# Supplematal Table 1 - missings by sex and year --------------------------
## levels of bmi according to skinfold comments  


sB(bmi~sexc+tsf.com, FUN=quantile, probs=c(0.05,0.50,0.95),data=d) %>% roundc(.,1)
##    sexc tsf.com bmi.5. bmi.50. bmi.95.
## 1   Men       0   20.3    26.8    36.3
## 2   Men       1   21.0    30.1    44.5
## 3   Men       2   33.1    43.2    62.1
## 4 Women       0   19.4    26.7    38.6
## 5 Women       1   20.1    30.6    48.1
## 6 Women       2   30.2    39.6    53.8
sB(bmi~sexc+ssf.com, FUN=quantile, probs=c(0.05,0.50,0.95),data=d) %>% roundc(.,1)
##    sexc ssf.com bmi.5. bmi.50. bmi.95.
## 1   Men       0   20.1    26.4    34.4
## 2   Men       1   23.2    32.4    44.7
## 3   Men       2   28.3    37.1    52.7
## 4 Women       0   19.3    26.2    37.7
## 5 Women       1   22.0    33.1    48.2
## 6 Women       2   29.6    38.9    53.6
dx=mutate(d, tsf.com=factor(tsf.com, 
                labels=c('Valid', 'Could Not\nObtain', 'Exceeds\nJaw')),
  bmi=pmin(bmi,75), ageg=factor(ageg,labels=c('20_30','40_59','60_99')))
ggplot(dx, aes(tsf.com, bmi)) + geom_violin() + theme_df() + 
  facet_grid(sexc~ageg) + labs(x='\nTSF comment code\n', y='BMI\n') +
  geom_boxplot(width=0.1)