library(openxlsx)
library(rmarkdown)
library(tidyverse)
library(haven)
library(foreign)
library(survey)
library(knitr)Una ruta hacia una carpeta donde almacenaremos los excel que se elaborarán posteriormente, que contarán con dataset de información construida.
ruta <- "C:/Users/Trabajo/Desktop/RDATA" #choose.files()
modulo1637 <- read_spss("C:\\Users\\Trabajo\\Desktop\\ENDES\\2022\\mort materna y violencia fam - 786-Modulo1637\\REC84DV.sav") #MORTALIDAD MATERNA Y VIOLENCIA FAM
modulo1637 <- subset(modulo1637, select=c("CASEID","QI1003AN","QI1003BN","QI1003CN","QI1003DN","QI1003EN","QI1003FN","D101A","D101B","D101C","D101D","D101E", "D101F","D103A","D103B","D103C","D103D","D105A","D105B","D105C","D105D","D105E","D105F","D105G","D105H","D105I"))
datosmef1 <- read_spss("C:\\Users\\Trabajo\\Desktop\\ENDES\\2022\\Datosmef - 786-Modulo1631\\REC0111.sav") #DATOS MEF MODULO 1631
datosmef2 <- read_spss("C:\\Users\\Trabajo\\Desktop\\ENDES\\2022\\Datosmef - 786-Modulo1631\\REC91.sav") #DATOS MEF MOD 1631
conyugue <- read_spss("C:\\Users\\Trabajo\\Desktop\\ENDES\\2022\\nupcialidad, fec, conyugue y mujer - 786-Modulo1635\\RE516171.sav") #MOD 1635 NUOCIAS, FECUNDIDAD, CONYUGUE Y MUJER
conyugue <- conyugue %>% arrange (CASEID)
salud <- read_spss("C:\\Users\\Trabajo\\Desktop\\ENDES\\2022\\Salud - 786- modulo1640\\CSALUD01.sav")endes_inicial <- left_join(datosmef1,modulo1637, by=c("CASEID"))
endes_inicial <- left_join(endes_inicial, datosmef2, by=c("CASEID"))
endes_inicial <- left_join(endes_inicial, conyugue, by=c("CASEID"))
endes_inicial <- left_join(endes_inicial, salud, by=c("HHID"))
endes <- endes_inicialAquellas variables que nos sirven para realizar las desagregaciones posteriores.
Hay que convertir la variable ubigeo.x (el “.x” es producto de la unión de bases de datos) a numérico para no encontrar problemas al momento de recodificar
endes$ubigeonum <- as.numeric(endes$UBIGEO)
endes <- endes %>%
mutate(regiones2 =
ifelse(ubigeonum >= 010101 & ubigeonum <= 010707, "Amazonas",
ifelse(ubigeonum >= 020101 & ubigeonum <= 022008, "Ancash",
ifelse(ubigeonum >= 030101 & ubigeonum <= 030714, "Apurimac",
ifelse(ubigeonum >= 040101 & ubigeonum <= 040811, "Arequipa",
ifelse(ubigeonum >= 050101 & ubigeonum <= 051108, "Ayacucho",
ifelse(ubigeonum >= 060101 & ubigeonum <= 061311, "Cajamarca",
ifelse(ubigeonum >= 070101 & ubigeonum <= 070107, "Callao",
ifelse(ubigeonum >= 080101 & ubigeonum <= 081307, "Cusco",
ifelse(ubigeonum >= 090101 & ubigeonum <= 090723, "Huancavelica",
ifelse(ubigeonum >= 100101 & ubigeonum <= 101108, "Huanuco",
ifelse(ubigeonum >= 110101 & ubigeonum <= 110508, "Ica",
ifelse(ubigeonum >= 120101 & ubigeonum <= 120909, "Junin",
