Loading Packages

library(vegan)
## Loading required package: permute
## Loading required package: lattice
## This is vegan 2.6-4
library(ggplot2)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(tidyr)
library(lme4)
## Loading required package: Matrix
## 
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
## 
##     expand, pack, unpack
library(lmerTest)
## 
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
## 
##     lmer
## The following object is masked from 'package:stats':
## 
##     step
library(iNEXT)
library(ggthemes)
library(report)
library(ggiraphExtra)
## 
## Attaching package: 'ggiraphExtra'
## The following object is masked from 'package:ggthemes':
## 
##     theme_clean
library(sjPlot)
## Learn more about sjPlot with 'browseVignettes("sjPlot")'.
library(RColorBrewer)
library(MASS)
## 
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
## 
##     select

Reading in the data

bee.data.raw <-read.csv("Orchid Bee Data - Collections.csv")
summary(bee.data.raw)
##     trap_num      treatment             date            time_start       
##  Min.   :1.000   Length:93          Length:93          Length:93         
##  1st Qu.:3.000   Class :character   Class :character   Class :character  
##  Median :5.000   Mode  :character   Mode  :character   Mode  :character  
##  Mean   :4.301                                                           
##  3rd Qu.:6.000                                                           
##  Max.   :6.000                                                           
##    time_end             site              spec_num        order          
##  Length:93          Length:93          Min.   : 1.00   Length:93         
##  Class :character   Class :character   1st Qu.: 4.00   Class :character  
##  Mode  :character   Mode  :character   Median : 8.00   Mode  :character  
##                                        Mean   :10.73                     
##                                        3rd Qu.:16.00                     
##                                        Max.   :32.00                     
##      fam               genus              specie               lat       
##  Length:93          Length:93          Length:93          Min.   :10.43  
##  Class :character   Class :character   Class :character   1st Qu.:10.43  
##  Mode  :character   Mode  :character   Mode  :character   Median :10.43  
##                                                           Mean   :10.43  
##                                                           3rd Qu.:10.43  
##                                                           Max.   :10.43  
##       lon         elevation       canopy           Label          
##  Min.   :-84.01   Mode:logical   Mode:logical   Length:93         
##  1st Qu.:-84.01   NA's:93        NA's:93        Class :character  
##  Median :-84.01                                 Mode  :character  
##  Mean   :-84.01                                                   
##  3rd Qu.:-84.01                                                   
##  Max.   :-84.00                                                   
##  Determination     
##  Length:93         
##  Class :character  
##  Mode  :character  
##                    
##                    
## 

Data Tidying

#Dataframe with site and treatment data summarized by abundance
bee.data <- bee.data.raw %>%
  group_by(treatment,site,date) %>%
  summarise(n.obs=n())
## `summarise()` has grouped output by 'treatment', 'site'. You can override using
## the `.groups` argument.
#A dataframe with grouped days for community analysis
bee.data.grouped <- bee.data.raw %>%
  group_by(treatment,site) %>%
  summarise(n.obs=n())
## `summarise()` has grouped output by 'treatment'. You can override using the
## `.groups` argument.
#Visualize new dataframe
bee.data
## # A tibble: 12 × 4
## # Groups:   treatment, site [6]
##    treatment site      date      n.obs
##    <chr>     <chr>     <chr>     <int>
##  1 absent    arboleda  6-18-2023    17
##  2 absent    arboleda  6-19-2023     5
##  3 absent    cafeteria 6-18-2023     4
##  4 absent    cafeteria 6-19-2023     3
##  5 absent    trail     6-18-2023     9
##  6 absent    trail     6-19-2023     2
##  7 present   arboleda  6-18-2023    23
##  8 present   arboleda  6-19-2023     9
##  9 present   cafeteria 6-18-2023     5
## 10 present   cafeteria 6-19-2023     4
## 11 present   trail     6-18-2023    10
## 12 present   trail     6-19-2023     2

Tidying and Calculating Bee Diversity Data

#Combining genus and species names into one

#Creating dataframes with bee abundances by species and site
species.data.1 <- bee.data.raw %>%
  unite("genus_specie", genus:specie)%>%
  unite("treatment_site_date", treatment,site,date) %>%
  group_by(treatment_site_date,genus_specie) %>%
  summarise(species.obs=n()) 
## `summarise()` has grouped output by 'treatment_site_date'. You can override
## using the `.groups` argument.
#Pivot dataframes wide to get into correct format for vegan
species.wide <- as.data.frame(pivot_wider(species.data.1, names_from = treatment_site_date, values_from = species.obs, values_fill = 0))

#Create input for iNEXCT
species.iNEXTinput <-species.wide[,-1]

#Running iNEXT to find richness data
Bee_iNEXT <-iNEXT(species.iNEXTinput, q= c(0,1,2), datatype = "abundance")
