Import Data

GOV <- read_excel("Local Government all industries.xlsx")
TTU <- read_excel("Private Trade transportation and utilities.xlsx")
CON <- read_excel("Private Construction.xlsx")
ES <- read_excel("Private Education and health services.xlsx")
FI <- read_excel("Private Financial activities.xlsx")
GOO <- read_excel("Private Goods producing.xlsx")
LEI <- read_excel("Private Leisure and hospitality.xlsx")
MAN <- read_excel("Private Manufacturing.xlsx")
NMI <- read_excel("Private Natural resources and mining.xlsx")
BSS <- read_excel("Private Professional and business services.xlsx")
PRV <- read_excel("Private Service providing.xlsx")
TOT <- read_excel("Total Covered all industries.xlsx")


## Theme Plot
plot.theme <- theme(legend.position="bottom",
                    legend.direction = 'horizontal',
                    legend.key = element_blank(),axis.text.x = element_text(angle = 45, hjust = 1),
                    legend.background = element_blank(),
                    plot.title = element_text(hjust = 0.5, size = 12,face = "bold"),
                    axis.text = element_text(size = 8),axis.title = element_text(size = 9),
                    )

Total Quarterly Wage

TOT$permut<-TOT$lg-TOT$`sdid-intecept`
TOT$Date<-as.Date(TOT$Date)

TOTx<-TOT%>%
  group_by(AreaName)%>%
  mutate(MSE=(mean(permut[24:27]))^2,
         Date=as.Date(Date)) ## Calculate MSE in period one year after treated period

Nor<-TOTx%>%
  filter(AreaName=="New Orleans-Metairie, LA MSA")%>%
  data.frame()

TOTx<-TOTx%>%
  filter(MSE<=Nor$MSE*1.5) %>% ## Subset MSE that less than New Orlean MSE and multiply 1.5
  data.frame()

pl.0<-ggplot()+
  geom_line(data=TOTx,aes(x=Date,y=permut,group=AreaName,colour="controls"))+
  geom_line(data=Nor,aes(x=Date,y=permut,group=AreaName,colour="treated"))+theme_bw()+
  ylab("Quarterly Wage")+xlab("Year")+plot.theme +labs(color="")+
  geom_vline(xintercept = as.Date("2005-07-01"),linetype=2)+
  scale_color_manual(values = c("treated"="black","controls"="gray"),breaks = c("treated","controls"))

Good Producing

GOO$permut<-GOO$lg-GOO$`sdid-intecept`
GOO$Date<-as.Date(GOO$Date)

GOOx<-GOO%>%
  group_by(AreaName)%>%
  mutate(MSE=(mean(permut[24:27]))^2,
         Date=as.Date(Date)) ## Calculate MSE in period one year after treated period

Nor<-GOOx%>%
  filter(AreaName=="New Orleans-Metairie, LA MSA")%>%
  data.frame()

GOOx<-GOOx%>%
  filter(MSE<=Nor$MSE*1.5) %>% ## Subset MSE that less than New Orlean MSE and multiply 1.5
  data.frame()

pl.1<-ggplot()+
  geom_line(data=GOOx,aes(x=Date,y=permut,group=AreaName,colour="controls"))+
  geom_line(data=Nor,aes(x=Date,y=permut,group=AreaName,colour="treated"))+theme_bw()+
  ylab("Good Producing")+xlab("Year")+plot.theme +labs(color="")+
  geom_vline(xintercept = as.Date("2005-07-01"),linetype=2)+
  scale_color_manual(values = c("treated"="black","controls"="gray"),breaks = c("treated","controls"))

Natural Resources and Mining

NMI$permut<-NMI$lg-NMI$`sdid-intecept`
NMI$Date<-as.Date(NMI$Date)

NMIx<-NMI%>%
  group_by(AreaName)%>%
  mutate(MSE=(mean(permut[24:27]))^2,
         Date=as.Date(Date)) ## Calculate MSE in period one year after treated period

Nor<-NMIx%>%
  filter(AreaName=="New Orleans-Metairie, LA MSA")%>%
  data.frame()