ifelse(ubigeonum >= 130101 & ubigeonum <= 131203, "La Libertad",
ifelse(ubigeonum >= 140101 & ubigeonum <= 140312, "Lambayeque",
ifelse(ubigeonum >= 150101 & ubigeonum <= 150143, "Lima Metropolitana",
ifelse(ubigeonum >= 150201 & ubigeonum <= 151033, "Lima Region",
ifelse(ubigeonum >= 160101 & ubigeonum <= 160804, "Loreto",
ifelse(ubigeonum >= 170101 & ubigeonum <= 170303, "Madre de Dios",
ifelse(ubigeonum >= 180101 & ubigeonum <= 180303, "Moquegua",
ifelse(ubigeonum >= 190101 & ubigeonum <= 190308, "Pasco",
ifelse(ubigeonum >= 200101 & ubigeonum <= 200806, "Piura",
ifelse(ubigeonum >= 210101 & ubigeonum <= 211307, "Puno",
ifelse(ubigeonum >= 220101 & ubigeonum <= 221005, "San Martín",
ifelse(ubigeonum >= 230101 & ubigeonum <= 230408, "Tacna",
ifelse(ubigeonum >= 240101 & ubigeonum <= 240304, "Tumbes",
ifelse(ubigeonum >= 250101 & ubigeonum <= 250401, "Ucayali",NA)))))))))))))))))))))))))))
table(endes$regiones2, useNA = "alw")##
## Amazonas Ancash Apurimac Arequipa
## 1443 1353 1228 1385
## Ayacucho Cajamarca Callao Cusco
## 1554 1377 1562 1093
## Huancavelica Huanuco Ica Junin
## 1237 1457 1422 1238
## La Libertad Lambayeque Lima Metropolitana Lima Region
## 1377 1478 3683 1392
## Loreto Madre de Dios Moquegua Pasco
## 1696 1261 1278 1215
## Piura Puno San Martín Tacna
## 1535 1067 1470 1358
## Tumbes Ucayali <NA>
## 1402 1544 0
endes <- endes %>%
mutate(regnat = ifelse(SREGION==1 | SREGION==2,"Costa",
ifelse(SREGION==3,"Sierra",
ifelse(SREGION==4,"Selva",NA))))
table(endes$regnat, useNA = "alw")##
## Costa Selva Sierra <NA>
## 16443 9381 12281 0
endes <- endes %>% mutate(area = ifelse(V025==1, "urbano", "rural"))
table(endes$area, useNA = "alw")##
## rural urbano <NA>
## 11570 26535 0
endes <- endes %>%
mutate(pobreza3 = ifelse(V190==1, "El más pobre",
ifelse(V190==2, "Pobre",
ifelse(V190==3, "Medio",
ifelse(V190==4,"Rico",
ifelse(V190==5,"Más Rico",NA))))))
table(endes$pobreza3, useNA = "alw")##
## El más pobre Más Rico Medio Pobre Rico <NA>
## 10750 4325 7607 9612 5811 0
endes <- endes %>% mutate(lengua = case_when(
V131 == 1 ~ "Andino/Amazónico",
V131 == 2 ~ "Andino/Amazónico",
V131 == 3 ~ "Andino/Amazónico",
V131 == 4 ~ "Andino/Amazónico",
V131 == 5 ~ "Andino/Amazónico",
V131 == 6 ~ "Andino/Amazónico",
V131 == 7 ~ "Andino/Amazónico",
V131 == 8 ~ "Andino/Amazónico",
V131 == 9 ~ "Andino/Amazónico",
V131 == 10 ~ "Castellano",
TRUE ~ NA
))
endes$lengua <- as.factor(endes$lengua)
table(endes$lengua, useNA = "alw")##
## Andino/Amazónico Castellano <NA>
## 3562 32158 2385
endes <- endes %>%
mutate(discapacidad = ifelse(QD333_1==1 | QD333_2 ==1 | QD333_3==1 | QD333_4==1 | QD333_5==1 | QD333_6==1,1,0))