Bee_iNEXT
## Compare 12 assemblages with Hill number order q = 0, 1, 2.
## $class: iNEXT
## 
## $DataInfo: basic data information
##                     Assemblage  n S.obs     SC f1 f2 f3 f4 f5 f6 f7 f8 f9 f10
## 1    absent_arboleda_6-18-2023 17     6 0.8893  2  1  1  1  0  1  0  0  0   0
## 2    absent_arboleda_6-19-2023  5     3 0.9000  1  2  0  0  0  0  0  0  0   0
## 3   absent_cafeteria_6-18-2023  4     3 0.6250  2  1  0  0  0  0  0  0  0   0
## 4   absent_cafeteria_6-19-2023  3     2 0.8333  1  1  0  0  0  0  0  0  0   0
## 5       absent_trail_6-18-2023  9     4 0.8222  2  0  1  1  0  0  0  0  0   0
## 6       absent_trail_6-19-2023  2     2 0.6667  2  0  0  0  0  0  0  0  0   0
## 7   present_arboleda_6-18-2023 23     3 1.0000  0  1  0  0  0  0  0  0  0   1
## 8   present_arboleda_6-19-2023  9     5 0.8222  2  2  1  0  0  0  0  0  0   0
## 9  present_cafeteria_6-18-2023  5     3 0.7333  2  0  1  0  0  0  0  0  0   0
## 10 present_cafeteria_6-19-2023  4     4 0.1818  4  0  0  0  0  0  0  0  0   0
## 11     present_trail_6-18-2023 10     3 1.0000  0  1  1  0  1  0  0  0  0   0
## 12     present_trail_6-19-2023  2     2 0.6667  2  0  0  0  0  0  0  0  0   0
## 
## $iNextEst: diversity estimates with rarefied and extrapolated samples.
## $size_based (LCL and UCL are obtained for fixed size.)
## 
##                      Assemblage  m        Method Order.q       qD    qD.LCL
## 1     absent_arboleda_6-18-2023  1   Rarefaction       0 1.000000 1.0000000
## 9     absent_arboleda_6-18-2023  9   Rarefaction       0 4.738914 3.5750907
## 17    absent_arboleda_6-18-2023 17      Observed       0 6.000000 4.2023545
## 26    absent_arboleda_6-18-2023 26 Extrapolation       0 6.791564 4.2926935
## 34    absent_arboleda_6-18-2023 34 Extrapolation       0 7.210755 4.2364074
## 35    absent_arboleda_6-18-2023  1   Rarefaction       1 1.000000 1.0000000
## 43    absent_arboleda_6-18-2023  9   Rarefaction       1 4.127184 2.8954926
## 51    absent_arboleda_6-18-2023 17      Observed       1 4.949177 3.2419351
## 60    absent_arboleda_6-18-2023 26 Extrapolation       1 5.424434 3.4336404
## 68    absent_arboleda_6-18-2023 34 Extrapolation       1 5.696376 3.5358683
## 69    absent_arboleda_6-18-2023  1   Rarefaction       2 1.000000 1.0000000
## 77    absent_arboleda_6-18-2023  9   Rarefaction       2 3.642857 2.4202997
## 85    absent_arboleda_6-18-2023 17      Observed       2 4.313433 2.5637899
## 94    absent_arboleda_6-18-2023 26 Extrapolation       2 4.646518 2.5982697
## 102   absent_arboleda_6-18-2023 34 Extrapolation       2 4.811655 2.6053675
## 103   absent_arboleda_6-19-2023  1   Rarefaction       0 1.000000 1.0000000
## 105   absent_arboleda_6-19-2023  3   Rarefaction       0 2.400000 1.8209993
## 107   absent_arboleda_6-19-2023  5      Observed       0 3.000000 1.7322694
## 110   absent_arboleda_6-19-2023  8 Extrapolation       0 3.175000 0.9727756
## 112   absent_arboleda_6-19-2023 10 Extrapolation       0 3.193750 0.5339315
## 113   absent_arboleda_6-19-2023  1   Rarefaction       1 1.000000 1.0000000
## 115   absent_arboleda_6-19-2023  3   Rarefaction       1 2.273575 1.6569869
## 117   absent_arboleda_6-19-2023  5      Observed       1 2.871746 1.6152277
## 120   absent_arboleda_6-19-2023  8 Extrapolation       1 3.313407 1.2653113
## 122   absent_arboleda_6-19-2023 10 Extrapolation       1 3.473748 0.9984269
## 123   absent_arboleda_6-19-2023  1   Rarefaction       2 1.000000 1.0000000
## 125   absent_arboleda_6-19-2023  3   Rarefaction       2 2.142857 1.5153988
## 127   absent_arboleda_6-19-2023  5      Observed       2 2.777778 1.5472332
## 130   absent_arboleda_6-19-2023  8 Extrapolation       2 3.333333 1.3916019
## 132   absent_arboleda_6-19-2023 10 Extrapolation       2 3.571429 1.2611975
## 133  absent_cafeteria_6-18-2023  1   Rarefaction       0 1.000000 1.0000000
## 134  absent_cafeteria_6-18-2023  2   Rarefaction       0 1.833333 1.4417296
## 136  absent_cafeteria_6-18-2023  4      Observed       0 3.000000 1.5966698
## 138  absent_cafeteria_6-18-2023  6 Extrapolation       0 3.656250 1.3021033
## 140  absent_cafeteria_6-18-2023  8 Extrapolation       0 4.025391 1.0492333
## 141  absent_cafeteria_6-18-2023  1   Rarefaction       1 1.000000 1.0000000
## 142  absent_cafeteria_6-18-2023  2   Rarefaction       1 1.781797 1.3548852
## 144  absent_cafeteria_6-18-2023  4      Observed       1 2.828427 1.3482698
## 