NMIx<-NMIx%>%
  filter(MSE<=Nor$MSE*1.5) %>% ## Subset MSE that less than New Orlean MSE and multiply 1.5
  data.frame()

pl.2<-ggplot()+
  geom_line(data=NMIx,aes(x=Date,y=permut,group=AreaName,colour="controls"))+
  geom_line(data=Nor,aes(x=Date,y=permut,group=AreaName,colour="treated"))+theme_bw()+
  ylab("Natural Resources and Mining")+xlab("Year")+plot.theme +labs(color="")+
  geom_vline(xintercept = as.Date("2005-07-01"),linetype=2)+
  scale_color_manual(values = c("treated"="black","controls"="gray"),breaks = c("treated","controls"))

Construction

CON$permut<-CON$lg-CON$`sdid-intecept`
CON$Date<-as.Date(CON$Date)

CONx<-CON%>%
  group_by(AreaName)%>%
  mutate(MSE=(mean(permut[24:27]))^2,
         Date=as.Date(Date)) ## Calculate MSE in period one year after treated period

Nor<-CONx%>%
  filter(AreaName=="New Orleans-Metairie, LA MSA")%>%
  data.frame()

CONx<-CONx%>%
  filter(MSE<=Nor$MSE*1.5) %>% ## Subset MSE that less than New Orlean MSE and multiply 1.5
  data.frame()

pl.3<-ggplot()+
  geom_line(data=CONx,aes(x=Date,y=permut,group=AreaName,colour="controls"))+
  geom_line(data=Nor,aes(x=Date,y=permut,group=AreaName,colour="treated"))+theme_bw()+
  ylab("Construction")+xlab("Year")+plot.theme +labs(color="")+
  geom_vline(xintercept = as.Date("2005-07-01"),linetype=2)+
  scale_color_manual(values = c("treated"="black","controls"="gray"),breaks = c("treated","controls"))

Manufacturing

MAN$permut<-MAN$lg-MAN$`sdid-intecept`
MAN$Date<-as.Date(MAN$Date)

MANx<-MAN%>%
  group_by(AreaName)%>%
  mutate(MSE=(mean(permut[24:27]))^2,
         Date=as.Date(Date)) ## Calculate MSE in period one year after treated period

Nor<-MANx%>%
  filter(AreaName=="New Orleans-Metairie, LA MSA")%>%
  data.frame()

MANx<-MANx%>%
  filter(MSE<=Nor$MSE*1.5) %>% ## Subset MSE that less than New Orlean MSE and multiply 1.5
  data.frame()

pl.4<-ggplot()+
  geom_line(data=MANx,aes(x=Date,y=permut,group=AreaName,colour="controls"))+
  geom_line(data=Nor,aes(x=Date,y=permut,group=AreaName,colour="treated"))+theme_bw()+
  ylab("Manufacturing")+xlab("Year")+plot.theme +labs(color="")+
  geom_vline(xintercept = as.Date("2005-07-01"),linetype=2)+
  scale_color_manual(values = c("treated"="black","controls"="gray"),breaks = c("treated","controls"))

Service providing

PRV$permut<-PRV$lg-PRV$`sdid-intecept`
PRV$Date<-as.Date(PRV$Date)

PRVx<-PRV%>%
  group_by(AreaName)%>%
  mutate(MSE=(mean(permut[24:27]))^2,
         Date=as.Date(Date)) ## Calculate MSE in period one year after treated period

Nor<-PRVx%>%
  filter(AreaName=="New Orleans-Metairie, LA MSA")%>%
  data.frame()

PRVx<-PRVx%>%
  filter(MSE<=Nor$MSE*1.5) %>% ## Subset MSE that less than New Orlean MSE and multiply 1.5
  data.frame()

pl.5<-ggplot()+
  geom_line(data=PRVx,aes(x=Date,y=permut,group=AreaName,colour="controls"))+
  geom_line(data=Nor,aes(x=Date,y=permut,group=AreaName,colour="treated"))+theme_bw()+
  ylab("Service providing")+xlab("Year")+plot.theme +labs(color="")+
  geom_vline(xintercept = as.Date("2005-07-01"),linetype=2)+
  scale_color_manual(values = c("treated"="black","controls"="gray"),breaks = c("treated","controls"))

Trade transportation and utilities

TTU$permut<-TTU$lg-TTU$`sdid-intecept`
TTU$Date<-as.Date(TTU$Date)