endes <- endes %>%
mutate(discapacidad1 = case_when(
QD333_1 == 1 ~ 1,
QD333_2 == 1 ~ 1,
QD333_3 == 1 ~ 1,
QD333_4 == 1 ~ 1,
QD333_5 == 1 ~ 1,
QD333_6 == 1 ~ 1,
is.na(QD333_1) ~ 0,
is.na(QD333_2) ~ 0,
is.na(QD333_3) ~ 0,
is.na(QD333_4) ~ 0,
is.na(QD333_5) ~ 0,
is.na(QD333_6) ~ 0,
TRUE ~ 0
))
endes <- endes %>%
mutate(discapacidad2 = case_when(
QS25C1 == 1 ~ 1,
QS25C2 == 1 ~ 1,
QS25C3 == 1 ~ 1,
QS25C4 == 1 ~ 1,
QS25C5 == 1 ~ 1,
QS25C6 == 1 ~ 1,
is.na(QS25C1) ~ 0,
is.na(QS25C2) ~ 0,
is.na(QS25C3) ~ 0,
is.na(QS25C4) ~ 0,
is.na(QS25C5) ~ 0,
is.na(QS25C6) ~ 0,
TRUE ~ 0
))table(endes$QS25BB, useNA = "alw")##
## 1 2 3 4 5 6 7 8 98 <NA>
## 10198 1069 811 156 3916 2206 14908 274 1765 2802
endes <- endes %>%
mutate(defiet2 = case_when(
QS25BB == 1 ~ "Indigena",
QS25BB == 2 ~ "Indigena",
QS25BB == 3 ~ "Indigena",
QS25BB == 4 ~ "Otro",
QS25BB == 5 ~ "Negro, mulato, Afro peruano",
QS25BB == 6 ~ "Otro",
QS25BB == 7 ~ "Mestizo",
QS25BB == 8 ~ "Otro",
QS25BB == 98 ~ "No sabe",
TRUE ~ NA_character_
))
endes$defiet2 <- as.factor(endes$defiet2)
table(endes$defiet2, useNA = "alw")##
## Indigena Mestizo
## 12078 14908
## Negro, mulato, Afro peruano No sabe
## 3916 1765
## Otro <NA>
## 2636 2802
Es decir, mujeres que actualmente tienen pareja o lo tuvieron
endes <- endes %>%
mutate(unidas = ifelse(V502!=0 & V015==1,1,0))
table(endes$unidas, useNA = "alw")##
## 0 1 <NA>
## 12850 25255 0
endes <- endes %>% mutate(Edadcompleta = ifelse(V012>=15 & V012<=49,1,0))
table(endes$Edadcompleta, useNA = "alw")##
## 0 1 <NA>
## 3506 32281 2318
endes <- endes %>% mutate(jovenes = ifelse(V012>=15 & V012<=29,1,0))
table(endes$jovenes, useNA = "alw")##
## 0 1 <NA>
## 20518 15269 2318
endes <- endes %>% mutate(unidasjoven = ifelse(jovenes==1 & unidas==1,"muj unidas jovenes",NA))
table(endes$unidasjoven, useNA = "alw")##
## muj unidas jovenes <NA>
## 9167 28938
endes <- endes %>% mutate(unidasedadcomp = ifelse(Edadcompleta==1 & unidas==1,"muj unidas edadcompleta","otrasedades"))
table(endes$unidasedadcomp, useNA = "alw")##
## muj unidas edadcompleta otrasedades <NA>
## 25243 12862 0
endes <- endes %>%
mutate(ABOFETEO = ifelse(D105B == 0, 0, ifelse(D105B %in% 1:2, 1, 0)),
PUNHO = ifelse(D105C == 0, 0, ifelse(D105C %in% 1:2, 1, 0)),
ARRASTRO = ifelse(D105D == 0, 0, ifelse(D105D %in% 1:2, 1, 0)),
ESTRANGULO = ifelse(D105E == 0, 0, ifelse(D105E %in% 1:2, 1, 0)),
AMENAZA = ifelse(D105F == 0, 0, ifelse(D105F %in% 1:2, 1, 0)),
ATACO = ifelse(D105G == 0, 0, ifelse(D105G %in% 1:2, 1, 0)),
EMPUJO = ifelse(D105A==0, 0, ifelse(D105A %in% 1:2, 1, 0)),
ATACO = ifelse(D105G==0, 0, ifelse(D105G %in% 1:2, 1, 0)))
endes <- endes %>%
