#Abstract
#Introduction
#Literature Review
library(magrittr)
library(utils)
library(ggplot2)
library(sf)
library(sp)
library(rgdal)
library(dplyr)
library(kableExtra)
### Prepare data
load("cases.RData")
### Observed/expected table (for knitr)
kable(
cases %>%
group_by(Year) %>%
summarise(`Observed` = format(sum(Observed), big.mark=","), `Expected` = format(sum(Expected), big.mark=",")),
booktabs = TRUE,
caption = "Aggregated Admissions"
) %>% kable_styling(., full_width = TRUE)
| Year | Observed | Expected |
|---|---|---|
| 2003 | NA | NA |
| 2004 | NA | NA |
| 2005 | NA | NA |
| 2006 | NA | NA |
| 2007 | NA | NA |
| 2008 | NA | NA |
| 2009 | NA | NA |
| 2010 | NA | NA |
| 2011 | NA | NA |
| 2012 | NA | NA |
| 2013 | 42,919 | 44,918.5 |
| 2014 | 45,580 | 44,380.3 |
| 2015 | 50,401 | 44,339.2 |
| 2016 | 53,565 | 44,635.6 |
| 2017 | 51,405 | 43,954.6 |
| 2018 | 57,085 | 43,190 |
| 2019 | 57,330 | 42,190 |
missing <- data.frame()
missing_LA <- list()
for (i in 2003:2019) {
o <- cases[cases$Year == i, ]$Observed %>%
is.na() %>%
which() %>%
length()
e <- cases[cases$Year == i, ]$Expected %>%
is.na() %>%
which() %>%
length()
s <- cases[cases$Year == i, ]$SAR %>%
is.na() %>%
which() %>%
length()
p <- cases[cases$Year == i, ]$Population %>%
is.na() %>%
which() %>%
length()
row <- data.frame(Year = i, Observed = o, Expected = e, SAR = s, Population = p)
missing <- rbind(missing, row)
which <- cases[cases$Year == i, ]$SAR %>%
is.na() %>%
which()
missing_LA <- c(missing_LA, list(cases[cases$Year == i, ][which, ]$Level.description))
}
kable(missing, caption = "Missing Observations") %>% kable_styling(., full_width = TRUE)
| Year | Observed | Expected | SAR | Population |
|---|---|---|---|---|
| 2003 | 121 | 121 | 121 | 0 |
| 2004 | 99 | 99 | 99 | 0 |
| 2005 | 115 | 115 | 115 | 0 |
| 2006 | 127 | 127 | 127 | 0 |
| 2007 | 109 | 109 | 109 | 0 |
| 2008 | 77 | 77 | 77 | 0 |
| 2009 | 106 | 106 | 106 | 0 |
| 2010 | 130 | 130 | 130 | 0 |
| 2011 | 116 | 116 | 116 | 0 |
| 2012 | 73 | 73 | 73 | 0 |
| 2013 | 0 | 0 | 0 | 0 |
| 2014 | 0 | 0 | 0 | 0 |
| 2015 | 0 | 0 | 0 | 0 |
| 2016 | 0 | 0 | 0 | 0 |
| 2017 | 0 | 0 | 0 | 0 |
| 2018 | 0 | 0 | 0 | 0 |
| 2019 | 0 | 0 | 0 | 0 |
Including Plots
You can also embed plots, for example:
# Create colour pallette
library(RColorBrewer)
colors <- c("#D0F0C0", brewer.pal(4, "Reds"))
cases$SAR.cut <- cut(
cases$SAR,
breaks = c(min(cases$SAR[!is.na(cases$SAR)]), 1, 2.5, 5, max(cases$SAR[!is.na(cases$SAR)])),
)
# Read shapefile
shapefile_path <- "../Boundaries (2019)/England/Local_Authority_Districts_December_2019_England.shp"
map <- st_read(shapefile_path)
## Reading layer `Local_Authority_Districts_December_2019_England' from data source `/Users/cam/OneDrive - Imperial College London/LRTI project/Boundaries (2019)/England/Local_Authority_Districts_December_2019_England.shp'
## using driver `ESRI Shapefile'
## Simple feature collection with 317 features and 11 fields
## Geometry type: MULTIPOLYGON
## Dimension: XY
## Bounding box: xmin: -714517.9 ymin: 6422874 xmax: 196334.8 ymax: 7520900
## Projected CRS: WGS 84 / Pseudo-Mercator
# Prep data
for (i in 2013:2019) {
data <- cases[cases$Year == i, ]
map_i <- left_join(map, data, by = join_by(lad19cd == Level))
p <- ggplot() +
geom_sf(data = map_i) +
aes(fill = SAR.cut) +
theme_bw() +
scale_fill_manual(values = colors) +
guides(fill = guide_legend(title = "SAR")) +
labs(title = paste0("SAR in ", i))
print(p)
}
##Analysis
library(spdep)
map_nb <- poly2nb(map)
summary(map_nb)