146  absent_cafeteria_6-18-2023  6 Extrapolation       1 3.498140 1.0589713
## 148  absent_cafeteria_6-18-2023  8 Extrapolation       1 3.950431 0.7197724
## 149  absent_cafeteria_6-18-2023  1   Rarefaction       2 1.000000 1.0000000
## 150  absent_cafeteria_6-18-2023  2   Rarefaction       2 1.714286 1.2565111
## 152  absent_cafeteria_6-18-2023  4      Observed       2 2.666667 1.1416817
## 154  absent_cafeteria_6-18-2023  6 Extrapolation       2 3.272727 0.6072255
## 156  absent_cafeteria_6-18-2023  8 Extrapolation       2 3.692308 0.0000000
## 157  absent_cafeteria_6-19-2023  1   Rarefaction       0 1.000000 1.0000000
## 158  absent_cafeteria_6-19-2023  2   Rarefaction       0 1.666667 1.0166872
## 159  absent_cafeteria_6-19-2023  3      Observed       0 2.000000 0.6962939
## 161  absent_cafeteria_6-19-2023  5 Extrapolation       0 2.250000 0.1595824
## 162  absent_cafeteria_6-19-2023  6 Extrapolation       0 2.291667 0.0000000
## 163  absent_cafeteria_6-19-2023  1   Rarefaction       1 1.000000 1.0000000
## 164  absent_cafeteria_6-19-2023  2   Rarefaction       1 1.587401 0.9416906
## 165  absent_cafeteria_6-19-2023  3      Observed       1 1.889882 0.5669919
## 167  absent_cafeteria_6-19-2023  5 Extrapolation       1 2.232303 0.0000000
## 168  absent_cafeteria_6-19-2023  6 Extrapolation       1 2.325580 0.0000000
## 169  absent_cafeteria_6-19-2023  1   Rarefaction       2 1.000000 1.0000000
## 170  absent_cafeteria_6-19-2023  2   Rarefaction       2 1.500000 0.8481470
## 171  absent_cafeteria_6-19-2023  3      Observed       2 1.800000 0.4551850
## 173  absent_cafeteria_6-19-2023  5 Extrapolation       2 2.142857 0.0000000
## 174  absent_cafeteria_6-19-2023  6 Extrapolation       2 2.250000 0.0000000
## 175      absent_trail_6-18-2023  1   Rarefaction       0 1.000000 1.0000000
## 179      absent_trail_6-18-2023  5   Rarefaction       0 3.055556 2.0985252
## 183      absent_trail_6-18-2023  9      Observed       0 4.000000 2.4037837
## 188      absent_trail_6-18-2023 14 Extrapolation       0 4.597618 2.3579073
## 192      absent_trail_6-18-2023 18 Extrapolation       0 4.769584 2.2300131
## 193      absent_trail_6-18-2023  1   Rarefaction       1 1.000000 1.0000000
## 197      absent_trail_6-18-2023  5   Rarefaction       1 2.755615 1.8413827
## 201      absent_trail_6-18-2023  9      Observed       1 3.369922 2.0215790
## 206      absent_trail_6-18-2023 14 Extrapolation       1 3.802275 2.1348631
## 210      absent_trail_6-18-2023 18 Extrapolation       1 4.010779 2.1737967
## 211      absent_trail_6-18-2023  1   Rarefaction       2 1.000000 1.0000000
## 215      absent_trail_6-18-2023  5   Rarefaction       2 2.500000 1.6492022
## 219      absent_trail_6-18-2023  9      Observed       2 3.000000 1.7238585
## 224      absent_trail_6-18-2023 14 Extrapolation       2 3.294118 1.7306588
## 228      absent_trail_6-18-2023 18 Extrapolation       2 3.428571 1.7235031
## 229      absent_trail_6-19-2023  1   Rarefaction       0 1.000000 1.0000000
## 230      absent_trail_6-19-2023  2      Observed       0 2.000000 1.1798492
## 231      absent_trail_6-19-2023  3 Extrapolation       0 2.333333 1.2397990
## 232      absent_trail_6-19-2023  4 Extrapolation       0 2.444444 1.2597822
## 233      absent_trail_6-19-2023  1   Rarefaction       1 1.000000 1.0000000
## 234      absent_trail_6-19-2023  2      Observed       1 2.000000 1.1798492
## 235      absent_trail_6-19-2023  3 Extrapolation       1 2.578947 1.2839725
## 236      absent_trail_6-19-2023  4 Extrapolation       1 2.914127 1.3442544
## 237      absent_trail_6-19-2023  1   Rarefaction       2 1.000000 1.0000000
## 238      absent_trail_6-19-2023  2      Observed       2 2.000000 1.1798492
## 239      absent_trail_6-19-2023  3 Extrapolation       2 3.000000 1.3596985
## 240      absent_trail_6-19-2023  4 Extrapolation       2 4.000000 1.5395477
## 241  present_arboleda_6-18-2023  1   Rarefaction       0 1.000000 1.0000000
## 250  present_arboleda_6-18-2023 11   Rarefaction       0 2.739064 2.1481428
## 260  present_arboleda_6-18-2023 23      Observed       0 3.000000 2.3130134
## 270  present_arboleda_6-18-2023 34 Extrapolation       0 3.000000 2.3130134
## 280  present_arboleda_6-18-2023 46 Extrapolation       0 3.000000 2.3130134
## 281  present_arboleda_6-18-2023  1   Rarefaction       1 1.000000 1.0000000
## 290  present_arboleda_6-18-2023 11   Rarefaction       1 