mutate(VIOL_FIS = ifelse(EMPUJO == 0 & ABOFETEO == 0 & PUNHO == 0 & ARRASTRO == 0 & ESTRANGULO == 0 & AMENAZA == 0 & ATACO == 0, 0, 1))
table(endes$VIOL_FIS, useNA = "alw")##
## 0 1 <NA>
## 19478 1843 16784
endes <- endes %>%
mutate(violenciasexual1 = ifelse(D105H== 0, 0, ifelse(D105H %in% 1:2,1,0)),
Violenciasexual2 = ifelse(D105I== 0, 0, ifelse(D105I %in% 1:2,1,0)))
endes <- endes %>%
mutate(VIOL_SX = ifelse(violenciasexual1 == 0 & Violenciasexual2 == 0, 0, 1))
table(endes$VIOL_SX, useNA = "alw")##
## 0 1 <NA>
## 20860 461 16784
endes <- endes %>%
mutate(viopsi1 = case_when(QI1003AN == 0 ~ 0, QI1003AN %in% 1:2 ~ 1, TRUE ~ 0),
viopsi2 = case_when(QI1003BN == 0 ~ 0, QI1003BN %in% 1:2 ~ 1, TRUE ~ 0),
viopsi3 = case_when(QI1003CN == 0 ~ 0, QI1003CN %in% 1:2 ~ 1, TRUE ~ 0),
viopsi4 = case_when(QI1003DN == 0 ~ 0, QI1003DN %in% 1:2 ~ 1, TRUE ~ 0),
viopsi5 = case_when(QI1003EN == 0 ~ 0, QI1003EN %in% 1:2 ~ 1, TRUE ~ 0),
viopsi6 = case_when(QI1003FN == 0 ~ 0, QI1003FN %in% 1:2 ~ 1, TRUE ~ 0))
endes <- endes %>%
mutate(viopsi7 = case_when(D103A == 0 ~ 0, D103A %in% 1:2 ~ 1, TRUE ~ 0),
viopsi8 = case_when(D103B == 0 ~ 0, D103B %in% 1:2 ~ 1, TRUE ~ 0),
viopsi9 = case_when(D103D == 0 ~ 0, D103D %in% 1:2 ~ 1, TRUE ~ 0))
endes <- endes %>%
mutate(VIOL_psi10 = ifelse(viopsi1 == 0 & viopsi2 == 0 & viopsi3 == 0 & viopsi4 == 0 & viopsi5 == 0 & viopsi6 == 0 & viopsi7 == 0 & viopsi8 == 0 & viopsi9 == 0, 0, 1))
table(endes$VIOL_psi10, useNA = "alw")##
## 0 1 <NA>
## 30672 7433 0
endes <- endes %>%
mutate(violenciaFSP = ifelse(VIOL_FIS==1 | VIOL_SX==1 | VIOL_psi10==1,1,0))
table(endes$violenciaFSP, useNA = "alw")##
## 0 1 <NA>
## 13671 7650 16784
table(endes$violenciaFSP, endes$lengua, endes$unidasjoven, useNA="alw")## , , = muj unidas jovenes
##
##
## Andino/Amazónico Castellano <NA>
## 0 527 4436 6
## 1 341 2602 10
## <NA> 91 1150 4
##
## , , = NA
##
##
## Andino/Amazónico Castellano <NA>
## 0 996 7690 16
## 1 469 4223 5
## <NA> 1138 12057 2344
# Diseño muestral para la ponderación de valores
encuesta = svydesign(data=endes, id=~V001, strata=NULL,
weights=~V005)
# Función para generar un archivo excel con todas las desagregaciones en pestañas
generar_archivo_excel2 <- function(nombre_archivo, datos) {
workbook <- createWorkbook()
for (i in seq_along(datos)) {
addWorksheet(workbook, sheetName = paste("Datos", i-1, sep = ""))
writeData(workbook, sheet = paste("Datos", i-1, sep = ""), x = datos[[i]], colNames = TRUE)
}
saveWorkbook(workbook, nombre_archivo)
}tabla0 <- svyby(~violenciaFSP, ~unidasjoven, encuesta, svymean, deff=F, na.rm=T)
ic0 <- confint(tabla0)
cv0 <- matrix(cv(tabla0), nrow = length(cv(tabla0)), ncol = 1, dimnames = list(names(cv(tabla0)), "Coef. Var."))