## Neighbour list object:
## Number of regions: 317
## Number of nonzero links: 1610
## Percentage nonzero weights: 1.602165
## Average number of links: 5.078864
## 2 regions with no links:
## 44 50
## Link number distribution:
##
## 0 1 2 3 4 5 6 7 8 9 10 11
## 2 8 25 39 54 58 46 49 21 10 3 2
## 8 least connected regions:
## 10 26 61 67 88 89 115 263 with 1 link
## 2 most connected regions:
## 51 227 with 11 links
# Convert to INLA format
nb2INLA("map.graph", map_nb)
map.adj <- paste(getwd(), "/map.graph", sep = "")
# select only complete year (2013:2019)
cases <- cases[cases$Year >= 2013, ]
# Aggregate observed and expected cases by LA (independent of year)
cases_agg <- cases %>%
group_by(Level) %>%
summarise(Observed = sum(Observed), Expected = sum(Expected), Population = sum(Population)) %>%
mutate(SAR = Observed / Expected) %>%
mutate(log.Population = log(Population)) %>%
dplyr::rename(O = Observed, E = Expected)
kable(cases_agg) %>% kable_styling(., full_width=TRUE)
| Level | O | E | Population | SAR | log.Population |
|---|---|---|---|---|---|
| E06000001 | 637 | 487.3 | 148300 | 1.3072030 | 11.90699 |
| E06000002 | 1729 | 882.6 | 238100 | 1.9589848 | 12.38045 |
| E06000003 | 1212 | 675.9 | 203300 | 1.7931647 | 12.22244 |
| E06000004 | 1503 | 1067.1 | 317100 | 1.4084903 | 12.66697 |
| E06000005 | 991 | 553.3 | 166600 | 1.7910718 | 12.02335 |
| E06000006 | 1098 | 707.1 | 209200 | 1.5528214 | 12.25105 |
| E06000007 | 1253 | 1083.3 | 328300 | 1.1566510 | 12.70168 |
| E06000008 | 1750 | 983.0 | 283600 | 1.7802645 | 12.55532 |
| E06000009 | 1486 | 765.9 | 213600 | 1.9402011 | 12.27186 |
| E06000010 | 1763 | 1593.2 | 414100 | 1.1065780 | 12.93386 |
| E06000011 | 1593 | 1395.3 | 467800 | 1.1416900 | 13.05580 |
| E06000012 | 801 | 860.3 | 253600 | 0.9310706 | 12.44351 |
| E06000013 | 919 | 832.1 | 261700 | 1.1044346 | 12.47495 |
| E06000014 | 1415 | 910.1 | 274600 | 1.5547742 | 12.52307 |
| E06000015 | 1132 | 1542.0 | 436000 | 0.7341115 | 12.98540 |
| E06000016 | 1795 | 2298.8 | 609700 | 0.7808422 | 13.32072 |
| E06000017 | 159 | 167.8 | 58300 | 0.9475566 | 10.97336 |
| E06000018 | 2244 | 1895.6 | 500000 | 1.1837940 | 13.12236 |
| E06000019 | 1153 | 846.5 | 266700 | 1.3620791 | 12.49388 |
| E06000020 | 1154 | 982.1 | 293800 | 1.1750331 | 12.59065 |
| E06000021 | 3022 | 1572.4 | 417100 | 1.9219028 | 12.94108 |
| E06000022 | 1277 | 835.7 | 263800 | 1.5280603 | 12.48295 |
| E06000023 | 2829 | 2760.2 | 686100 | 1.0249257 | 13.43878 |
| E06000024 | 1176 | 1027.3 | 316900 | 1.1447484 | 12.66634 |
| E06000025 | 1554 | 1450.7 | 428700 | 1.0712070 | 12.96851 |
| E06000026 | 2088 | 1387.6 | 387100 | 1.5047564 | 12.86644 |
| E06000027 | 982 | 634.1 | 187100 | 1.5486516 | 12.13940 |
| E06000030 | 1307 | 1313.1 | 363300 | 0.9953545 | 12.80298 |
| E06000031 | 1725 | 1406.9 | 358000 | 1.2260999 | 12.78829 |
| E06000032 | 3289 | 1586.9 | 411800 | 2.0725944 | 12.92829 |
| E06000033 | 593 | 1017.8 | 286000 | 0.5826292 | 12.56375 |
| E06000034 | 709 | 1142.8 | 307500 | 0.6204060 | 12.63623 |
| E06000035 | 1927 | 1651.2 | 469100 | 1.1670300 | 13.05857 |
| E06000036 | 516 | 679.8 | 206700 | 0.7590468 | 12.23902 |
| E06000037 | 889 | 822.8 | 263800 | 1.0804570 | 12.48295 |
| E06000038 | 1022 | 1101.7 | 268200 | 0.9276573 | 12.49949 |
| E06000039 | 1699 | 1163.2 | 301000 | 1.4606259 | 12.61487 |
| E06000040 | 1042 | 790.9 | 250700 | 1.3174864 | 12.43201 |
| E06000041 | 806 | 867.2 | 281300 | 0.9294280 | 12.54718 |
| E06000042 | 2728 | 1730.1 | 488500 | 1.5767875 | 13.09909 |
| E06000043 | 1888 | 1301.8 | 379500 | 1.4502996 | 12.84661 |
| E06000044 | 1020 | 1178.5 | 324500 | 0.8655070 | 12.69004 |
| E06000045 | 1908 | 1446.9 | 369900 | 1.3186813 | 12.82099 |
| E06000046 | 737 | 587.8 | 187500 | 1.2538278 | 12.14153 |
| E06000047 | 3804 | 2471.2 | 746400 | 1.5393331 | 13.52302 |
