54746488ef48     1.000000
## 2021 ace601496e211a664100321f038f50af     2.000000
## 2025 ad273c9eb54ecb4532de4bf75bae9e4e     2.947368
## 2027 ad738d3fcf42655ed15c4960b7b6c601     1.000000
## 2031 ad8ada0ffa993cb1197d102d9ab21a3e     1.000000
## 2036 adcf50477d6a1f5d91bb9d54c4903cb5     2.989362
## 2038 aded58c8142dedc5494a81f948431fab     2.222222
## 2056 b0b346d3a89f5eb4c2968af3f083cd43     2.785714
## 2058 b1204cfda1d4948679db3cfc0d3cb95c     2.451613
## 2067 b19f3ca2ea475913750f25a5c37c8d8f     2.625000
## 2071 b1b3948701c5c72445495bd161b83a4c     1.722222
## 2092 b37c4c02bda3161a7546a4e6d222d5b2     1.094118
## 2099 b43d8b707f887a30f4675391098354a0     1.750000
## 2112 b56828a9f9027f3c918c04ca720d9e3c     2.666667
## 2114 b57e8460909fa137df7951b4a3b5ea84     2.000000
## 2116 b5abf4f36adc043117b4fca82c22984c     2.266667
## 2126 b6c6854d4d92a5f6f46be8869da3fa1a     1.000000
## 2137 b7d5b4b87af9d42b601865d3f3810bff     2.000000
## 2139 b7ed9fb14c8eadb37adb9c45d67ab0fb     2.476190
## 2178 bb135baca94c82fcb731335ad5b04a03     2.317460
## 2180 bb3dca718920a4d7ec3cc9ffb025108b     1.800000
## 2188 bbad7e518d7af88a0897397ffdca1979     2.547771
## 2190 bbd3acfe6de99892e73940d3fdceaf68     2.333333
## 2201 bc8c8d665ec4664d286be0d521722b19     2.000000
## 2203 bcc9dd23e2a8bd8267cf92b19304a1b9     1.000000
## 2206 bcf5566870987da7bc811fbc8c5b9fd9     1.000000
## 2216 bd4ff04377f974574f7f0bf9d6ce7dde     1.000000
## 2222 be3b4b0f050a6aa1b2d901c4b77e979f     2.157895
## 2233 bf0d50a6410d487dc97d2baac0a8c0be     2.000000
## 2239 bfd938b22bc99bce1ae60dc602889f52     2.216216
## 2243 c004e5ea15737026cecaee0447e00b75     1.000000
## 2253 c0e6839516f5398edc34adf5f1d53d1a     2.666667
## 2258 c1552b1dab6e6f760950368ae61fb600     2.500000
## 2263 c1dde11f12d05c478f5de2d7319ad3b2     1.000000
## 2266 c200c73f9d7e5a08ca439d6a0803da7c     1.000000
## 2269 c26a2be5b53b7db6b276280da212a779     1.911765
## 2271 c286ec035ee04ba81c97508f0b5df544     2.500000
## 2272 c2bda99904207edd1834f03e0022b007     2.500000
## 2276 c32fc744b9160ac853450488e3cfea93     2.000000
## 2282 c360e4787614ed31ac7a2f95d3b22dc6     2.000000
## 2299 c4b911d06343b21dd906651f8101cb49     1.000000
## 2301 c4f7fee5b0db50e87766f5a4d1b1b758     2.363636
## 2309 c542f5a8c64d973f30e9df8d06f70b4a     1.000000
## 2319 c6381d2d013342748761e906d45aff76     1.953488
## 2322 c679fb69a36e1d8349e8c50a217b4d58     2.800000
## 2324 c6a7539d424a8402232c2228d7a03c5e     1.967742
## 2339 c7b7db6c8f3c64a7cc1afa634db21d50     1.000000
## 2340 c7bb64409aa480bb7d0335faaaf3d242     2.250000
## 2341 c7fdb77fdbff3c41981bc52f787e959e     2.727273
## 2349 c85d7b477a709c85a1e8b8f25aa1b270     1.000000
## 2355 c87abc38c8ed3240861729e1aeadf221     1.000000
## 2356 c88f62b4c386a59281014d677864d016     1.000000
## 2359 c8b3445d737de6befde0c88ede534a5e     2.724638
## 2364 c97aa4ee7420f937da13b7f9e2228b99     1.000000
## 2373 ca5832c6960267b71041f74bb39e8b12     1.000000
## 2389 cb4a705d00e100b9732d0ca34817d441     1.000000
## 2390 cb5df0dcb9e280b1780e9d589889f2c7     2.500000
## 2395 cbbd5ae8f53de5f5097cd8217b529e24     2.500000
## 2398 cc1f04647be106ba74e62b21f358af25     1.000000
## 2415 cd52a8efd71af3336b14b5039b951cc1     2.500000
## 2432 cecd97bc34ed8330bd4cd15713eda670     1.000000
## 2438 cf8ab1616079e2793aa29d524df01bb1     2.000000
## 2454 d1a1b40ec554c593a1a99366746289dd     2.000000
## 2455 d1a5cc844736958c11b8efab9a2b4c87     1.000000
## 2461 d1e2fe627180431ffda076abb303c56f     1.000000
## 2483 d3f39f05462b79a4562d35893a28f159     2.803922
## 2484 d4828feed4cda2cd9d6b37899a95a71e     2.000000
## 2486 d4a5e99e0dd915df64ba55a7fbd583fd     1.000000
## 2507 d65f31d2413268e671989503f6cf9993     1.000000
## 2514 d6cd01c59123df02fc226eadbadb5f89     1.800000
## 2528 d8dd176509baa37f359644d082bf7f7b     1.500000
## 2547 d9e7e7778b32987280a6f2cb9a39c57d     