datos0<-bind_cols(tabla0, cv0, ic0)
names(datos0) <- c("Violencia FSP-Nacional","%","S.E.","Coef.Var.","Int.Inf.","Int.Sup.")
kable(datos0, format = "markdown")| Violencia FSP-Nacional | % | S.E. | Coef.Var. | Int.Inf. | Int.Sup. | |
|---|---|---|---|---|---|---|
| muj unidas jovenes | muj unidas jovenes | 0.3805417 | 0.0112252 | 0.0294979 | 0.3585408 | 0.4025427 |
tabla2 <- svyby(~violenciaFSP, ~unidasjoven+area, encuesta, svymean, deff=F, na.rm=T)
ic2 <- confint(tabla2)
cv2 <- matrix(cv(tabla2), nrow = length(cv(tabla2)), ncol = 1, dimnames = list(names(cv(tabla2)), "Coef. Var."))
datos2<-bind_cols(tabla2, cv2, ic2)
names(datos2) <- c("Violencia FSP-Área","Área","%","S.E.","Coef.Var.","Int.Inf.","Int.Sup.")
kable(datos2, format = "markdown")| Violencia FSP-Área | Área | % | S.E. | Coef.Var. | Int.Inf. | Int.Sup. | |
|---|---|---|---|---|---|---|---|
| muj unidas jovenes.rural | muj unidas jovenes | rural | 0.366787 | 0.0124635 | 0.0339802 | 0.3423590 | 0.3912150 |
| muj unidas jovenes.urbano | muj unidas jovenes | urbano | 0.385317 | 0.0144834 | 0.0375882 | 0.3569301 | 0.4137039 |
tabla3 <- svyby(~violenciaFSP, ~unidasjoven+regnat, encuesta, svymean, deff=F, na.rm=T)
ic3 <- confint(tabla3)
cv3 <- matrix(cv(tabla3), nrow = length(cv(tabla3)), ncol = 1, dimnames = list(names(cv(tabla3)), "Coef. Var."))
datos3<-bind_cols(tabla3, cv3, ic3)
names(datos3) <- c("Violencia FSP-Región Natural","Región Natural","%","S.E.","Coef.Var.","Int.Inf.","Int.Sup.")
kable(datos3, format = "markdown")| Violencia FSP-Región Natural | Región Natural | % | S.E. | Coef.Var. | Int.Inf. | Int.Sup. | |
|---|---|---|---|---|---|---|---|
| muj unidas jovenes.Costa | muj unidas jovenes | Costa | 0.3845353 | 0.0182385 | 0.0474300 | 0.3487885 | 0.4202821 |
| muj unidas jovenes.Selva | muj unidas jovenes | Selva | 0.3783853 | 0.0160475 | 0.0424104 | 0.3469328 | 0.4098377 |
| muj unidas jovenes.Sierra | muj unidas jovenes | Sierra | 0.3736019 | 0.0150616 | 0.0403146 | 0.3440817 | 0.4031222 |
tabla4 <- svyby(~violenciaFSP, ~unidasjoven+regiones2, encuesta, svymean, deff=F, na.rm=T)
ic4 <- confint(tabla4)
cv4 <- matrix(cv(tabla4), nrow = length(cv(tabla4)), ncol = 1, dimnames = list(names(cv(tabla4)), "Coef. Var."))
