Conhecendo o R

#R BƔsico


#Calculadora
2+2
## [1] 4
5-1
## [1] 4
2*3
## [1] 6
4/5
## [1] 0.8
#Sequencia
1:100
##   [1]   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18
##  [19]  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36
##  [37]  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54
##  [55]  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72
##  [73]  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90
##  [91]  91  92  93  94  95  96  97  98  99 100
#Vetor / objetos
valor <- 5
pares <- c(0,2,4,6,8)
cores <- c("azul","vermelho","amarelo")

valor
## [1] 5
pares
## [1] 0 2 4 6 8
cores
## [1] "azul"     "vermelho" "amarelo"
#Listas
ls()
## [1] "cores" "pares" "valor"
#Matriz
matrix(1:100,nrow=20,ncol=5)
##       [,1] [,2] [,3] [,4] [,5]
##  [1,]    1   21   41   61   81
##  [2,]    2   22   42   62   82
##  [3,]    3   23   43   63   83
##  [4,]    4   24   44   64   84
##  [5,]    5   25   45   65   85
##  [6,]    6   26   46   66   86
##  [7,]    7   27   47   67   87
##  [8,]    8   28   48   68   88
##  [9,]    9   29   49   69   89
## [10,]   10   30   50   70   90
## [11,]   11   31   51   71   91
## [12,]   12   32   52   72   92
## [13,]   13   33   53   73   93
## [14,]   14   34   54   74   94
## [15,]   15   35   55   75   95
## [16,]   16   36   56   76   96
## [17,]   17   37   57   77   97
## [18,]   18   38   58   78   98
## [19,]   19   39   59   79   99
## [20,]   20   40   60   80  100
array(1:100,dim=c(5,5,4))
## , , 1
## 
##      [,1] [,2] [,3] [,4] [,5]
## [1,]    1    6   11   16   21
## [2,]    2    7   12   17   22
## [3,]    3    8   13   18   23
## [4,]    4    9   14   19   24
## [5,]    5   10   15   20   25
## 
## , , 2
## 
##      [,1] [,2] [,3] [,4] [,5]
## [1,]   26   31   36   41   46
## [2,]   27   32   37   42   47
## [3,]   28   33   38   43   48
## [4,]   29   34   39   44   49
## [5,]   30   35   40   45   50
## 
## , , 3
## 
##      [,1] [,2] [,3] [,4] [,5]
## [1,]   51   56   61   66   71
## [2,]   52   57   62   67   72
## [3,]   53   58   63   68   73
## [4,]   54   59   64   69   74
## [5,]   55   60   65   70   75
## 
## , , 4
## 
##      [,1] [,2] [,3] [,4] [,5]
## [1,]   76   81   86   91   96
## [2,]   77   82   87   92   97
## [3,]   78   83   88   93   98
## [4,]   79   84   89   94   99
## [5,]   80   85   90   95  100
#Graficos
plot(1:10,10:1)

plot(1:10,10:1,pch=2)

plot(1:10,10:1,pch=2,col=2)

plot(1:10,10:1,pch=2,xlab="eixo x")

plot(1:10,10:1,pch=2,xlab="eixo x",ylab="eixo y")

hist(rnorm(1000),col=33)
arrows(2,100,2,70,col=2)

boxplot(iris$Sepal.Length~iris$Species)

#FunƧƵes
media=function(objeto){sum(objeto)/length(objeto)}
media(c(1,2,3))
## [1] 2
alturas=c(1.4,1.7,2.0,1.6,1.8)
media(alturas)   
## [1] 1.7
#Medidas estatisticas

sum(alturas)    # soma dos elementos do objeto "alturas"
## [1] 8.5
length(alturas) # nĆŗmero de elementos do objeto "alturas"
## [1] 5
mean(alturas)   # mƩdia dos elementos do objeto "alturas"
## [1] 1.7

