file.choose()
[1] "C:\\Users\\Lisbeth\\Downloads\\EnsambleRev.xlsx"
ruta_Ensamble <-"C:\\Users\\Lisbeth\\Downloads\\EnsambleRev.xlsx"
excel_sheets(ruta_Ensamble)
casoDBCA1<-read_excel(ruta_Ensamble)
print(head(casoDBCA1))
View(casoDBCA1)
attach(casoDBCA1)
names(casoDBCA1)
[1] "METODO"       "OPERADORES"   "TIEMPO (min)"
summary(casoDBCA1)
    METODO           OPERADORES         TIEMPO (min)
 Length:16          Length:16          Min.   : 6   
 Class :character   Class :character   1st Qu.: 8   
 Mode  :character   Mode  :character   Median :10   
                                       Mean   :10   
                                       3rd Qu.:11   
                                       Max.   :16   
str(casoDBCA1)
tibble [16 × 3] (S3: tbl_df/tbl/data.frame)
 $ METODO      : chr [1:16] "A" "B" "C" "D" ...
 $ OPERADORES  : chr [1:16] "OP1" "OP1" "OP1" "OP1" ...
 $ TIEMPO (min): num [1:16] 6 7 10 10 9 10 16 13 7 11 ...
print(head(casoDBCA1))
MET<-factor(casoDBCA1$METODO)
OPER <-factor(casoDBCA1$OPERADORES)
TIEM<-as.vector(casoDBCA1$`TIEMPO (min)`)
TIEM1<-as.numeric(TIEM)
par(mfrow=c(1,1))
boxplot(split(TIEM1,MET),xlab="Metodo", ylab="tiempo")

resaov<-aov(TIEM1 ~ OPER + MET)
anova(resaov)
Analysis of Variance Table

Response: TIEM1
          Df Sum Sq Mean Sq F value   Pr(>F)   
OPER       3   28.5     9.5    4.75 0.029846 * 
MET        3   61.5    20.5   10.25 0.002919 **
Residuals  9   18.0     2.0                    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
cv.model(resaov)
[1] 14.14214
euc.lm <- lm(TIEM1 ~ OPER + MET)
anova(euc.lm , test="F")
Analysis of Variance Table

Response: TIEM1
          Df Sum Sq Mean Sq F value   Pr(>F)   
OPER       3   28.5     9.5    4.75 0.029846 * 
MET        3   61.5    20.5   10.25 0.002919 **
Residuals  9   18.0     2.0                    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
shapiro.test(euc.lm$res)

    Shapiro-Wilk normality test

data:  euc.lm$res
W = 0.97299, p-value = 0.8844
qqPlot(resaov)
[1] 10 11

fitb <- fitted(resaov)
res_stb <- rstandard(resaov)
plot(fitb,res_stb,xlab="Valores predichos", ylab="Residuos estandarizados",abline(h=0))

bartlett.test(TIEM1 ~ MET)

    Bartlett test of homogeneity of variances

data:  TIEM1 by MET
Bartlett's K-squared = 1.5989, df = 3, p-value = 0.6596
leveneTest(TIEM1 ~ MET, center = "median")
Levene's Test for Homogeneity of Variance (center = "median")
      Df F value Pr(>F)
group  3  1.8667  0.189
      12               
LS0tDQp0aXRsZTogIkxpc2JldGggQmVsaXphcmlvIFlhbnF1aSINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCg0KYGBge3J9DQpmaWxlLmNob29zZSgpDQpgYGANCg0KYGBge3J9DQpydXRhX0Vuc2FtYmxlIDwtIkM6XFxVc2Vyc1xcTGlzYmV0aFxcRG93bmxvYWRzXFxFbnNhbWJsZVJldi54bHN4Ig0KYGBgDQoNCmBgYHtyfQ0KZXhjZWxfc2hlZXRzKHJ1dGFfRW5zYW1ibGUpDQpgYGANCg0KYGBge3J9DQpjYXNvREJDQTE8LXJlYWRfZXhjZWwocnV0YV9FbnNhbWJsZSkNCmBgYA0KDQpgYGB7cn0NCnByaW50KGhlYWQoY2Fzb0RCQ0ExKSkNCmBgYA0KDQpgYGB7cn0NClZpZXcoY2Fzb0RCQ0ExKQ0KYGBgDQoNCmBgYHtyfQ0KYXR0YWNoKGNhc29EQkNBMSkNCmBgYA0KDQpgYGB7cn0NCm5hbWVzKGNhc29EQkNBMSkNCmBgYA0KDQpgYGB7cn0NCnN1bW1hcnkoY2Fzb0RCQ0ExKQ0KYGBgDQoNCmBgYHtyfQ0Kc3RyKGNhc29EQkNBMSkNCmBgYA0KDQpgYGB7cn0NCnByaW50KGhlYWQoY2Fzb0RCQ0ExKSkNCmBgYA0KDQpgYGB7cn0NCk1FVDwtZmFjdG9yKGNhc29EQkNBMSRNRVRPRE8pDQpgYGANCg0KYGBge3J9DQpPUEVSIDwtZmFjdG9yKGNhc29EQkNBMSRPUEVSQURPUkVTKQ0KYGBgDQoNCmBgYHtyfQ0KVElFTTwtYXMudmVjdG9yKGNhc29EQkNBMSRgVElFTVBPIChtaW4pYCkNCmBgYA0KDQpgYGB7cn0NClRJRU0xPC1hcy5udW1lcmljKFRJRU0pDQpgYGANCg0KYGBge3J9DQpwYXIobWZyb3c9YygxLDEpKQ0KYGBgDQoNCmBgYHtyfQ0KYm94cGxvdChzcGxpdChUSUVNMSxNRVQpLHhsYWI9Ik1ldG9kbyIsIHlsYWI9InRpZW1wbyIpDQpgYGANCg0KYGBge3J9DQpyZXNhb3Y8LWFvdihUSUVNMSB+IE9QRVIgKyBNRVQpDQpgYGANCg0KYGBge3J9DQphbm92YShyZXNhb3YpDQpgYGANCg0KYGBge3J9DQpjdi5tb2RlbChyZXNhb3YpDQpgYGANCg0KYGBge3J9DQpldWMubG0gPC0gbG0oVElFTTEgfiBPUEVSICsgTUVUKQ0KYGBgDQoNCmBgYHtyfQ0KYW5vdmEoZXVjLmxtICwgdGVzdD0iRiIpDQpgYGANCg0KYGBge3J9DQpzaGFwaXJvLnRlc3QoZXVjLmxtJHJlcykNCmBgYA0KDQpgYGB7cn0NCnFxUGxvdChyZXNhb3YpDQpgYGANCg0KYGBge3J9DQpmaXRiIDwtIGZpdHRlZChyZXNhb3YpDQpgYGANCg0KYGBge3J9DQpyZXNfc3RiIDwtIHJzdGFuZGFyZChyZXNhb3YpDQpgYGANCg0KYGBge3J9DQpwbG90KGZpdGIscmVzX3N0Yix4bGFiPSJWYWxvcmVzIHByZWRpY2hvcyIsIHlsYWI9IlJlc2lkdW9zIGVzdGFuZGFyaXphZG9zIixhYmxpbmUoaD0wKSkNCmBgYA0KDQpgYGB7cn0NCmJhcnRsZXR0LnRlc3QoVElFTTEgfiBNRVQpDQpgYGANCg0KYGBge3J9DQpsZXZlbmVUZXN0KFRJRU0xIH4gTUVULCBjZW50ZXIgPSAibWVkaWFuIikNCmBgYA0KDQoNCg==