datos4<-bind_cols(tabla4, cv4, ic4)
names(datos4) <- c("Violencia FSP-Departamentos","Departamentos","%","S.E.","Coef.Var.","Int.Inf.","Int.Sup.")
kable(datos4, format = "markdown")| Violencia FSP-Departamentos | Departamentos | % | S.E. | Coef.Var. | Int.Inf. | Int.Sup. | |
|---|---|---|---|---|---|---|---|
| muj unidas jovenes.Amazonas | muj unidas jovenes | Amazonas | 0.3663928 | 0.0304160 | 0.0830148 | 0.3067785 | 0.4260072 |
| muj unidas jovenes.Ancash | muj unidas jovenes | Ancash | 0.3808812 | 0.0406225 | 0.1066540 | 0.3012625 | 0.4604998 |
| muj unidas jovenes.Apurimac | muj unidas jovenes | Apurimac | 0.4366022 | 0.0394433 | 0.0903415 | 0.3592948 | 0.5139096 |
| muj unidas jovenes.Arequipa | muj unidas jovenes | Arequipa | 0.4389827 | 0.0447869 | 0.1020244 | 0.3512020 | 0.5267635 |
| muj unidas jovenes.Ayacucho | muj unidas jovenes | Ayacucho | 0.3111724 | 0.0305163 | 0.0980688 | 0.2513616 | 0.3709832 |
| muj unidas jovenes.Cajamarca | muj unidas jovenes | Cajamarca | 0.3094941 | 0.0352954 | 0.1140424 | 0.2403163 | 0.3786719 |
| muj unidas jovenes.Callao | muj unidas jovenes | Callao | 0.4179372 | 0.0473818 | 0.1133705 | 0.3250706 | 0.5108037 |
| muj unidas jovenes.Cusco | muj unidas jovenes | Cusco | 0.4697893 | 0.0440023 | 0.0936638 | 0.3835464 | 0.5560321 |
| muj unidas jovenes.Huancavelica | muj unidas jovenes | Huancavelica | 0.4423168 | 0.0398943 | 0.0901940 | 0.3641254 | 0.5205083 |
| muj unidas jovenes.Huanuco | muj unidas jovenes | Huanuco | 0.3461381 | 0.0385766 | 0.1114485 | 0.2705294 | 0.4217468 |
| muj unidas jovenes.Ica | muj unidas jovenes | Ica | 0.3147933 | 0.0397706 | 0.1263389 | 0.2368443 | 0.3927423 |
| muj unidas jovenes.Junin | muj unidas jovenes | Junin | 0.4936560 | 0.0460044 | 0.0931913 | 0.4034890 | 0.5838231 |
| muj unidas jovenes.La Libertad | muj unidas jovenes | La Libertad | 0.3982716 | 0.0420542 | 0.1055918 | 0.3158469 | 0.4806963 |
| muj unidas jovenes.Lambayeque | muj unidas jovenes | Lambayeque | 0.3374424 | 0.0382813 | 0.1134453 | 0.2624125 | 0.4124723 |
| muj unidas jovenes.Lima Metropolitana | muj unidas jovenes | Lima Metropolitana | 0.3920497 | 0.0342534 | 0.0873701 | 0.3249143 | 0.4591852 |
| muj unidas jovenes.Lima Region | muj unidas jovenes | Lima Region | 0.4044800 | 0.0394315 | 0.0974870 | 0.3271956 | 0.4817644 |
| muj unidas jovenes.Loreto | muj unidas jovenes | Loreto | 0.3763504 | 0.0361087 | 0.0959444 | 0.3055786 | 0.4471221 |