Adquirindo e preparando os dados

#Bibliotecas
library(geobr)
## Warning: package 'geobr' was built under R version 4.2.3
## Loading required namespace: sf
## Warning in CPL_gdal_init(): GDAL Error 1: Can't load requested DLL: C:\Program Files\GeoDa Software\ogr_FileGDB.dll
## 126: Não foi possível encontrar o módulo especificado.
## Warning in CPL_gdal_init(): GDAL Error 1: Can't load requested DLL: C:\Program Files\GeoDa Software\ogr_FileGDB.dll
## 126: Não foi possível encontrar o módulo especificado.
## Warning in CPL_gdal_init(): GDAL Error 1: Can't load requested DLL: C:\Program Files\GeoDa Software\ogr_MSSQLSpatial.dll
## 126: Não foi possível encontrar o módulo especificado.

## Warning in CPL_gdal_init(): GDAL Error 1: Can't load requested DLL: C:\Program Files\GeoDa Software\ogr_MSSQLSpatial.dll
## 126: Não foi possível encontrar o módulo especificado.
## Warning in CPL_gdal_init(): GDAL Error 1: Can't load requested DLL: C:\Program Files\GeoDa Software\ogr_OCI.dll
## 126: Não foi possível encontrar o módulo especificado.

## Warning in CPL_gdal_init(): GDAL Error 1: Can't load requested DLL: C:\Program Files\GeoDa Software\ogr_OCI.dll
## 126: Não foi possível encontrar o módulo especificado.
## Warning in CPL_gdal_init(): GDAL Error 1: Can't load requested DLL: C:\Program Files\GeoDa Software\ogr_PG.dll
## 126: Não foi possível encontrar o módulo especificado.

## Warning in CPL_gdal_init(): GDAL Error 1: Can't load requested DLL: C:\Program Files\GeoDa Software\ogr_PG.dll
## 126: Não foi possível encontrar o módulo especificado.
## Warning in CPL_gdal_init(): GDAL Error 1: Can't load requested DLL: C:\Program Files\GeoDa Software\ogr_FileGDB.dll
## 126: Não foi possível encontrar o módulo especificado.

## Warning in CPL_gdal_init(): GDAL Error 1: Can't load requested DLL: C:\Program Files\GeoDa Software\ogr_FileGDB.dll
## 126: Não foi possível encontrar o módulo especificado.
## Warning in CPL_gdal_init(): GDAL Error 1: Can't load requested DLL: C:\Program Files\GeoDa Software\ogr_MSSQLSpatial.dll
## 126: Não foi possível encontrar o módulo especificado.

## Warning in CPL_gdal_init(): GDAL Error 1: Can't load requested DLL: C:\Program Files\GeoDa Software\ogr_MSSQLSpatial.dll
## 126: Não foi possível encontrar o módulo especificado.
## Warning in CPL_gdal_init(): GDAL Error 1: Can't load requested DLL: C:\Program Files\GeoDa Software\ogr_OCI.dll
## 126: Não foi possível encontrar o módulo especificado.

## Warning in CPL_gdal_init(): GDAL Error 1: Can't load requested DLL: C:\Program Files\GeoDa Software\ogr_OCI.dll
## 126: Não foi possível encontrar o módulo especificado.
## Warning in CPL_gdal_init(): GDAL Error 1: Can't load requested DLL: C:\Program Files\GeoDa Software\ogr_PG.dll
## 126: Não foi possível encontrar o módulo especificado.