TTUx<-TTU%>%
  group_by(AreaName)%>%
  mutate(MSE=(mean(permut[24:27]))^2,
         Date=as.Date(Date)) ## Calculate MSE in period one year after treated period

Nor<-TTUx%>%
  filter(AreaName=="New Orleans-Metairie, LA MSA")%>%
  data.frame()

TTUx<-TTUx%>%
  filter(MSE<=Nor$MSE*1.5) %>% ## Subset MSE that less than New Orlean MSE and multiply 1.5
  data.frame()

pl.6<-ggplot()+
  geom_line(data=TTUx,aes(x=Date,y=permut,group=AreaName,colour="controls"))+
  geom_line(data=Nor,aes(x=Date,y=permut,group=AreaName,colour="treated"))+theme_bw()+
  ylab("Trade transportation and utilities")+xlab("Year")+plot.theme +labs(color="")+
  geom_vline(xintercept = as.Date("2005-07-01"),linetype=2)+
  scale_color_manual(values = c("treated"="black","controls"="gray"),breaks = c("treated","controls"))

Financial activities

FI$permut<-FI$lg-FI$`sdid-intecept`
FI$Date<-as.Date(FI$Date)

FIx<-FI%>%
  group_by(AreaName)%>%
  mutate(MSE=(mean(permut[24:27]))^2,
         Date=as.Date(Date)) ## Calculate MSE in period one year after treated period

Nor<-FIx%>%
  filter(AreaName=="New Orleans-Metairie, LA MSA")%>%
  data.frame()

FIx<-FIx%>%
  filter(MSE<=Nor$MSE*1.5) %>% ## Subset MSE that less than New Orlean MSE and multiply 1.5
  data.frame()

pl.7<-ggplot()+
  geom_line(data=FIx,aes(x=Date,y=permut,group=AreaName,colour="controls"))+
  geom_line(data=Nor,aes(x=Date,y=permut,group=AreaName,colour="treated"))+theme_bw()+
  ylab("Financial activities")+xlab("Year")+plot.theme +labs(color="")+
  geom_vline(xintercept = as.Date("2005-07-01"),linetype=2)+
  scale_color_manual(values = c("treated"="black","controls"="gray"),breaks = c("treated","controls"))

Professional and business services

BSS$permut<-BSS$lg-BSS$`sdid-intecept`
BSS$Date<-as.Date(BSS$Date)

BSSx<-BSS%>%
  group_by(AreaName)%>%
  mutate(MSE=(mean(permut[24:27]))^2,
         Date=as.Date(Date)) ## Calculate MSE in period one year after treated period

Nor<-BSSx%>%
  filter(AreaName=="New Orleans-Metairie, LA MSA")%>%
  data.frame()

BSSx<-BSSx%>%
  filter(MSE<=Nor$MSE*1.5) %>% ## Subset MSE that less than New Orlean MSE and multiply 1.5
  data.frame()

pl.8<-ggplot()+
  geom_line(data=BSSx,aes(x=Date,y=permut,group=AreaName,colour="controls"))+
  geom_line(data=Nor,aes(x=Date,y=permut,group=AreaName,colour="treated"))+theme_bw()+
  ylab("Professional and business services")+xlab("Year")+plot.theme +labs(color="")+
  geom_vline(xintercept = as.Date("2005-07-01"),linetype=2)+
  scale_color_manual(values = c("treated"="black","controls"="gray"),breaks = c("treated","controls"))

Education and health services

ES$permut<-ES$lg-ES$`sdid-intecept`
ES$Date<-as.Date(ES$Date)

ESx<-ES%>%
  group_by(AreaName)%>%
  mutate(MSE=(mean(permut[24:27]))^2,
         Date=as.Date(Date)) ## Calculate MSE in period one year after treated period

Nor<-ESx%>%
  filter(AreaName=="New Orleans-Metairie, LA MSA")%>%
  data.frame()

ESx<-ESx%>%
  filter(MSE<=Nor$MSE*1.5) %>% ## Subset MSE that less than New Orlean MSE and multiply 1.5
  data.frame()

pl.9<-ggplot()+
  geom_line(data=ESx,aes(x=Date,y=permut,group=AreaName,colour="controls"))+
  geom_line(data=Nor,aes(x=Date,y=permut,group=AreaName,colour="treated"))+theme_bw()+
  ylab("Education and health services")+xlab("Year")+plot.theme +labs(color="")+
  geom_vline(xintercept = as.Date("2005-07-01"),linetype=2)+
  scale_color_manual(values = c("treated"="black","controls"="gray"),breaks = c("treated","controls"))

