Import Data
GOV <- read_excel("Local Government all industries.xlsx")
TTU <- read_excel("Private Trade transportation and utilities.xlsx")
CON <- read_excel("Private Construction.xlsx")
ES <- read_excel("Private Education and health services.xlsx")
FI <- read_excel("Private Financial activities.xlsx")
GOO <- read_excel("Private Goods producing.xlsx")
LEI <- read_excel("Private Leisure and hospitality.xlsx")
MAN <- read_excel("Private Manufacturing.xlsx")
NMI <- read_excel("Private Natural resources and mining.xlsx")
BSS <- read_excel("Private Professional and business services.xlsx")
PRV <- read_excel("Private Service providing.xlsx")
TOT <- read_excel("Total Covered all industries.xlsx")
## Theme Plot
plot.theme <- theme(legend.position="bottom",
legend.direction = 'horizontal',
legend.key = element_blank(),axis.text.x = element_text(angle = 45, hjust = 1),
legend.background = element_blank(),
plot.title = element_text(hjust = 0.5, size = 12,face = "bold"),
axis.text = element_text(size = 8),axis.title = element_text(size = 9),
)
Total Quarterly Wage
TOT$permut<-TOT$lg-TOT$`sdid-intecept`
TOT$Date<-as.Date(TOT$Date)
TOTx<-TOT%>%
group_by(AreaName)%>%
mutate(MSE=(mean(permut[24:27]))^2,
Date=as.Date(Date)) ## Calculate MSE in period one year after treated period
Nor<-TOTx%>%
filter(AreaName=="New Orleans-Metairie, LA MSA")%>%
data.frame()
TOTx<-TOTx%>%
filter(MSE<=Nor$MSE*1.5) %>% ## Subset MSE that less than New Orlean MSE and multiply 1.5
data.frame()
pl.0<-ggplot()+
geom_line(data=TOTx,aes(x=Date,y=permut,group=AreaName,colour="controls"))+
geom_line(data=Nor,aes(x=Date,y=permut,group=AreaName,colour="treated"))+theme_bw()+
ylab("Quarterly Wage")+xlab("Year")+plot.theme +labs(color="")+
geom_vline(xintercept = as.Date("2005-07-01"),linetype=2)+
scale_color_manual(values = c("treated"="black","controls"="gray"),breaks = c("treated","controls"))
Good Producing
GOO$permut<-GOO$lg-GOO$`sdid-intecept`
GOO$Date<-as.Date(GOO$Date)
GOOx<-GOO%>%
group_by(AreaName)%>%
mutate(MSE=(mean(permut[24:27]))^2,
Date=as.Date(Date)) ## Calculate MSE in period one year after treated period
Nor<-GOOx%>%
filter(AreaName=="New Orleans-Metairie, LA MSA")%>%
data.frame()
GOOx<-GOOx%>%
filter(MSE<=Nor$MSE*1.5) %>% ## Subset MSE that less than New Orlean MSE and multiply 1.5
data.frame()
pl.1<-ggplot()+
geom_line(data=GOOx,aes(x=Date,y=permut,group=AreaName,colour="controls"))+
geom_line(data=Nor,aes(x=Date,y=permut,group=AreaName,colour="treated"))+theme_bw()+
ylab("Good Producing")+xlab("Year")+plot.theme +labs(color="")+
geom_vline(xintercept = as.Date("2005-07-01"),linetype=2)+
scale_color_manual(values = c("treated"="black","controls"="gray"),breaks = c("treated","controls"))
Natural Resources and Mining
NMI$permut<-NMI$lg-NMI$`sdid-intecept`
NMI$Date<-as.Date(NMI$Date)
NMIx<-NMI%>%
group_by(AreaName)%>%
mutate(MSE=(mean(permut[24:27]))^2,
Date=as.Date(Date)) ## Calculate MSE in period one year after treated period
Nor<-NMIx%>%
filter(AreaName=="New Orleans-Metairie, LA MSA")%>%
data.frame()
NMIx<-NMIx%>%
filter(MSE<=Nor$MSE*1.5) %>% ## Subset MSE that less than New Orlean MSE and multiply 1.5