2.382571 1.8992774
## 300  present_arboleda_6-18-2023 23      Observed       1 2.527617 1.9934284
## 310  present_arboleda_6-18-2023 34 Extrapolation       1 2.575348 2.0268344
## 320  present_arboleda_6-18-2023 46 Extrapolation       1 2.605772 2.0461512
## 321  present_arboleda_6-18-2023  1   Rarefaction       2 1.000000 1.0000000
## 330  present_arboleda_6-18-2023 11   Rarefaction       2 2.203484 1.7547567
## 340  present_arboleda_6-18-2023 23      Observed       2 2.351111 1.8192245
## 350  present_arboleda_6-18-2023 34 Extrapolation       2 2.398773 1.8387385
## 360  present_arboleda_6-18-2023 46 Extrapolation       2 2.425594 1.8494393
## 361  present_arboleda_6-19-2023  1   Rarefaction       0 1.000000 1.0000000
## 365  present_arboleda_6-19-2023  5   Rarefaction       0 3.730159 2.9492076
## 369  present_arboleda_6-19-2023  9      Observed       0 5.000000 3.6606994
## 374  present_arboleda_6-19-2023 14 Extrapolation       0 5.597618 3.4987498
## 378  present_arboleda_6-19-2023 18 Extrapolation       0 5.769584 3.1388630
## 379  present_arboleda_6-19-2023  1   Rarefaction       1 1.000000 1.0000000
## 383  present_arboleda_6-19-2023  5   Rarefaction       1 3.472604 2.6380940
## 387  present_arboleda_6-19-2023  9      Observed       1 4.585756 3.2061301
## 392  present_arboleda_6-19-2023 14 Extrapolation       1 5.328491 3.4785500
## 396  present_arboleda_6-19-2023 18 Extrapolation       1 5.689727 3.5439458
## 397  present_arboleda_6-19-2023  1   Rarefaction       2 1.000000 1.0000000
## 401  present_arboleda_6-19-2023  5   Rarefaction       2 3.214286 2.3885090
## 405  present_arboleda_6-19-2023  9      Observed       2 4.263158 2.8906893
## 410  present_arboleda_6-19-2023 14 Extrapolation       2 4.990099 3.1969781
## 414  present_arboleda_6-19-2023 18 Extrapolation       2 5.355372 3.3387456
## 415 present_cafeteria_6-18-2023  1   Rarefaction       0 1.000000 1.0000000
## 417 present_cafeteria_6-18-2023  3   Rarefaction       0 2.200000 1.4052781
## 419 present_cafeteria_6-18-2023  5      Observed       0 3.000000 1.6724582
## 422 present_cafeteria_6-18-2023  8 Extrapolation       0 3.562963 1.7044432
## 424 present_cafeteria_6-18-2023 10 Extrapolation       0 3.694650 1.6413339
## 425 present_cafeteria_6-18-2023  1   Rarefaction       1 1.000000 1.0000000
## 427 present_cafeteria_6-18-2023  3   Rarefaction       1 2.037029 1.2773582
## 429 present_cafeteria_6-18-2023  5      Observed       1 2.586409 1.3399521
## 432 present_cafeteria_6-18-2023  8 Extrapolation       1 3.092823 1.3556839
## 434 present_cafeteria_6-18-2023 10 Extrapolation       1 3.294614 1.3260627
## 435 present_cafeteria_6-18-2023  1   Rarefaction       2 1.000000 1.0000000
## 437 present_cafeteria_6-18-2023  3   Rarefaction       2 1.875000 1.1675799
## 439 present_cafeteria_6-18-2023  5      Observed       2 2.272727 1.0838233
## 442 present_cafeteria_6-18-2023  8 Extrapolation       2 2.580645 0.9102764
## 444 present_cafeteria_6-18-2023 10 Extrapolation       2 2.702703 0.8048988
## 445 present_cafeteria_6-19-2023  1   Rarefaction       0 1.000000 1.0000000
## 446 present_cafeteria_6-19-2023  2   Rarefaction       0 2.000000 1.7307905
## 448 present_cafeteria_6-19-2023  4      Observed       0 4.000000 2.6461445
## 450 present_cafeteria_6-19-2023  6 Extrapolation       0 5.487603 3.1024677
## 452 present_cafeteria_6-19-2023  8 Extrapolation       0 6.483437 3.3852076
## 453 present_cafeteria_6-19-2023  1   Rarefaction       1 1.000000 1.0000000
## 454 present_cafeteria_6-19-2023  2   Rarefaction       1 2.000000 1.6746431
## 456 present_cafeteria_6-19-2023  4      Observed       1 4.000000 2.5431722
## 458 present_cafeteria_6-19-2023  6 Extrapolation       1 5.688177 3.1046847
## 460 present_cafeteria_6-19-2023  8 Extrapolation       1 7.031954 3.4947421
## 461 present_cafeteria_6-19-2023  1   Rarefaction       2 1.000000 1.0000000
## 462 present_cafeteria_6-19-2023  2   Rarefaction       2 2.000000 1.6127329
## 464 present_cafeteria_6-19-2023  4      Observed       2 4.000000 2.4498273
## 466 present_cafeteria_6-19-2023  6 Extrapolation       2 6.000000 3.0340598
## 468 present_cafeteria_6-19-2023  8 Extrapolation       2 8.000000 3.4824445
## 469     present_trail_6-18-2023  1   Rarefaction       0 1.000000 1.0000000
## 473     present_trail_6-18-2023  5   Rarefaction       0 2.690476 2.1586081
## 478     present_trail_6-18-2023 10      