## Warning in CPL_gdal_init(): GDAL Error 1: Can't load requested DLL: C:\Program Files\GeoDa Software\ogr_PG.dll
## 126: Não foi possível encontrar o módulo especificado.
library(sf)
## Linking to GEOS 3.9.1, GDAL 3.3.2, PROJ 7.2.1; sf_use_s2() is TRUE
library(microdatasus)
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.2.3
## Warning: package 'ggplot2' was built under R version 4.2.3
## Warning: package 'tibble' was built under R version 4.2.3
## Warning: package 'tidyr' was built under R version 4.2.3
## Warning: package 'readr' was built under R version 4.2.3
## Warning: package 'purrr' was built under R version 4.2.3
## Warning: package 'dplyr' was built under R version 4.2.3
## Warning: package 'forcats' was built under R version 4.2.3
## Warning: package 'lubridate' was built under R version 4.2.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## āœ” dplyr     1.1.2     āœ” readr     2.1.4
## āœ” forcats   1.0.0     āœ” stringr   1.5.0
## āœ” ggplot2   3.4.2     āœ” tibble    3.2.1
## āœ” lubridate 1.9.2     āœ” tidyr     1.3.0
## āœ” purrr     1.0.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## āœ– dplyr::filter() masks stats::filter()
## āœ– dplyr::lag()    masks stats::lag()
## ℹ Use the ]8;;http://conflicted.r-lib.org/conflicted package]8;; to force all conflicts to become errors
# Download base grƔfica
mun <- read_municipality(code_muni = 33, year = 2020)
## Using year 2020
## 
Downloading: 780 B     
Downloading: 780 B     
Downloading: 2 kB     
Downloading: 2 kB     
Downloading: 18 kB     
Downloading: 18 kB     
Downloading: 34 kB     
Downloading: 34 kB     
Downloading: 51 kB     
Downloading: 51 kB     
Downloading: 67 kB     
Downloading: 67 kB     
Downloading: 83 kB     
Downloading: 83 kB     
Downloading: 99 kB     
Downloading: 99 kB     
Downloading: 120 kB     
Downloading: 120 kB     
Downloading: 130 kB     
Downloading: 130 kB     
Downloading: 140 kB     
Downloading: 140 kB     
Downloading: 150 kB     
Downloading: 150 kB     
Downloading: 160 kB     
Downloading: 160 kB     
Downloading: 180 kB     
Downloading: 180 kB     
Downloading: 190 kB     
Downloading: 190 kB     
Downloading: 200 kB     
Downloading: 200 kB     
Downloading: 210 kB     
Downloading: 210 kB     
Downloading: 220 kB     
Downloading: 220 kB     
Downloading: 240 kB     
Downloading: 240 kB     
Downloading: 250 kB     
Downloading: 250 kB     
Downloading: 260 kB     
Downloading: 260 kB     
Downloading: 270 kB     
Downloading: 270 kB     
Downloading: 280 kB     
Downloading: 280 kB     
Downloading: 280 kB     
Downloading: 280 kB
mun$MUNIC_RES <- str_sub(mun$code_muni, end = -2)



#Download dados tabulares
df <- fetch_datasus(year_start = 2021, month_start = 3,
                    year_end = 2021, month_end = 3,
                    uf = "RJ",
                    information_system = "SIH-RD")
## Your local Internet connection seems to be ok.
## DataSUS FTP server seems to be up. Starting download...
df_a <- process_sih(df)
df_b <- process_sih(df, municipality_data = FALSE)


#Filtro SIH Covid
df_c<-df_b %>%
  filter(DIAG_PRINC == "B342")

#CƔlculo indicador
df_d<-df_c %>%
  group_by(MUNIC_RES, MARCA_UTI) %>%
  summarise(n=n()) %>%
  transmute(MARCA_UTI, percent = (n/sum(n)*100))
## `summarise()` has grouped output by 'MUNIC_RES'. You can override using the
## `.groups` argument.
#Join dados graficos e dados tabulares
mapa<-mun %>%
  left_join(y=df_d, by=c("MUNIC_RES"="MUNIC_RES"))

Gerando o mapa

# plot
ggplot() + #plot do mapa
  geom_sf(data = mun, alpha = .9, color = 1) + #camada base
  geom_sf(data=mapa, aes(fill=percent), size=.15) + #camada mapa
  facet_wrap(~MARCA_UTI,  ncol=5)+ #facet de mapas
  labs(subtitle="Utilização de UTI, 2020", size=8) + # títutlo do mapa
  scale_fill_viridis_c(direction = -1, name="%", limits = c(0, 100)) #cores e legenda