data.frame()
pl.2<-ggplot()+
geom_line(data=NMIx,aes(x=Date,y=permut,group=AreaName,colour="controls"))+
geom_line(data=Nor,aes(x=Date,y=permut,group=AreaName,colour="treated"))+theme_bw()+
ylab("Natural Resources and Mining")+xlab("Year")+plot.theme +labs(color="")+
geom_vline(xintercept = as.Date("2005-07-01"),linetype=2)+
scale_color_manual(values = c("treated"="black","controls"="gray"),breaks = c("treated","controls"))
Construction
CON$permut<-CON$lg-CON$`sdid-intecept`
CON$Date<-as.Date(CON$Date)
CONx<-CON%>%
group_by(AreaName)%>%
mutate(MSE=(mean(permut[24:27]))^2,
Date=as.Date(Date)) ## Calculate MSE in period one year after treated period
Nor<-CONx%>%
filter(AreaName=="New Orleans-Metairie, LA MSA")%>%
data.frame()
CONx<-CONx%>%
filter(MSE<=Nor$MSE*1.5) %>% ## Subset MSE that less than New Orlean MSE and multiply 1.5
data.frame()
pl.3<-ggplot()+
geom_line(data=CONx,aes(x=Date,y=permut,group=AreaName,colour="controls"))+
geom_line(data=Nor,aes(x=Date,y=permut,group=AreaName,colour="treated"))+theme_bw()+
ylab("Construction")+xlab("Year")+plot.theme +labs(color="")+
geom_vline(xintercept = as.Date("2005-07-01"),linetype=2)+
scale_color_manual(values = c("treated"="black","controls"="gray"),breaks = c("treated","controls"))
Manufacturing
MAN$permut<-MAN$lg-MAN$`sdid-intecept`
MAN$Date<-as.Date(MAN$Date)
MANx<-MAN%>%
group_by(AreaName)%>%
mutate(MSE=(mean(permut[24:27]))^2,
Date=as.Date(Date)) ## Calculate MSE in period one year after treated period
Nor<-MANx%>%
filter(AreaName=="New Orleans-Metairie, LA MSA")%>%
data.frame()
MANx<-MANx%>%
filter(MSE<=Nor$MSE*1.5) %>% ## Subset MSE that less than New Orlean MSE and multiply 1.5
data.frame()
pl.4<-ggplot()+
geom_line(data=MANx,aes(x=Date,y=permut,group=AreaName,colour="controls"))+
geom_line(data=Nor,aes(x=Date,y=permut,group=AreaName,colour="treated"))+theme_bw()+
ylab("Manufacturing")+xlab("Year")+plot.theme +labs(color="")+
geom_vline(xintercept = as.Date("2005-07-01"),linetype=2)+
scale_color_manual(values = c("treated"="black","controls"="gray"),breaks = c("treated","controls"))
Service providing
PRV$permut<-PRV$lg-PRV$`sdid-intecept`
PRV$Date<-as.Date(PRV$Date)
PRVx<-PRV%>%
group_by(AreaName)%>%
mutate(MSE=(mean(permut[24:27]))^2,
Date=as.Date(Date)) ## Calculate MSE in period one year after treated period
Nor<-PRVx%>%
filter(AreaName=="New Orleans-Metairie, LA MSA")%>%
data.frame()
PRVx<-PRVx%>%
filter(MSE<=Nor$MSE*1.5) %>% ## Subset MSE that less than New Orlean MSE and multiply 1.5
data.frame()
pl.5<-ggplot()+
geom_line(data=PRVx,aes(x=Date,y=permut,group=AreaName,colour="controls"))+
geom_line(data=Nor,aes(x=Date,y=permut,group=AreaName,colour="treated"))+theme_bw()+
ylab("Service providing")+xlab("Year")+plot.theme +labs(color="")+
geom_vline(xintercept = as.Date("2005-07-01"),linetype=2)+
scale_color_manual(values = c("treated"="black","controls"="gray"),breaks = c("treated","controls"))
Trade transportation and utilities
TTU$permut<-TTU$lg-TTU$`sdid-intecept`
TTU$Date<-as.Date(TTU$Date)
TTUx<-TTU%>%
group_by(AreaName)%>%
mutate(MSE=(mean(permut[24:27]))^2,