Observed       0 3.000000 2.4628767
## 483     present_trail_6-18-2023 15 Extrapolation       0 3.000000 2.3279242
## 488     present_trail_6-18-2023 20 Extrapolation       0 3.000000 2.2509734
## 489     present_trail_6-18-2023  1   Rarefaction       1 1.000000 1.0000000
## 493     present_trail_6-18-2023  5   Rarefaction       1 2.433576 1.8540632
## 498     present_trail_6-18-2023 10      Observed       1 2.800094 2.1103019
## 503     present_trail_6-18-2023 15 Extrapolation       1 2.934978 2.2213447
## 508     present_trail_6-18-2023 20 Extrapolation       1 3.012694 2.2846566
## 509     present_trail_6-18-2023  1   Rarefaction       2 1.000000 1.0000000
## 513     present_trail_6-18-2023  5   Rarefaction       2 2.227723 1.6434943
## 518     present_trail_6-18-2023 10      Observed       2 2.631579 1.7835181
## 523     present_trail_6-18-2023 15 Extrapolation       2 2.800830 1.8337284
## 528     present_trail_6-18-2023 20 Extrapolation       2 2.893891 1.8592954
## 529     present_trail_6-19-2023  1   Rarefaction       0 1.000000 1.0000000
## 530     present_trail_6-19-2023  2      Observed       0 2.000000 1.1798492
## 531     present_trail_6-19-2023  3 Extrapolation       0 2.333333 1.2397990
## 532     present_trail_6-19-2023  4 Extrapolation       0 2.444444 1.2597822
## 533     present_trail_6-19-2023  1   Rarefaction       1 1.000000 1.0000000
## 534     present_trail_6-19-2023  2      Observed       1 2.000000 1.1798492
## 535     present_trail_6-19-2023  3 Extrapolation       1 2.578947 1.2839725
## 536     present_trail_6-19-2023  4 Extrapolation       1 2.914127 1.3442544
## 537     present_trail_6-19-2023  1   Rarefaction       2 1.000000 1.0000000
## 538     present_trail_6-19-2023  2      Observed       2 2.000000 1.1798492
## 539     present_trail_6-19-2023  3 Extrapolation       2 3.000000 1.3596985
## 540     present_trail_6-19-2023  4 Extrapolation       2 4.000000 1.5395477
##        qD.UCL           SC     SC.LCL    SC.UCL
## 1    1.000000 1.838235e-01 0.03783835 0.3298087
## 9    5.902737 7.835973e-01 0.65862127 0.9085733
## 17   7.797645 8.892734e-01 0.75988458 1.0000000
## 26   9.290435 9.358360e-01 0.84656376 1.0000000
## 34  10.185103 9.604943e-01 0.89625813 1.0000000
## 35   1.000000 1.838235e-01 0.03783835 0.3298087
## 43   5.358875 7.835973e-01 0.65862127 0.9085733
## 51   6.656418 8.892734e-01 0.75988458 1.0000000
## 60   7.415228 9.358360e-01 0.84656376 1.0000000
## 68   7.856884 9.604943e-01 0.89625813 1.0000000
## 69   1.000000 1.838235e-01 0.03783835 0.3298087
## 77   4.865415 7.835973e-01 0.65862127 0.9085733
## 85   6.063076 8.892734e-01 0.75988458 1.0000000
## 94   6.694766 9.358360e-01 0.84656376 1.0000000
## 102  7.017942 9.604943e-01 0.89625813 1.0000000
## 103  1.000000 2.000000e-01 0.00000000 0.4413809
## 105  2.979001 6.000000e-01 0.23149018 0.9685098
## 107  4.267731 9.000000e-01 0.53239072 1.0000000
## 110  5.377224 9.875000e-01 0.73106549 1.0000000
## 112  5.853568 9.968750e-01 0.80164297 1.0000000
## 113  1.000000 2.000000e-01 0.00000000 0.4413809
## 115  2.890163 6.000000e-01 0.23149018 0.9685098
## 117  4.128264 9.000000e-01 0.53239072 1.0000000
## 120  5.361503 9.875000e-01 0.73106549 1.0000000
## 122  5.949070 9.968750e-01 0.80164297 1.0000000
## 123  1.000000 2.000000e-01 0.00000000 0.4413809
## 125  2.770315 6.000000e-01 0.23149018 0.9685098
## 127  4.008322 9.000000e-01 0.53239072 1.0000000
## 130  5.275065 9.875000e-01 0.73106549 1.0000000
## 132  5.881660 9.968750e-01 0.80164297 1.0000000
## 133  1.000000 1.666667e-01 0.00000000 0.5582704
## 134  2.224937 3.333333e-01 0.00000000 0.8466572
## 136  4.403330 6.250000e-01 0.09080367 1.0000000
## 138  6.010397 7.890625e-01 0.44009361 1.0000000
## 140  7.001548 8.813477e-01 0.65033463 1.0000000
## 141  1.000000 1.666667e-01 0.00000000 0.5582704
## 142  2.208710 3.333333e-01 0.00000000 0.8466572
## 144  4.308584 6.250000e-01 0.09080367 1.0000000
## 146  5.937308 7.890625e-01 0.44009361 1.0000000
## 148  7.181089 8.813477e-01 0.65033463 1.0000000
## 149  1.000000 1.666667e-01 0.00000000 0.5582704
## 150  2.172060 3.333333e-01 0.00000000 0.8466572
## 152  4.191652 6.250000e-01 0.09080367 1.0000000
## 154  5.938229 7.890625e-01 0.44009361 1.0000000
## 156  7.545666 8.813477e-01 0.65033463 1.0000000
## 157  1.000000 3.333333e-01 0.00000000 0.9833128
## 158  2.316646 6.666667e-01 0.00000000 1.0000000
## 159  3.303706 8.333333e-01 