2.473684
## 2551 da2782c804606d2a5d8e1760dbb3e7ec     1.000000
## 2558 dadc51ef321949ec9a3ab25cd902e23d     1.000000
## 2574 dc120d932ddf9d4dfb6fd68beefda622     1.000000
## 2579 dc7192adf8ba09569261f4a8d576afe0     2.727273
## 2604 deaadd805612bf94faaa9fa702516e11     1.000000
## 2612 df683dfda87bf71ac3fc63063fba369d     1.000000
## 2617 dff87e4de60c9736ce8df835951b09bc     2.500000
## 2631 e174dc2de86d60fee178170a154c05e7     1.000000
## 2632 e1a210d482714ce337763a19aef94ba4     1.000000
## 2640 e250d617a0ad591ba9bd663e584a895d     2.181818
## 2649 e3b4998c7a498169dc7bce44e6bb6277     2.666667
## 2651 e3dd723429d1b23614b7fa85e2c7a853     2.900000
## 2653 e3e290b38963293022cdcd6db8328103     2.333333
## 2654 e4253cef933647000a82ff39c67b7bde     2.000000
## 2657 e46bc031f2c5bae4ccb40bb90712e9b4     1.000000
## 2659 e48cc16ab70bfa09e1401740dce0b3d7     2.680000
## 2663 e4fc40017a6d22c46a14ac2e17f87c3e     2.333333
## 2676 e59e489e2ea74bd409b798b5daf49de3     2.500000
## 2688 e628d4a53c109f09ca88098338b3a3f5     1.000000
## 2695 e6a69c4a27dfdd98ffe5aa757ad744bc     2.956522
## 2696 e6ffc9ac6a7adc9d16a1cfc2286dd546     1.000000
## 2702 e7d5b006eb624f13074497221eb37807     2.256180
## 2721 e8f6dc8e6a1dcde89d20e3995c8d90b3     2.210526
## 2741 ea65d8b58316a6f2362f2a9e4b3e86ad     2.134615
## 2756 eb9cd5b35d95206585e2185318cb5c61     1.800000
## 2761 ebef8d8c92b4fd3226e5d407bbff21ac     2.666667
## 2762 ec21206b7894c503788a684a7bc822a6     2.666667
## 2763 ec2e006556300a79a5a91e4876ab3a56     1.450000
## 2764 ec4608a1f76453166bb312b2968aeaf4     2.074766
## 2765 ec5c1d94df153d473b37f880977ae58e     1.400000
## 2788 eebb3372362aa9a46975164bed19a7e7     2.000000
## 2804 f049a72cf58fd31b11f8919cade515e7     2.777778
## 2806 f08a5b9dd6767129688d001acafc21e5     2.259259
## 2807 f08c008c8a8d31417763738a1788a2a8     2.612903
## 2808 f09e26011d833ddab11593c1a097a92a     1.000000
## 2811 f0ec6a2adb05c62655a26dd347b8dede     1.000000
## 2813 f114dca2828bf718548db175ebe2cfcd     1.000000
## 2819 f19516b9ff26bfeb091b30108db4ddbd     2.142857
## 2820 f1b854361f4e15d5851b494df66f22b2     2.166667
## 2821 f1b93673502375d491780bb49d615dbc     2.000000
## 2838 f3055483058c84d75ca2a3314fb4deef     1.000000
## 2843 f356c348fbc8df6a882823e21f5ce8b7     2.000000
## 2854 f43827dd686be3a4a80e00aa299990fb     2.000000
## 2856 f44bdc12aa39f5271f0b95f66cd4c289     2.294118
## 2859 f46490624488d3ff7ce78613913a7711     2.800000
## 2865 f524ad65d7e0f1daab730ef2d2e86196     1.000000
## 2867 f5403d3f50089112c4eed37928b7f622     1.000000
## 2868 f543ba3c973276f519d89d59bd46cead     2.333333
## 2869 f593898ec748b7a8cb81fc04edafd98a     2.896552
## 2872 f5f1f2c5f923f36ad79ea1d07185ddc9     2.800000
## 2881 f63d8f293af3a6454377546bd9dd19ff     2.919355
## 2883 f664f98bfda2eaf266a23ff144e7a872     1.000000
## 2895 f7df46c1e0ec44eed5c6726478da4a17     1.000000
## 2910 f97e2b0650c2068227e1d366140eb62f     2.852941
## 2914 f9d010e39375d9c91dce3f40b73a2f84     2.428571
## 2916 f9eda05b67bef472deaddbba84aca289     1.000000
## 2920 fa18c782a4866d313cadab567097f8f1     1.000000
## 2925 fa74b2f3287d296e9fbd2cc80f2d1cf1     2.363636
## 2926 fa7ad8ae9bcb2c4493fdf38e96b1d74f     1.000000
## 2932 fb3cfbc8a86f5d7fbb4d36b8df63f60d     1.739130
## 2941 fc5a0d7a310a7a41abf86a458585ff2b     2.500000
## 2942 fc6295add6f51a0936407ead70c1001d     1.000000
## 2945 fc99f99385ae90f66f01733856fb88c9     1.000000
## 2948 fcdd820084f17e9982427971e4e9d47f     2.041667
## 2949 fce62094ffe6a4009188ec44e681dfdd     2.435897
## 2972 fec6912baad85d41729669edd6b4d3b8     1.000000
## 2974 fedf2c1386e137f296b3bbf3b635e69d     2.923077
## 2985 ffcfefa19b08742c5d315f2791395ee5     1.000000
## 2989 ffff564a4f9085cd26170f4732393726     2.125000

You can check out my presentation here, which contains a resolution- further action to take.