Date=as.Date(Date)) ## Calculate MSE in period one year after treated period
Nor<-TTUx%>%
filter(AreaName=="New Orleans-Metairie, LA MSA")%>%
data.frame()
TTUx<-TTUx%>%
filter(MSE<=Nor$MSE*1.5) %>% ## Subset MSE that less than New Orlean MSE and multiply 1.5
data.frame()
pl.6<-ggplot()+
geom_line(data=TTUx,aes(x=Date,y=permut,group=AreaName,colour="controls"))+
geom_line(data=Nor,aes(x=Date,y=permut,group=AreaName,colour="treated"))+theme_bw()+
ylab("Trade transportation and utilities")+xlab("Year")+plot.theme +labs(color="")+
geom_vline(xintercept = as.Date("2005-07-01"),linetype=2)+
scale_color_manual(values = c("treated"="black","controls"="gray"),breaks = c("treated","controls"))
Financial activities
FI$permut<-FI$lg-FI$`sdid-intecept`
FI$Date<-as.Date(FI$Date)
FIx<-FI%>%
group_by(AreaName)%>%
mutate(MSE=(mean(permut[24:27]))^2,
Date=as.Date(Date)) ## Calculate MSE in period one year after treated period
Nor<-FIx%>%
filter(AreaName=="New Orleans-Metairie, LA MSA")%>%
data.frame()
FIx<-FIx%>%
filter(MSE<=Nor$MSE*1.5) %>% ## Subset MSE that less than New Orlean MSE and multiply 1.5
data.frame()
pl.7<-ggplot()+
geom_line(data=FIx,aes(x=Date,y=permut,group=AreaName,colour="controls"))+
geom_line(data=Nor,aes(x=Date,y=permut,group=AreaName,colour="treated"))+theme_bw()+
ylab("Financial activities")+xlab("Year")+plot.theme +labs(color="")+
geom_vline(xintercept = as.Date("2005-07-01"),linetype=2)+
scale_color_manual(values = c("treated"="black","controls"="gray"),breaks = c("treated","controls"))
Professional and business services
BSS$permut<-BSS$lg-BSS$`sdid-intecept`
BSS$Date<-as.Date(BSS$Date)
BSSx<-BSS%>%
group_by(AreaName)%>%
mutate(MSE=(mean(permut[24:27]))^2,
Date=as.Date(Date)) ## Calculate MSE in period one year after treated period
Nor<-BSSx%>%
filter(AreaName=="New Orleans-Metairie, LA MSA")%>%
data.frame()
BSSx<-BSSx%>%
filter(MSE<=Nor$MSE*1.5) %>% ## Subset MSE that less than New Orlean MSE and multiply 1.5
data.frame()
pl.8<-ggplot()+
geom_line(data=BSSx,aes(x=Date,y=permut,group=AreaName,colour="controls"))+
geom_line(data=Nor,aes(x=Date,y=permut,group=AreaName,colour="treated"))+theme_bw()+
ylab("Professional and business services")+xlab("Year")+plot.theme +labs(color="")+
geom_vline(xintercept = as.Date("2005-07-01"),linetype=2)+
scale_color_manual(values = c("treated"="black","controls"="gray"),breaks = c("treated","controls"))
Education and health services
ES$permut<-ES$lg-ES$`sdid-intecept`
ES$Date<-as.Date(ES$Date)
ESx<-ES%>%
group_by(AreaName)%>%
mutate(MSE=(mean(permut[24:27]))^2,
Date=as.Date(Date)) ## Calculate MSE in period one year after treated period
Nor<-ESx%>%
filter(AreaName=="New Orleans-Metairie, LA MSA")%>%
data.frame()
ESx<-ESx%>%
filter(MSE<=Nor$MSE*1.5) %>% ## Subset MSE that less than New Orlean MSE and multiply 1.5
data.frame()
pl.9<-ggplot()+
geom_line(data=ESx,aes(x=Date,y=permut,group=AreaName,colour="controls"))+
geom_line(data=Nor,aes(x=Date,y=permut,group=AreaName,colour="treated"))+theme_bw()+
ylab("Education and health services")+xlab("Year")+plot.theme +labs(color="")+