0.34836802 1.0000000
## 161  4.340418 9.583333e-01 0.72639516 1.0000000
## 162  4.603364 9.791667e-01 0.82058302 1.0000000
## 163  1.000000 3.333333e-01 0.00000000 0.9833128
## 164  2.233112 6.666667e-01 0.00000000 1.0000000
## 165  3.212771 8.333333e-01 0.34836802 1.0000000
## 167  4.603568 9.583333e-01 0.72639516 1.0000000
## 168  5.089778 9.791667e-01 0.82058302 1.0000000
## 169  1.000000 3.333333e-01 0.00000000 0.9833128
## 170  2.151853 6.666667e-01 0.00000000 1.0000000
## 171  3.144815 8.333333e-01 0.34836802 1.0000000
## 173  4.990715 9.583333e-01 0.72639516 1.0000000
## 174  5.887240 9.791667e-01 0.82058302 1.0000000
## 175  1.000000 2.500000e-01 0.00000000 0.5012573
## 179  4.012586 7.341270e-01 0.52411991 0.9441341
## 183  5.596216 8.222222e-01 0.62207958 1.0000000
## 188  6.837328 9.417458e-01 0.83597623 1.0000000
## 192  7.309155 9.761391e-01 0.91002675 1.0000000
## 193  1.000000 2.500000e-01 0.00000000 0.5012573
## 197  3.669848 7.341270e-01 0.52411991 0.9441341
## 201  4.718265 8.222222e-01 0.62207958 1.0000000
## 206  5.469687 9.417458e-01 0.83597623 1.0000000
## 210  5.847762 9.761391e-01 0.91002675 1.0000000
## 211  1.000000 2.500000e-01 0.00000000 0.5012573
## 215  3.350798 7.341270e-01 0.52411991 0.9441341
## 219  4.276141 8.222222e-01 0.62207958 1.0000000
## 224  4.857576 9.417458e-01 0.83597623 1.0000000
## 228  5.133640 9.761391e-01 0.91002675 1.0000000
## 229  1.000000 0.000000e+00 0.00000000 0.8201508
## 230  2.820151 6.666667e-01 0.39328308 0.9400503
## 231  3.426868 8.888889e-01 0.79776103 0.9800168
## 232  3.629107 9.629630e-01 0.93258701 0.9933389
## 233  1.000000 0.000000e+00 0.00000000 0.8201508
## 234  2.820151 6.666667e-01 0.39328308 0.9400503
## 235  3.873922 8.888889e-01 0.79776103 0.9800168
## 236  4.484000 9.629630e-01 0.93258701 0.9933389
## 237  1.000000 0.000000e+00 0.00000000 0.8201508
## 238  2.820151 6.666667e-01 0.39328308 0.9400503
## 239  4.640302 8.888889e-01 0.79776103 0.9800168
## 240  6.460452 9.629630e-01 0.93258701 0.9933389
## 241  1.000000 3.992095e-01 0.28302601 0.5153930
## 250  3.329985 9.564655e-01 0.92389532 0.9890357
## 260  3.686987 1.000000e+00 1.00000000 1.0000000
## 270  3.686987 1.000000e+00 1.00000000 1.0000000
## 280  3.686987 1.000000e+00 1.00000000 1.0000000
## 281  1.000000 3.992095e-01 0.28302601 0.5153930
## 290  2.865864 9.564655e-01 0.92389532 0.9890357
## 300  3.061806 1.000000e+00 1.00000000 1.0000000
## 310  3.123862 1.000000e+00 1.00000000 1.0000000
## 320  3.165394 1.000000e+00 1.00000000 1.0000000
## 321  1.000000 3.992095e-01 0.28302601 0.5153930
## 330  2.652211 9.564655e-01 0.92389532 0.9890357
## 340  2.882998 1.000000e+00 1.00000000 1.0000000
## 350  2.958807 1.000000e+00 1.00000000 1.0000000
## 360  3.001749 1.000000e+00 1.00000000 1.0000000
## 361  1.000000 1.388889e-01 0.00000000 0.3162326
## 365  4.511110 5.753968e-01 0.39330672 0.7574869
## 369  6.339301 8.222222e-01 0.62204431 1.0000000
## 374  7.696486 9.417458e-01 0.78078211 1.0000000
## 378  8.400305 9.761391e-01 0.84987648 1.0000000
## 379  1.000000 1.388889e-01 0.00000000 0.3162326
## 383  4.307115 5.753968e-01 0.39330672 0.7574869
## 387  5.965383 8.222222e-01 0.62204431 1.0000000
## 392  7.178431 9.417458e-01 0.78078211 1.0000000
## 396  7.835508 9.761391e-01 0.84987648 1.0000000
## 397  1.000000 1.388889e-01 0.00000000 0.3162326
## 401  4.040062 5.753968e-01 0.39330672 0.7574869
## 405  5.635627 8.222222e-01 0.62204431 1.0000000
## 410  6.783220 9.417458e-01 0.78078211 1.0000000
## 414  7.371998 9.761391e-01 0.84987648 1.0000000
## 415  1.000000 3.000000e-01 0.00000000 0.7197309
## 417  2.994722 6.000000e-01 0.27344869 0.9265513
## 419  4.327542 7.333333e-01 0.46755776 0.9991089
## 422  5.421483 9.209877e-01 0.78820811 1.0000000
## 424  5.747966 9.648834e-01 0.87178180 1.0000000
## 425  1.000000 3.000000e-01 0.00000000 0.7197309
## 427  2.796699 6.000000e-01 0.27344869 0.9265513
## 429  3.832866 7.333333e-01 0.46755776 0.9991089
## 432  4.829962 9.209877e-01 0.78820811 1.0000000
## 434  5.263165 9.648834e-01 0.87178180 1.0000000
## 435  1.000000 3.000000e-01 0.00000000 0.7197309
## 437  2.582420 6.000000e-01 0.27344869 0.9265513
## 439  3.461631 7.333333e-01 0.46755776 0.9991089
## 442  4.251014 9.209877e-01 0.78820811 1.0000000
## 444  4.600507 9.648834e-01 0.87178180 1.0000000
## 445  1.000000 1.110223e-16 0.00000000 0.2692095
## 446  2.269210 0.000000e+00 0.00000000 0.4696932