| E06000049 | 2888 | 1814.0 | 559900 | 1.5920617 | 13.23551 |
| E06000050 | 2806 | 1658.2 | 495900 | 1.6921964 | 13.11413 |
| E06000051 | 1556 | 1351.0 | 443800 | 1.1517395 | 13.00313 |
| E06000052 | 4286 | 2553.2 | 791100 | 1.6786777 | 13.58118 |
| E06000053 | 4286 | 2553.2 | 791100 | 1.6786777 | 13.58118 |
| E06000054 | 2715 | 2437.9 | 774600 | 1.1136634 | 13.56010 |
| E06000055 | 960 | 1005.4 | 285200 | 0.9548438 | 12.56095 |
| E06000056 | 2075 | 1548.3 | 445800 | 1.3401796 | 13.00763 |
| E06000057 | 1884 | 1349.4 | 439700 | 1.3961761 | 12.99385 |
| E06000058 | 2777 | 1907.5 | 548200 | 1.4558322 | 13.21440 |
| E06000059 | 2438 | 1461.4 | 507300 | 1.6682633 | 13.13686 |
| E07000004 | 1700 | 1078.1 | 326500 | 1.5768482 | 12.69619 |
| E07000005 | 566 | 441.7 | 162100 | 1.2814127 | 11.99597 |
| E07000006 | 485 | 350.1 | 110400 | 1.3853185 | 11.61187 |
| E07000007 | 1662 | 992.4 | 298600 | 1.6747279 | 12.60686 |
| E07000008 | 470 | 632.1 | 172100 | 0.7435532 | 12.05583 |
| E07000009 | 344 | 468.7 | 142600 | 0.7339450 | 11.86780 |
| E07000010 | 696 | 523.5 | 146800 | 1.3295129 | 11.89683 |
| E07000011 | 1243 | 919.5 | 271300 | 1.3518216 | 12.51098 |
| E07000012 | 689 | 814.9 | 256000 | 0.8455025 | 12.45293 |
| E07000026 | 632 | 416.8 | 134700 | 1.5163148 | 11.81081 |
| E07000027 | 674 | 334.4 | 99200 | 2.0155502 | 11.50489 |
| E07000028 | 802 | 539.8 | 156600 | 1.4857355 | 11.96145 |
| E07000029 | 563 | 318.7 | 96900 | 1.7665516 | 11.48143 |
| E07000030 | 254 | 197.2 | 68500 | 1.2880325 | 11.13459 |
| E07000031 | 477 | 379.3 | 132300 | 1.2575798 | 11.79283 |
| E07000032 | 437 | 572.0 | 177700 | 0.7639860 | 12.08785 |
| E07000033 | 661 | 394.1 | 116400 | 1.6772393 | 11.66479 |
| E07000034 | 978 | 502.6 | 149000 | 1.9458814 | 11.91170 |
| E07000035 | 296 | 253.3 | 94700 | 1.1685748 | 11.45847 |
| E07000036 | 534 | 577.0 | 170600 | 0.9254766 | 12.04708 |
| E07000037 | 616 | 417.7 | 133100 | 1.4747426 | 11.79886 |
| E07000038 | 721 | 422.7 | 136700 | 1.7057014 | 11.82554 |
| E07000039 | 640 | 519.8 | 161000 | 1.2312428 | 11.98916 |
| E07000040 | 924 | 557.9 | 185900 | 1.6562108 | 12.13296 |
| E07000041 | 1064 | 601.3 | 165900 | 1.7694994 | 12.01914 |
| E07000042 | 588 | 374.8 | 123700 | 1.5688367 | 11.72561 |
| E07000043 | 694 | 436.1 | 136400 | 1.5913781 | 11.82335 |
| E07000044 | 425 | 317.9 | 113900 | 1.3368984 | 11.64308 |
| E07000045 | 819 | 557.7 | 177300 | 1.4685315 | 12.08560 |
| E07000046 | 441 | 283.2 | 91200 | 1.5572034 | 11.42081 |
| E07000047 | 267 | 217.4 | 73700 | 1.2281509 | 11.20776 |
| E07000061 | 662 | 491.6 | 147300 | 1.3466233 | 11.90023 |
| E07000062 | 662 | 508.3 | 142500 | 1.3023805 | 11.86710 |
| E07000063 | 762 | 429.7 | 147200 | 1.7733302 | 11.89955 |
| E07000064 | 410 | 348.6 | 119900 | 1.1761331 | 11.69441 |
| E07000065 | 712 | 653.1 | 227500 | 1.0901853 | 12.33491 |
| E07000066 | 849 | 1127.2 | 309800 | 0.7531938 | 12.64368 |
| E07000067 | 719 | 775.6 | 240200 | 0.9270242 | 12.38923 |
| E07000068 | 271 | 391.7 | 117200 | 0.6918560 | 11.67164 |
| E07000069 | 254 | 393.7 | 126600 | 0.6451613 | 11.74879 |
| E07000070 | 778 | 902.8 | 271400 | 0.8617634 | 12.51135 |
| E07000071 | 1808 | 1022.5 | 287500 | 1.7682152 | 12.56898 |
| E07000072 | 508 | 727.1 | 200300 | 0.6986659 | 12.20757 |
| E07000073 | 442 | 582.7 | 151800 | 0.7585378 | 11.93032 |
| E07000074 | 227 | 260.7 | 88900 | 0.8707326 | 11.39527 |
| E07000075 | 222 | 361.7 | 124800 | 0.6137683 | 11.73447 |
| E07000076 | 1085 | 626.2 | 196000 | 1.7326733 | 12.18587 |
| E07000077 | 314 | 440.4 | 143800 | 0.7129882 | 11.87618 |
| E07000078 | 775 | 591.3 | 171700 | 1.3106714 | 12.05350 |
