library(nlme)
library(DT)
data("Milk")
set.seed(123)
N <- 100
time <- rep(1:5, each = N/5)
group <- rep(LETTERS[1:5], N/5)
x <- rnorm(N)
y <- 2*x + 0.5*time + rnorm(N)
mydata <- data.frame(time, group, x, y)
d <- lme(fixed = y ~ x + time, random = ~ 1 | group, data = mydata)
summary(d)
## Linear mixed-effects model fit by REML
## Data: mydata
## AIC BIC logLik
## 292.1412 305.0148 -141.0706
##
## Random effects:
## Formula: ~1 | group
## (Intercept) Residual
## StdDev: 0.240024 0.9460997
##
## Fixed effects: y ~ x + time
## Value Std.Error DF t-value p-value
## (Intercept) -0.3066025 0.24650015 93 -1.243823 0.2167
## x 1.9315503 0.10466033 93 18.455419 0.0000
## time 0.5684147 0.06702909 93 8.480119 0.0000
## Correlation:
## (Intr) x
## x 0.012
## time -0.813 -0.062
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -1.69510206 -0.71057793 -0.07125941 0.55654758 3.20625988
##
## Number of Observations: 100
## Number of Groups: 5
f <- lme(fixed = y ~ x, random = ~ 1 | group, data = mydata)
varcov <- getVarCov(f)
summary(varcov)
## (Intercept)
## Min. :0.02185
## 1st Qu.:0.02185
## Median :0.02185
## Mean :0.02185
## 3rd Qu.:0.02185
## Max. :0.02185
g <- lm(y ~ x, data = mydata)
cov_matrix <- vcov(g)
summary(cov_matrix)
## (Intercept) x
## Min. :-0.001741 Min. :-0.001741
## 1st Qu.: 0.002705 1st Qu.: 0.003509
## Median : 0.007152 Median : 0.008760
## Mean : 0.007152 Mean : 0.008760
## 3rd Qu.: 0.011599 3rd Qu.: 0.014011
## Max. : 0.016046 Max. : 0.019261
s <- lme(fixed = y ~ x, random = ~ 1 | group, data = mydata)
random_effects <- ranef(s)
summary(random_effects)
## (Intercept)
## Min. :-0.08671
## 1st Qu.:-0.05973
## Median : 0.02785
## Mean : 0.00000
## 3rd Qu.: 0.05279
## Max. : 0.06580
m <- lme(fixed = y ~ x, random = ~ 1 | group, data = mydata)
fixed_effects <- fixed.effects(m)
summary(fixed_effects)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.393 1.543 1.693 1.693 1.843 1.992
n <- lme(fixed = y ~ x, random = ~ 1 | group, data = mydata)
model <- residuals(n)
summary(model)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -2.51108 -0.96206 -0.03114 0.00000 0.84860 3.77426
model <- lm(y ~ x + factor(group), data = mydata)
anova_results <- anova(model)
summary(anova_results)
## Df Sum Sq Mean Sq F value
## Min. : 1.0 Min. : 8.029 Min. : 1.571 Min. : 1.278
## 1st Qu.: 2.5 1st Qu.: 77.854 1st Qu.: 1.789 1st Qu.: 53.245
## Median : 4.0 Median :147.679 Median : 2.007 Median :105.212
## Mean :33.0 Mean :161.429 Mean :110.719 Mean :105.212
## 3rd Qu.:49.0 3rd Qu.:238.129 3rd Qu.:165.293 3rd Qu.:157.179
## Max. :94.0 Max. :328.579 Max. :328.579 Max. :209.146
## NA's :1
## Pr(>F)
## Min. :0.00000
## 1st Qu.:0.07109
## Median :0.14218
## Mean :0.14218
## 3rd Qu.:0.21327
## Max. :0.28436
## NA's :1
```