## 448  5.353855 1.818182e-01 0.00000000 0.7454926
## 450  7.872739 4.522915e-01 0.06050261 0.8440804
## 452  9.581666 6.333522e-01 0.36120497 0.9054994
## 453  1.000000 1.110223e-16 0.00000000 0.2692095
## 454  2.325357 0.000000e+00 0.00000000 0.4696932
## 456  5.456828 1.818182e-01 0.00000000 0.7454926
## 458  8.271669 4.522915e-01 0.06050261 0.8440804
## 460 10.569166 6.333522e-01 0.36120497 0.9054994
## 461  1.000000 1.110223e-16 0.00000000 0.2692095
## 462  2.387267 0.000000e+00 0.00000000 0.4696932
## 464  5.550173 1.818182e-01 0.00000000 0.7454926
## 466  8.965940 4.522915e-01 0.06050261 0.8440804
## 468 12.517556 6.333522e-01 0.36120497 0.9054994
## 469  1.000000 3.111111e-01 0.10568541 0.5165368
## 473  3.222344 8.571429e-01 0.77355914 0.9407266
## 478  3.537123 1.000000e+00 0.90975031 1.0000000
## 483  3.672076 1.000000e+00 0.96691015 1.0000000
## 488  3.749027 1.000000e+00 0.98786768 1.0000000
## 489  1.000000 3.111111e-01 0.10568541 0.5165368
## 493  3.013090 8.571429e-01 0.77355914 0.9407266
## 498  3.489886 1.000000e+00 0.90975031 1.0000000
## 503  3.648612 1.000000e+00 0.96691015 1.0000000
## 508  3.740732 1.000000e+00 0.98786768 1.0000000
## 509  1.000000 3.111111e-01 0.10568541 0.5165368
## 513  2.811951 8.571429e-01 0.77355914 0.9407266
## 518  3.479640 1.000000e+00 0.90975031 1.0000000
## 523  3.767931 1.000000e+00 0.96691015 1.0000000
## 528  3.928486 1.000000e+00 0.98786768 1.0000000
## 529  1.000000 0.000000e+00 0.00000000 0.8201508
## 530  2.820151 6.666667e-01 0.39328308 0.9400503
## 531  3.426868 8.888889e-01 0.79776103 0.9800168
## 532  3.629107 9.629630e-01 0.93258701 0.9933389
## 533  1.000000 0.000000e+00 0.00000000 0.8201508
## 534  2.820151 6.666667e-01 0.39328308 0.9400503
## 535  3.873922 8.888889e-01 0.79776103 0.9800168
## 536  4.484000 9.629630e-01 0.93258701 0.9933389
## 537  1.000000 0.000000e+00 0.00000000 0.8201508
## 538  2.820151 6.666667e-01 0.39328308 0.9400503
## 539  4.640302 8.888889e-01 0.79776103 0.9800168
## 540  6.460452 9.629630e-01 0.93258701 0.9933389
## 
## NOTE: The above output only shows five estimates for each assemblage; call iNEXT.object$iNextEst$size_based to view complete output.
## 
## $coverage_based (LCL and UCL are obtained for fixed coverage; interval length is wider due to varying size in bootstraps.)
## 
##                       Assemblage           SC  m        Method Order.q       qD
## 1      absent_arboleda_6-18-2023 1.838235e-01  1   Rarefaction       0 1.000000
## 9      absent_arboleda_6-18-2023 7.835974e-01  9   Rarefaction       0 4.738915
## 17     absent_arboleda_6-18-2023 8.892734e-01 17      Observed       0 6.000000
## 26     absent_arboleda_6-18-2023 9.358360e-01 26 Extrapolation       0 6.791564
## 34     absent_arboleda_6-18-2023 9.604943e-01 34 Extrapolation       0 7.210755
## 35     absent_arboleda_6-18-2023 1.838235e-01  1   Rarefaction       1 1.000000
## 43     absent_arboleda_6-18-2023 7.835974e-01  9   Rarefaction       1 4.127185
## 51     absent_arboleda_6-18-2023 8.892734e-01 17      Observed       1 4.949177
## 60     absent_arboleda_6-18-2023 9.358360e-01 26 Extrapolation       1 5.424434
## 68     absent_arboleda_6-18-2023 9.604943e-01 34 Extrapolation       1 5.696376
## 69     absent_arboleda_6-18-2023 1.838235e-01  1   Rarefaction       2 1.000000
## 77     absent_arboleda_6-18-2023 7.835974e-01  9   Rarefaction       2 3.642858
## 85     absent_arboleda_6-18-2023 8.892734e-01 17      Observed       2 4.313433
## 94     absent_arboleda_6-18-2023 9.358360e-01 26 Extrapolation       2 4.646518
## 102    absent_arboleda_6-18-2023 9.604943e-01 34 Extrapolation       2 4.811655
## 103    absent_arboleda_6-19-2023 2.000000e-01  1   Rarefaction       0 1.000000
## 105    absent_arboleda_6-19-2023 8.000000e-01  4   Rarefaction       0 2.632109
## 107    absent_arboleda_6-19-2023 9.000000e-01  5      Observed       0 3.000000
## 110    absent_arboleda_6-19-2023 9.875000e-01  8 Extrapolation       0 3.175000
## 112    absent_arboleda_6-19-2023 9.968750e-01 10 Extrapolation       0 3.193750
## 113    absent_arboleda_6-19-2023 2.000000e-01  1   Rarefaction       1 1.000000
## 115    absent_arboleda_6-19-2023 8.000000e-01  4   Rarefaction       1 2.485630
## 117    absent_arboleda_6-19-2023 9.000000e-01  5      Observed       1 2.871746
## 120    absent_arboleda_6-19-2023 9.875000e-01  8 Extrapolation       1 3.313407
## 122    