geom_vline(xintercept = as.Date("2005-07-01"),linetype=2)+
scale_color_manual(values = c("treated"="black","controls"="gray"),breaks = c("treated","controls"))
Leisure and hospitality
LEI$permut<-LEI$lg-LEI$`sdid-intecept`
LEI$Date<-as.Date(LEI$Date)
LEIx<-LEI%>%
group_by(AreaName)%>%
mutate(MSE=(mean(permut[24:27]))^2,
Date=as.Date(Date)) ## Calculate MSE in period one year after treated period
Nor<-LEIx%>%
filter(AreaName=="New Orleans-Metairie, LA MSA")%>%
data.frame()
LEIx<-LEIx%>%
filter(MSE<=Nor$MSE*1.5) %>% ## Subset MSE that less than New Orlean MSE and multiply 1.5
data.frame()
pl.10<-ggplot()+
geom_line(data=LEIx,aes(x=Date,y=permut,group=AreaName,colour="controls"))+
geom_line(data=Nor,aes(x=Date,y=permut,group=AreaName,colour="treated"))+theme_bw()+
ylab("Leisure and hospitality")+xlab("Year")+plot.theme +labs(color="")+
geom_vline(xintercept = as.Date("2005-07-01"),linetype=2)+
scale_color_manual(values = c("treated"="black","controls"="gray"),breaks = c("treated","controls"))
Local Government
GOV$permut<-GOV$lg-GOV$`sdid-intecept`
GOV$Date<-as.Date(GOV$Date)
GOVx<-GOV%>%
group_by(AreaName)%>%
mutate(MSE=(mean(permut[24:27]))^2,
Date=as.Date(Date)) ## Calculate MSE in period one year after treated period
Nor<-GOVx%>%
filter(AreaName=="New Orleans-Metairie, LA MSA")%>%
data.frame()
GOVx<-GOVx%>%
filter(MSE<=Nor$MSE*1.5) %>% ## Subset MSE that less than New Orlean MSE and multiply 1.5
data.frame()
pl.11<-ggplot()+
geom_line(data=GOVx,aes(x=Date,y=permut,group=AreaName,colour="controls"))+
geom_line(data=Nor,aes(x=Date,y=permut,group=AreaName,colour="treated"))+theme_bw()+
ylab("Local Government")+xlab("Year")+plot.theme +labs(color="")+
geom_vline(xintercept = as.Date("2005-07-01"),linetype=2)+
scale_color_manual(values = c("treated"="black","controls"="gray"),breaks = c("treated","controls"))
Arrange
# extract legend Name
lge <- lapply(list(pl.0),
function(p) {
# Extract the legend from the plot
g_legend <- function(p) {
tmp <- ggplotGrob(p)
leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box")
legend <- tmp$grobs[[leg]]
return(legend)
}
g_legend(p)
})
#Arrange The Plot
main_plot <- grid.arrange(
pl.0 + theme(legend.position = "none") + xlab(""),
pl.1 + theme(legend.position = "none") + xlab(""),
pl.2 + theme(legend.position = "none") + xlab(""),
pl.3 + theme(legend.position = "none") + xlab(""),
pl.4 + theme(legend.position = "none") + xlab(""),
pl.5 + theme(legend.position = "none") + xlab(""),
pl.6 + theme(legend.position = "none") + xlab(""),
pl.7 + theme(legend.position = "none") + xlab(""),
pl.8 + theme(legend.position = "none") + xlab(""),
pl.9 + theme(legend.position = "none") + xlab(""),
pl.10 + theme(legend.position = "none") + xlab(""),
pl.11 + theme(legend.position = "none") + xlab(""), nrow = 4,
left = textGrob("Log Total Quarterly Wage", rot = 90,
gp = gpar(fontface = "bold", fontsize = 10)),
bottom = textGrob("Year", gp = gpar(fontface = "bold", fontsize = 10)))

png("Total Log Quarterly Wage Permutation 1.5x.png",width = 16,height = 12,units = "in",res=400)
grid.arrange(main_plot, lge[[1]], nrow = 2, heights = c(20, 1))
dev.off()
## png
## 2