| E07000079 | 414 | 358.4 | 118900 | 1.1551339 | 11.68604 |
| E07000080 | 521 | 365.5 | 121600 | 1.4254446 | 11.70849 |
| E07000081 | 1346 | 780.2 | 211300 | 1.7251987 | 12.26103 |
| E07000082 | 690 | 525.2 | 175800 | 1.3137852 | 12.07710 |
| E07000083 | 759 | 464.0 | 134000 | 1.6357759 | 11.80560 |
| E07000084 | 1632 | 998.0 | 287900 | 1.6352705 | 12.57037 |
| E07000085 | 670 | 529.9 | 182800 | 1.2643895 | 12.11615 |
| E07000086 | 738 | 681.2 | 205400 | 1.0833823 | 12.23271 |
| E07000087 | 354 | 488.2 | 164800 | 0.7251127 | 12.01249 |
| E07000088 | 373 | 433.5 | 132800 | 0.8604383 | 11.79660 |
| E07000089 | 375 | 474.0 | 156800 | 0.7911392 | 11.96273 |
| E07000090 | 599 | 593.5 | 184300 | 1.0092671 | 12.12432 |
| E07000091 | 903 | 717.4 | 240700 | 1.2587120 | 12.39131 |
| E07000092 | 493 | 609.7 | 156100 | 0.8085944 | 11.95825 |
| E07000093 | 566 | 616.8 | 189300 | 0.9176394 | 12.15109 |
| E07000094 | 495 | 558.2 | 190900 | 0.8867789 | 12.15950 |
| E07000095 | 445 | 569.1 | 160200 | 0.7819364 | 11.98418 |
| E07000096 | 880 | 883.4 | 251600 | 0.9961512 | 12.43560 |
| E07000098 | 461 | 607.0 | 178100 | 0.7594728 | 12.09010 |
| E07000099 | 538 | 728.0 | 212800 | 0.7390110 | 12.26811 |
| E07000102 | 446 | 491.0 | 154200 | 0.9083503 | 11.94601 |
| E07000103 | 578 | 655.4 | 170100 | 0.8819042 | 12.04414 |
| E07000105 | 841 | 708.3 | 214700 | 1.1873500 | 12.27700 |
| E07000106 | 710 | 655.6 | 221300 | 1.0829774 | 12.30727 |
| E07000107 | 966 | 708.8 | 184300 | 1.3628668 | 12.12432 |
| E07000108 | 672 | 537.8 | 169700 | 1.2495351 | 12.04179 |
| E07000109 | 721 | 642.3 | 182600 | 1.1225284 | 12.11505 |
| E07000110 | 563 | 927.8 | 267100 | 0.6068118 | 12.49538 |
| E07000111 | 607 | 609.7 | 194900 | 0.9955716 | 12.18024 |
| E07000112 | 627 | 503.5 | 158600 | 1.2452830 | 11.97414 |
| E07000113 | 832 | 816.3 | 240600 | 1.0192331 | 12.39089 |
| E07000114 | 1061 | 739.4 | 220500 | 1.4349473 | 12.30365 |
| E07000115 | 475 | 678.0 | 217800 | 0.7005900 | 12.29133 |
| E07000116 | 323 | 583.7 | 197600 | 0.5533665 | 12.19400 |
| E07000117 | 1088 | 533.1 | 147000 | 2.0408929 | 11.89819 |
| E07000118 | 718 | 567.6 | 173000 | 1.2649753 | 12.06105 |
| E07000119 | 432 | 301.3 | 103300 | 1.4337869 | 11.54539 |
| E07000120 | 956 | 492.6 | 137000 | 1.9407227 | 11.82774 |
| E07000121 | 1146 | 673.8 | 202600 | 1.7008014 | 12.21899 |
| E07000122 | 1071 | 566.3 | 155100 | 1.8912237 | 11.95183 |
| E07000123 | 1446 | 842.6 | 230600 | 1.7161168 | 12.34844 |
| E07000124 | 395 | 226.4 | 88100 | 1.7446996 | 11.38623 |
| E07000125 | 693 | 369.6 | 113100 | 1.8750000 | 11.63603 |
| E07000126 | 915 | 537.5 | 166500 | 1.7023256 | 12.02275 |
| E07000127 | 728 | 504.4 | 165700 | 1.4432990 | 12.01793 |
| E07000128 | 757 | 447.2 | 147700 | 1.6927549 | 11.90294 |
| E07000129 | 486 | 492.5 | 152200 | 0.9868020 | 11.93295 |
| E07000130 | 736 | 843.8 | 255500 | 0.8722446 | 12.45098 |
| E07000131 | 388 | 397.4 | 140300 | 0.9763463 | 11.85154 |
| E07000132 | 463 | 528.6 | 161600 | 0.8758986 | 11.99288 |
| E07000133 | 238 | 234.7 | 75500 | 1.0140605 | 11.23189 |
| E07000134 | 491 | 477.4 | 150900 | 1.0284876 | 11.92437 |
| E07000135 | 260 | 265.2 | 85400 | 0.9803922 | 11.35510 |
| E07000136 | 345 | 379.7 | 103700 | 0.9086121 | 11.54926 |
| E07000137 | 559 | 568.7 | 178000 | 0.9829436 | 12.08954 |
| E07000138 | 651 | 531.6 | 136100 | 1.2246050 | 11.82115 |
| E07000139 | 613 | 513.2 | 165900 | 1.1944661 | 12.01914 |
| E07000140 | 466 | 449.3 | 131500 | 1.0371689 | 11.78676 |
| E07000141 | 817 | 665.3 | 213800 | 1.2280174 | 12.27280 |
| E07000142 | 540 | 417.7 | 135000 | 1.2927939 | 11.81303 |
| E07000143 | 835 | 666.9 | 197200 | 1.2520618 | 12.19197 |