Leisure and hospitality

LEI$permut<-LEI$lg-LEI$`sdid-intecept`
LEI$Date<-as.Date(LEI$Date)

LEIx<-LEI%>%
  group_by(AreaName)%>%
  mutate(MSE=(mean(permut[24:27]))^2,
         Date=as.Date(Date)) ## Calculate MSE in period one year after treated period

Nor<-LEIx%>%
  filter(AreaName=="New Orleans-Metairie, LA MSA")%>%
  data.frame()

LEIx<-LEIx%>%
  filter(MSE<=Nor$MSE*1.5) %>% ## Subset MSE that less than New Orlean MSE and multiply 1.5
  data.frame()

pl.10<-ggplot()+
  geom_line(data=LEIx,aes(x=Date,y=permut,group=AreaName,colour="controls"))+
  geom_line(data=Nor,aes(x=Date,y=permut,group=AreaName,colour="treated"))+theme_bw()+
  ylab("Leisure and hospitality")+xlab("Year")+plot.theme +labs(color="")+
  geom_vline(xintercept = as.Date("2005-07-01"),linetype=2)+
  scale_color_manual(values = c("treated"="black","controls"="gray"),breaks = c("treated","controls"))

Local Government

GOV$permut<-GOV$lg-GOV$`sdid-intecept`
GOV$Date<-as.Date(GOV$Date)

GOVx<-GOV%>%
  group_by(AreaName)%>%
  mutate(MSE=(mean(permut[24:27]))^2,
         Date=as.Date(Date)) ## Calculate MSE in period one year after treated period

Nor<-GOVx%>%
  filter(AreaName=="New Orleans-Metairie, LA MSA")%>%
  data.frame()

GOVx<-GOVx%>%
  filter(MSE<=Nor$MSE*1.5) %>% ## Subset MSE that less than New Orlean MSE and multiply 1.5
  data.frame()

pl.11<-ggplot()+
  geom_line(data=GOVx,aes(x=Date,y=permut,group=AreaName,colour="controls"))+
  geom_line(data=Nor,aes(x=Date,y=permut,group=AreaName,colour="treated"))+theme_bw()+
  ylab("Local Government")+xlab("Year")+plot.theme +labs(color="")+
  geom_vline(xintercept = as.Date("2005-07-01"),linetype=2)+
  scale_color_manual(values = c("treated"="black","controls"="gray"),breaks = c("treated","controls"))

Arrange

# extract legend Name
lge <- lapply(list(pl.0),
    function(p) {
  # Extract the legend from the plot
  g_legend <- function(p) {
    tmp <- ggplotGrob(p)
    leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box")
    legend <- tmp$grobs[[leg]]
    return(legend)
  }
  g_legend(p)
})

#Arrange The Plot
main_plot <- grid.arrange(
    pl.0 + theme(legend.position = "none") + xlab(""),
    pl.1 + theme(legend.position = "none") + xlab(""),
    pl.2 + theme(legend.position = "none") + xlab(""),
    pl.3 + theme(legend.position = "none") + xlab(""),
    pl.4 + theme(legend.position = "none") + xlab(""),
    pl.5 + theme(legend.position = "none") + xlab(""),
    pl.6 + theme(legend.position = "none") + xlab(""),
    pl.7 + theme(legend.position = "none") + xlab(""),
    pl.8 + theme(legend.position = "none") + xlab(""),
    pl.9 + theme(legend.position = "none") + xlab(""),
    pl.10 + theme(legend.position = "none") + xlab(""),
    pl.11 + theme(legend.position = "none") + xlab(""), nrow = 4,
    left = textGrob("Log Total Quarterly Wage", rot = 90,
        gp = gpar(fontface = "bold", fontsize = 10)),
    bottom = textGrob("Year", gp = gpar(fontface = "bold", fontsize = 10)))

png("Total Log Quarterly Wage Permutation 1.5x.png",width = 16,height = 12,units = "in",res=400)
grid.arrange(main_plot, lge[[1]], nrow = 2, heights = c(20, 1))
dev.off()
## png 
##   2