| muj unidas jovenes.Madre de Dios | muj unidas jovenes | Madre de Dios | 0.4373236 | 0.0396437 | 0.0906507 | 0.3596234 | 0.5150237 |
| muj unidas jovenes.Moquegua | muj unidas jovenes | Moquegua | 0.4046707 | 0.0591381 | 0.1461390 | 0.2887620 | 0.5205793 |
| muj unidas jovenes.Pasco | muj unidas jovenes | Pasco | 0.2701991 | 0.0450449 | 0.1667099 | 0.1819128 | 0.3584854 |
| muj unidas jovenes.Piura | muj unidas jovenes | Piura | 0.3680419 | 0.0398557 | 0.1082913 | 0.2899261 | 0.4461577 |
| muj unidas jovenes.Puno | muj unidas jovenes | Puno | 0.3700119 | 0.0455041 | 0.1229801 | 0.2808255 | 0.4591983 |
| muj unidas jovenes.San Martín | muj unidas jovenes | San Martín | 0.3817993 | 0.0372604 | 0.0975917 | 0.3087702 | 0.4548284 |
| muj unidas jovenes.Tacna | muj unidas jovenes | Tacna | 0.1983645 | 0.0386205 | 0.1946948 | 0.1226697 | 0.2740593 |
| muj unidas jovenes.Tumbes | muj unidas jovenes | Tumbes | 0.4012633 | 0.0400955 | 0.0999233 | 0.3226774 | 0.4798491 |
| muj unidas jovenes.Ucayali | muj unidas jovenes | Ucayali | 0.2676255 | 0.0228876 | 0.0855209 | 0.2227666 | 0.3124843 |
tabla5 <- svyby(~violenciaFSP, ~unidasjoven+pobreza3, encuesta, svymean, deff=F, na.rm=T)
ic5 <- confint(tabla5)
cv5 <- matrix(cv(tabla5), nrow = length(cv(tabla5)), ncol = 1, dimnames = list(names(cv(tabla5)), "Coef. Var."))
datos5<-bind_cols(tabla5, cv5, ic5)
names(datos5) <- c("Violencia FSP-Condición de Pobreza","Condición de pobreza","%","S.E.","Coef.Var.","Int.Inf.","Int.Sup.")
kable(datos5, format = "markdown")| Violencia FSP-Condición de Pobreza | Condición de pobreza | % | S.E. | Coef.Var. | Int.Inf. | Int.Sup. | |
|---|---|---|---|---|---|---|---|
| muj unidas jovenes.El más pobre | muj unidas jovenes | El más pobre | 0.3731967 | 0.0143176 | 0.0383647 | 0.3451348 | 0.4012586 |
| muj unidas jovenes.Más Rico | muj unidas jovenes | Más Rico | 0.2988796 | 0.0463819 | 0.1551857 | 0.2079728 | 0.3897864 |
| muj unidas jovenes.Medio | muj unidas jovenes | Medio | 0.3742151 | 0.0253200 | 0.0676616 | 0.3245889 | 0.4238413 |
| muj unidas jovenes.Pobre | muj unidas jovenes | Pobre | 0.4293050 | 0.0191823 | 0.0446823 | 0.3917083 | 0.4669016 |
| muj unidas jovenes.Rico | muj unidas jovenes | Rico | 0.3728862 | 0.0326695 | 0.0876127 | 0.3088550 | 0.4369173 |
tabla6 <- svyby(~violenciaFSP, ~unidasjoven+discapacidad2, encuesta, svymean, deff=F, na.rm=T)
ic6 <- confint(tabla6)
cv6 <- matrix(cv(tabla6), nrow = length(cv(tabla6)), ncol = 1, dimnames = list(names(cv(tabla6)), "Coef. Var."))