| E07000144 | 616 | 527.0 | 176400 | 1.1688805 | 12.08051 |
| E07000145 | 648 | 501.6 | 146700 | 1.2918660 | 11.89615 |
| E07000146 | 979 | 739.6 | 215400 | 1.3236885 | 12.28025 |
| E07000147 | 447 | 369.9 | 122500 | 1.2084347 | 11.71587 |
| E07000148 | 1028 | 755.5 | 193500 | 1.3606883 | 12.17303 |
| E07000149 | 744 | 622.9 | 200900 | 1.1944132 | 12.21056 |
| E07000150 | 574 | 437.8 | 121200 | 1.3111010 | 11.70520 |
| E07000151 | 540 | 388.2 | 125800 | 1.3910355 | 11.74245 |
| E07000152 | 590 | 447.7 | 146800 | 1.3178468 | 11.89683 |
| E07000153 | 757 | 567.3 | 165000 | 1.3343910 | 12.01370 |
| E07000154 | 2312 | 1455.8 | 383100 | 1.5881302 | 12.85605 |
| E07000155 | 692 | 421.4 | 143300 | 1.6421452 | 11.87270 |
| E07000156 | 691 | 447.1 | 131800 | 1.5455155 | 11.78904 |
| E07000163 | 347 | 218.4 | 76700 | 1.5888278 | 11.24766 |
| E07000164 | 591 | 373.9 | 124400 | 1.5806365 | 11.73126 |
| E07000165 | 1176 | 700.5 | 243500 | 1.6788009 | 12.40287 |
| E07000166 | 404 | 255.8 | 76600 | 1.5793589 | 11.24635 |
| E07000167 | 366 | 212.0 | 72400 | 1.7264151 | 11.18996 |
| E07000168 | 941 | 472.2 | 144600 | 1.9927997 | 11.88173 |
| E07000169 | 706 | 441.0 | 132700 | 1.6009070 | 11.79585 |
| E07000170 | 873 | 668.5 | 195100 | 1.3059088 | 12.18127 |
| E07000171 | 790 | 565.6 | 170800 | 1.3967468 | 12.04825 |
| E07000172 | 620 | 541.7 | 159400 | 1.1445450 | 11.97917 |
| E07000173 | 636 | 562.6 | 173500 | 1.1304657 | 12.06393 |
| E07000174 | 788 | 585.5 | 163400 | 1.3458582 | 12.00396 |
| E07000175 | 687 | 567.8 | 178400 | 1.2099331 | 12.09178 |
| E07000176 | 611 | 514.4 | 176100 | 1.1877916 | 12.07881 |
| E07000177 | 976 | 839.0 | 240100 | 1.1632896 | 12.38881 |
| E07000178 | 930 | 812.1 | 224900 | 1.1451792 | 12.32341 |
| E07000179 | 785 | 714.2 | 220200 | 1.0991319 | 12.30229 |
| E07000180 | 682 | 682.0 | 205400 | 1.0000000 | 12.23271 |
| E07000181 | 550 | 541.2 | 166800 | 1.0162602 | 12.02455 |
| E07000187 | 712 | 526.4 | 174100 | 1.3525836 | 12.06739 |
| E07000188 | 674 | 585.0 | 182100 | 1.1521368 | 12.11231 |
| E07000189 | 951 | 783.8 | 243200 | 1.2133197 | 12.40164 |
| E07000192 | 599 | 500.8 | 149300 | 1.1960863 | 11.91371 |
| E07000193 | 894 | 652.9 | 187200 | 1.3692755 | 12.13993 |
| E07000194 | 655 | 453.3 | 147500 | 1.4449592 | 11.90158 |
| E07000195 | 948 | 559.5 | 176800 | 1.6943700 | 12.08277 |
| E07000196 | 519 | 440.6 | 148000 | 1.1779392 | 11.90497 |
| E07000197 | 832 | 594.5 | 188400 | 1.3994954 | 12.14632 |
| E07000198 | 570 | 388.0 | 134300 | 1.4690722 | 11.80783 |
| E07000199 | 593 | 420.4 | 124300 | 1.4105614 | 11.73045 |
| E07000200 | 545 | 372.8 | 131000 | 1.4619099 | 11.78295 |
| E07000202 | 1489 | 855.6 | 224200 | 1.7402992 | 12.32029 |
| E07000203 | 613 | 414.4 | 145800 | 1.4792471 | 11.88999 |
| E07000207 | 928 | 811.3 | 244000 | 1.1438432 | 12.40492 |
| E07000208 | 519 | 444.1 | 133400 | 1.1686557 | 11.80111 |
| E07000209 | 838 | 697.6 | 217500 | 1.2012615 | 12.28995 |
| E07000210 | 494 | 385.5 | 132300 | 1.2814527 | 11.79283 |
| E07000211 | 880 | 837.6 | 240600 | 1.0506208 | 12.39089 |
| E07000212 | 372 | 437.4 | 123400 | 0.8504801 | 11.72319 |
| E07000213 | 503 | 577.8 | 154500 | 0.8705434 | 11.94795 |
| E07000214 | 386 | 435.4 | 141800 | 0.8865411 | 11.86217 |
| E07000215 | 416 | 447.4 | 138000 | 0.9298167 | 11.83501 |
| E07000216 | 665 | 611.4 | 209000 | 1.0876676 | 12.25009 |
| E07000217 | 547 | 612.5 | 172100 | 0.8930612 | 12.05583 |
| E07000218 | 295 | 299.7 | 91900 | 0.9843177 | 11.42846 |
| E07000219 | 597 | 726.4 | 203300 | 0.8218612 | 12.22244 |
| E07000220 | 589 | 579.0 | 173100 | 1.0172712 | 12.06162 |
| E07000221 | 645 | 532.9 | 174100 | 1.2103584 | 12.06739 |
| E07000222 | 772 | 685.3 | 200500 | 1.1265139 | 12.20857 |
| E07000223 | 400 | 329.6 | 94600 | 1.2135922 | 11.45741 |
| E07000224 | 987 | 692.1 | 207400 | 1.4260945 | 12.24240 |
| E07000225 | 781 | 501.4 | 161600 | 1.5576386 | 11.99288 |
| E07000226 | 542 | 731.6 | 194300 | 0.7408420 | 12.17716 |
| E07000227 | 601 | 624.6 | 212500 | 0.9622158 | 12.26670 |
| E07000228 | 964 | 740.8 | 237800 | 1.3012959 | 12.37919 |
| E07000229 | 504 | 531.6 | 158900 | 0.9480813 | 11.97603 |
| E07000234 | 437 | 441.8 | 144300 | 0.9891354 | 11.87965 |
| E07000235 | 315 | 286.9 | 105200 | 1.0979435 | 11.56362 |
| E07000236 | 600 | 486.4 | 138400 | 1.2335526 | 11.83790 |
| E07000237 | 748 | 559.0 | 155200 | 1.3381038 | 11.95247 |
| E07000238 | 610 | 539.7 | 175100 | 1.1302576 | 12.07311 |
| E07000239 | 611 | 486.4 | 142800 | 1.2561678 | 11.86920 |
| E07000240 | 716 | 861.7 | 263800 | 0.8309156 | 12.48295 |
| E07000241 | 444 | 633.2 | 183800 | 0.7012003 | 12.12160 |
| E07000242 | 521 | 762.1 | 239900 | 0.6836373 | 12.38798 |
| E07000243 | 456 | 536.4 | 145900 | 0.8501119 | 11.89068 |
| E07000244 | 1583 | 1036.0 | 348600 | 1.5279923 | 12.76168 |
| E07000245 | 1164 | 984.6 | 274300 | 1.1822060 | 12.52198 |
| E07000246 | 778 | 692.0 | 214400 | 1.1242775 | 12.27560 |
| E08000001 | 3131 | 1742.6 | 493600 | 1.7967405 | 13.10948 |
| E08000002 | 1840 | 1089.6 | 315500 | 1.6886931 | 12.66191 |
| E08000003 | 5382 | 3474.9 | 877000 | 1.5488215 | 13.68426 |
| E08000004 | 3010 | 1513.0 | 431200 | 1.9894250 | 12.97433 |
| E08000005 | 2672 | 1359.5 | 380700 | 1.9654285 | 12.84977 |
| E08000006 | 2375 | 1600.8 | 403400 | 1.4836332 | 12.90768 |
| E08000007 | 2081 | 1578.2 | 459300 | 1.3185908 | 13.03746 |
| E08000008 | 2351 | 1322.4 | 364500 | 1.7778282 | 12.80628 |
| E08000009 | 1760 | 1301.0 | 403000 | 1.3528055 | 12.90669 |
| E08000010 | 1578 | 1681.7 | 502200 | 0.9383362 | 13.12675 |
| E08000011 | 1160 | 889.9 | 242900 | 1.3035172 | 12.40041 |
| E08000012 | 1448 | 2647.0 | 688200 | 0.5470344 | 13.44183 |
| E08000013 | 1458 | 930.0 | 269800 | 1.5677419 | 12.50544 |
| E08000014 | 1345 | 1302.6 | 397100 | 1.0325503 | 12.89194 |
| E08000015 | 3033 | 1643.0 | 499300 | 1.8460134 | 13.12096 |
| E08000016 | 1836 | 1291.6 | 369800 | 1.4214927 | 12.82072 |
| E08000017 | 1934 | 1663.8 | 484500 | 1.1623993 | 13.09087 |
| E08000018 | 1602 | 1422.0 | 418900 | 1.1265823 | 12.94539 |
| E08000019 | 3301 | 2989.7 | 864300 | 1.1041242 | 13.66968 |
| E08000021 | 1925 | 1528.8 | 426300 | 1.2591575 | 12.96290 |
| E08000022 | 1573 | 1040.3 | 301400 | 1.5120638 | 12.61619 |
| E08000023 | 997 | 743.9 | 219200 | 1.3402339 | 12.29774 |
| E08000024 | 2221 | 1366.0 | 403600 | 1.6259151 | 12.90818 |
| E08000025 | 9075 | 7674.3 | 2106100 | 1.1825183 | 14.56035 |
| E08000026 | 2245 | 2082.7 | 566900 | 1.0779277 | 13.24794 |
| E08000027 | 2379 | 1737.0 | 505800 | 1.3696028 | 13.13390 |
| E08000028 | 2877 | 2162.2 | 586500 | 1.3305892 | 13.28193 |
| E08000029 | 1122 | 1078.2 | 341500 | 1.0406233 | 12.74110 |
| E08000030 | 1632 | 1735.0 | 488200 | 0.9406340 | 13.09848 |
| E08000031 | 2092 | 1601.9 | 437200 | 1.3059492 | 12.98815 |
| E08000032 | 5770 | 3611.5 | 1034600 | 1.5976741 | 13.84953 |
| E08000033 | 1954 | 1143.6 | 339200 | 1.7086394 | 12.73435 |
| E08000034 | 3558 | 2493.0 | 731800 | 1.4271961 | 13.50326 |
| E08000035 | 3319 | 4594.1 | 1216400 | 0.7224484 | 14.01141 |
| E08000036 | 2382 | 1872.1 | 522800 | 1.2723679 | 13.16695 |
| E08000037 | 1426 | 1009.4 | 296400 | 1.4127204 | 12.59947 |
| E09000001 | 405 | 1947.4 | 461100 | 0.2079696 | 13.04137 |
| E09000002 | 1013 | 1751.4 | 447400 | 0.5783944 | 13.01121 |