datos6<-bind_cols(tabla6, cv6, ic6)
names(datos6) <- c("Violencia FSP-Discapacidad","Discapacidad","%","S.E.","Coef.Var.","Int.Inf.","Int.Sup.")
kable(datos6, format = "markdown")| Violencia FSP-Discapacidad | Discapacidad | % | S.E. | Coef.Var. | Int.Inf. | Int.Sup. | |
|---|---|---|---|---|---|---|---|
| muj unidas jovenes.0 | muj unidas jovenes | 0 | 0.3779983 | 0.0111788 | 0.0295737 | 0.3560883 | 0.3999084 |
| muj unidas jovenes.1 | muj unidas jovenes | 1 | 0.6073046 | 0.1005262 | 0.1655284 | 0.4102769 | 0.8043323 |
tabla7 <- svyby(~violenciaFSP, ~unidasjoven+defiet2, encuesta, svymean, deff=F, na.rm=T)
ic7 <- confint(tabla7)
cv7 <- matrix(cv(tabla7), nrow = length(cv(tabla7)), ncol = 1, dimnames = list(names(cv(tabla7)), "Coef. Var."))
datos7<-bind_cols(tabla7, cv7, ic7)
names(datos7) <- c("Violencia FSP-ETNICIDAD","ETNIA","%","S.E.","Coef.Var.","Int.Inf.","Int.Sup.")
kable(datos7, format = "markdown")| Violencia FSP-ETNICIDAD | ETNIA | % | S.E. | Coef.Var. | Int.Inf. | Int.Sup. | |
|---|---|---|---|---|---|---|---|
| muj unidas jovenes.Indigena | muj unidas jovenes | Indigena | 0.4015913 | 0.0169839 | 0.0422915 | 0.3683034 | 0.4348791 |
| muj unidas jovenes.Mestizo | muj unidas jovenes | Mestizo | 0.3569904 | 0.0192445 | 0.0539077 | 0.3192718 | 0.3947090 |
| muj unidas jovenes.Negro, mulato, Afro peruano | muj unidas jovenes | Negro, mulato, Afro peruano | 0.3764237 | 0.0303535 | 0.0806365 | 0.3169320 | 0.4359155 |
| muj unidas jovenes.No sabe | muj unidas jovenes | No sabe | 0.4139735 | 0.0477067 | 0.1152409 | 0.3204701 | 0.5074769 |
| muj unidas jovenes.Otro | muj unidas jovenes | Otro | 0.4415118 | 0.0347153 | 0.0786283 | 0.3734711 | 0.5095526 |
tabla8 <- svyby(~violenciaFSP, ~unidasjoven+lengua, encuesta, svymean, deff=F, na.rm=T)
ic8 <- confint(tabla8)
cv8 <- matrix(cv(tabla8), nrow = length(cv(tabla8)), ncol = 1, dimnames = list(names(cv(tabla8)), "Coef. Var."))
datos8<-bind_cols(tabla8, cv8, ic8)
names(datos8) <- c("Violencia FSP-Lengua Materna","Lengua","%","S.E.","Coef.Var.","Int.Inf.","Int.Sup.")
kable(datos8, format = "markdown")| Violencia FSP-Lengua Materna | Lengua | % | S.E. | Coef.Var. | Int.Inf. | Int.Sup. | |
|---|---|---|---|---|---|---|---|
| muj unidas jovenes.Andino/Amazónico | muj unidas jovenes | Andino/Amazónico | 0.4271733 | 0.0252026 | 0.0589986 | 0.3777770 | 0.4765695 |
| muj unidas jovenes.Castellano | muj unidas jovenes | Castellano | 0.3743903 | 0.0117821 | 0.0314701 | 0.3512978 | 0.3974828 |
generar_archivo_excel2("DINDES-43-DIPOV07-INDA.xlsx", list(datos0, datos2, datos3, datos4, datos5, datos6, datos7, datos8))