| E09000003 | 1363 | 2410.5 | 661400 | 0.5654429 | 13.40211 |
| E09000004 | 1747 | 1425.3 | 414400 | 1.2257069 | 12.93459 |
| E09000005 | 1425 | 2256.0 | 557500 | 0.6316489 | 13.23122 |
| E09000006 | 1348 | 1918.2 | 536800 | 0.7027422 | 13.19338 |
| E09000007 | 836 | 1249.8 | 350500 | 0.6689070 | 12.76712 |
| E09000008 | 2123 | 2593.0 | 689300 | 0.8187428 | 13.44343 |
| E09000009 | 1437 | 2331.4 | 595500 | 0.6163678 | 13.29716 |
| E09000010 | 2437 | 2227.2 | 611900 | 1.0941990 | 13.32432 |
| E09000011 | 2195 | 2004.0 | 489600 | 1.0953094 | 13.10134 |
| E09000012 | 405 | 1947.4 | 461100 | 0.2079696 | 13.04137 |
| E09000013 | 669 | 1060.2 | 256900 | 0.6310130 | 12.45644 |
| E09000014 | 1512 | 1751.9 | 442800 | 0.8630630 | 13.00087 |
| E09000015 | 1166 | 1603.1 | 422900 | 0.7273408 | 12.95489 |
| E09000016 | 1015 | 1498.6 | 408800 | 0.6772988 | 12.92098 |
| E09000017 | 1540 | 2013.8 | 524900 | 0.7647234 | 13.17096 |
| E09000018 | 1335 | 1887.6 | 462800 | 0.7072473 | 13.04505 |
| E09000019 | 923 | 1240.5 | 299800 | 0.7440548 | 12.61087 |
| E09000020 | 336 | 784.4 | 207100 | 0.4283529 | 12.24096 |
| E09000021 | 1398 | 1016.8 | 278500 | 1.3749017 | 12.53717 |
| E09000022 | 1545 | 1874.6 | 457800 | 0.8241758 | 13.03419 |
| E09000023 | 1263 | 2067.0 | 495300 | 0.6110305 | 13.11292 |
| E09000024 | 1560 | 1414.4 | 339400 | 1.1029412 | 12.73493 |
| E09000025 | 1055 | 2623.6 | 620300 | 0.4021192 | 13.33796 |
| E09000026 | 1271 | 2106.1 | 552600 | 0.6034851 | 13.22239 |
| E09000027 | 1248 | 1183.0 | 325800 | 1.0549451 | 12.69404 |
| E09000028 | 1680 | 1948.7 | 465600 | 0.8621132 | 13.05108 |
| E09000029 | 1451 | 1232.9 | 343200 | 1.1769000 | 12.74607 |
| E09000030 | 355 | 2028.5 | 488900 | 0.1750062 | 13.09991 |
| E09000031 | 1353 | 2033.8 | 480800 | 0.6652572 | 13.08321 |
| E09000032 | 2044 | 2102.3 | 449500 | 0.9722685 | 13.01589 |
| E09000033 | 385 | 1201.9 | 323800 | 0.3203262 | 12.68788 |
# Create colour pallette
library(RColorBrewer)
colors <- c("#D0F0C0", brewer.pal(4, "Reds"))
# Create buckets for SAR
cases_agg$SAR.cut <- cut(
cases_agg$SAR,
breaks = c(min(cases_agg$SAR[!is.na(cases_agg$SAR)]), 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, max(cases_agg$SAR[!is.na(cases_agg$SAR)])),
)
# Produce spatial map of aggregatged SAR
map_agg <- left_join(map, cases_agg, by = join_by(lad19cd == Level))
# Plot SAR using ggplot
library(ggplot2)
ggplot() +
geom_sf(data = map_agg, aes(fill = SAR.cut)) +
theme_bw() +
scale_fill_viridis_d() +
theme(legend.position = "bottom")
# Fit hierarchical Poisson log-linear model in INLA
library(INLA)
LA <- seq(1, 317)
formula <- O ~ f(LA, model = "bym2", graph = map.adj, hyper = list(
prec = list(
prior = "pc.prec",
param = c(0.5 / 0.31, 0.01)
),
phi = list(
prior = "pc",
param = c(0.5, 2 / 3)
)
))
sBYM.model <- inla(formula = formula, family = "poisson", data = cases_agg, E = E, control.compute = list(waic = TRUE))
# Obtain the posterior summary statistics
summary(sBYM.model, summary.stat = c("mean", "p0.975", "p0.025", "p0.5in", "p0.5out", "waic"))
##
## Call:
## c("inla.core(formula = formula, family = family, contrasts = contrasts,
## ", " data = data, quantiles = quantiles, E = E, offset = offset, ", "
## scale = scale, weights = weights, Ntrials = Ntrials, strata = strata,
## ", " lp.scale = lp.scale, link.covariates = link.covariates, verbose =
## verbose, ", " lincomb = lincomb, selection = selection, control.compute
## = control.compute, ", " control.predictor = control.predictor,
## control.family = control.family, ", " control.inla = control.inla,
## control.fixed = control.fixed, ", " control.mode = control.mode,
## control.expert = control.expert, ", " control.hazard = control.hazard,
## control.lincomb = control.lincomb, ", " control.update =
## control.update, control.lp.scale = control.lp.scale, ", "
## control.pardiso = control.pardiso, only.hyperparam = only.hyperparam,
## ", " inla.call = inla.call, inla.arg = inla.arg, num.threads =
## num.threads, ", " blas.num.threads = blas.num.threads, keep = keep,
## working.directory = working.directory, ", " silent = silent, inla.mode
## = inla.mode, safe = FALSE, debug = debug, ", " .parent.frame =
## .parent.frame)")
## Time used:
## Pre = 8.37, Running = 0.199, Post = 0.0186, Total = 8.59
## Fixed effects:
## mean sd 0.025quant 0.5quant 0.975quant mode kld
## (Intercept) 0.131 0.004 0.122 0.131 0.14 0.131 0
##
## Random effects:
## Name Model
## LA BYM2 model
##
## Model hyperparameters:
## mean sd 0.025quant 0.5quant 0.975quant mode
## Precision for LA 9.631 0.914 7.877 9.62 11.472 9.646
## Phi for LA 0.962 0.031 0.882 0.97 0.996 0.988
##
## Watanabe-Akaike information criterion (WAIC) ...: 3272.77
## Effective number of parameters .................: 158.24
##
## Marginal log-Likelihood: -1978.99
## is computed
## Posterior summaries for the linear predictor and the fitted values are computed
## (Posterior marginals needs also 'control.compute=list(return.marginals.predictor=TRUE)')
RR_sBYM <- c()
for (i in 1:317) {
RR_sBYM[i] <- inla.emarginal(
function(x) exp(x),
sBYM.model$marginals.random$LA[[i]]
)
}
# Posterior probabilities
RR_sBYM_marg <- sBYM.model$marginals.random$LA[1:317]
PP_sBYM <- lapply(RR_sBYM_marg, function(x) {
1 - inla.pmarginal(0, x)
})
# Obtain the posterior estimates from the spatial model to be plotted, that is (i) the area level posterior mean of the residual RRs and (ii) the posterior probability (PP) that the residual RRs > 1.
resRR_PP <- data.frame(
resRR = RR_sBYM,
PP = unlist(PP_sBYM),
Level = cases_agg[, 1]
)
# Using ggplot2 package, produce a map of the posterior mean of the residual RRs and the posterior probabilities that the residual RRs are > 1
# For the map of the posterior mean of the residual RRs, use the following breakpoints [min,0.4], (0.4-0.6], (0.6-0.8], (0.8,1], (1,1.2], (1.2-1.4], (1.4-1.6], (1.6-max].
resRR_PP$resRRcat <- cut(resRR_PP$resRR, breaks = c(
min(resRR_PP$resRR),
0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6,
max(resRR_PP$resRR)
), include.lowest = T)
# breakpoints
resRR_PP$PPcat <- cut(resRR_PP$PP, c(0, 0.2, 0.8, 1.00), include.lowest = TRUE)
map_RR_PP <- left_join(map, resRR_PP, by = c("lad19cd" = "Level"))
# Produce the maps of the posterior mean of the residual RRs and the posterior probabilities PP using ggplot2 package.
library(viridis)
p1 <- ggplot() +
geom_sf(data = map_RR_PP) +
aes(fill = resRRcat) +
theme_bw() +
scale_fill_brewer(palette = "PuOr") +
guides(fill = guide_legend(title = "RR")) +
ggtitle("RR Spatial model") +
theme(
text = element_text(size = 15),
axis.text.x = element_blank(),
axis.text.y = element_blank(), plot.title = element_text(size = 12, face = "bold")
)
p2 <- ggplot() +
geom_sf(data = map_RR_PP) +
aes(fill = PPcat) +
theme_bw() +
scale_fill_viridis(
option = "plasma", name = "PP",
discrete = T,
direction = -1,
guide = guide_legend(
title.position = "top",
reverse = T
)
) +
ggtitle("PP Spatial model") +
theme(
text = element_text(size = 15),
axis.text.x = element_blank(),
axis.text.y = element_blank(), plot.title = element_text(size = 12, face = "bold")
)
print(p1)
print(p2)
sBYM.model$summary.hyperpar
## mean sd 0.025quant 0.5quant 0.975quant mode
## Precision for LA 9.6307030 0.91409535 7.8773681 9.6182571 11.4716396 9.6461504
## Phi for LA 0.9616735 0.03059103 0.8818594 0.9697759 0.9958556 0.9876124