absent_arboleda_6-19-2023 9.968750e-01 10 Extrapolation       1 3.473748
## 123    absent_arboleda_6-19-2023 2.000000e-01  1   Rarefaction       2 1.000000
## 125    absent_arboleda_6-19-2023 8.000000e-01  4   Rarefaction       2 2.350097
## 127    absent_arboleda_6-19-2023 9.000000e-01  5      Observed       2 2.777778
## 130    absent_arboleda_6-19-2023 9.875000e-01  8 Extrapolation       2 3.333333
## 132    absent_arboleda_6-19-2023 9.968750e-01 10 Extrapolation       2 3.571429
## 133   absent_cafeteria_6-18-2023 1.666667e-01  1   Rarefaction       0 1.000000
## 134   absent_cafeteria_6-18-2023 3.333285e-01  2   Rarefaction       0 1.833309
## 136   absent_cafeteria_6-18-2023 6.250000e-01  4      Observed       0 3.000000
## 138   absent_cafeteria_6-18-2023 7.890625e-01  6 Extrapolation       0 3.656250
## 140   absent_cafeteria_6-18-2023 8.813477e-01  8 Extrapolation       0 4.025391
## 141   absent_cafeteria_6-18-2023 1.666667e-01  1   Rarefaction       1 1.000000
## 142   absent_cafeteria_6-18-2023 3.333285e-01  2   Rarefaction       1 1.781775
## 144   absent_cafeteria_6-18-2023 6.250000e-01  4      Observed       1 2.828427
## 146   absent_cafeteria_6-18-2023 7.890625e-01  6 Extrapolation       1 3.498140
## 148   absent_cafeteria_6-18-2023 8.813477e-01  8 Extrapolation       1 3.950431
## 149   absent_cafeteria_6-18-2023 1.666667e-01  1   Rarefaction       2 1.000000
## 150   absent_cafeteria_6-18-2023 3.333285e-01  2   Rarefaction       2 1.714265
## 152   absent_cafeteria_6-18-2023 6.250000e-01  4      Observed       2 2.666667
## 154   absent_cafeteria_6-18-2023 7.890625e-01  6 Extrapolation       2 3.272727
## 156   absent_cafeteria_6-18-2023 8.813477e-01  8 Extrapolation       2 3.692308
## 157   absent_cafeteria_6-19-2023 6.666667e-01  1   Rarefaction       0 1.097304
## 310   absent_cafeteria_6-19-2023 8.333333e-01  3      Observed       0 2.000000
## 410   absent_cafeteria_6-19-2023 9.166667e-01  4 Extrapolation       0 2.166667
## 510   absent_cafeteria_6-19-2023 9.583333e-01  5 Extrapolation       0 2.250000
## 610   absent_cafeteria_6-19-2023 9.791667e-01  6 Extrapolation       0 2.291667
## 710   absent_cafeteria_6-19-2023 6.666667e-01  1   Rarefaction       1 1.085735
## 910   absent_cafeteria_6-19-2023 8.333333e-01  3      Observed       1 1.889882
## 1010  absent_cafeteria_6-19-2023 9.166667e-01  4 Extrapolation       1 2.094239
## 1110  absent_cafeteria_6-19-2023 9.583333e-01  5 Extrapolation       1 2.232303
## 1210  absent_cafeteria_6-19-2023 9.791667e-01  6 Extrapolation       1 2.325580
## 1310  absent_cafeteria_6-19-2023 6.666667e-01  1   Rarefaction       2 1.072978
## 158   absent_cafeteria_6-19-2023 8.333333e-01  3      Observed       2 1.800000
## 161   absent_cafeteria_6-19-2023 9.166667e-01  4 Extrapolation       2 2.000000
## 171   absent_cafeteria_6-19-2023 9.583333e-01  5 Extrapolation       2 2.142857
## 181   absent_cafeteria_6-19-2023 9.791667e-01  6 Extrapolation       2 2.250000
## 159       absent_trail_6-18-2023 2.500009e-01  1   Rarefaction       0 1.000003
## 511       absent_trail_6-18-2023 7.341234e-01  5   Rarefaction       0 3.055529
## 911       absent_trail_6-18-2023 8.577778e-01 10 Extrapolation       0 4.177778
## 1311      absent_trail_6-18-2023 9.417458e-01 14 Extrapolation       0 4.597618
## 172       absent_trail_6-18-2023 9.761391e-01 18 Extrapolation       0 4.769584
## 182       absent_trail_6-18-2023 2.500009e-01  1   Rarefaction       1 1.000003
## 221       absent_trail_6-18-2023 7.341234e-01  5   Rarefaction       1 2.755595
## 261       absent_trail_6-18-2023 8.577778e-01 10 Extrapolation       1 3.476653
## 301       absent_trail_6-18-2023 9.417458e-01 14 Extrapolation       1 3.802275
## 341       absent_trail_6-18-2023 9.761391e-01 18 Extrapolation       1 4.010779
## 351       absent_trail_6-18-2023 2.500009e-01  1   Rarefaction       2 1.000002
## 391       absent_trail_6-18-2023 7.341234e-01  5   Rarefaction       2 2.499983
## 431       absent_trail_6-18-2023 8.577778e-01 10 Extrapolation       2 3.076923
## 471       absent_trail_6-18-2023 9.417458e-01 14 Extrapolation       2 3.294118
## 512       absent_trail_6-18-2023 9.761391e-01 18 Extrapolation       2 3.428571
## 160       absent_trail_6-19-2023 0.000000e+00  1   Rarefaction       0 1.000000
## 212       absent_trail_6-19-2023 6.666667e-01  2      Observed       0 2.000000
## 313       absent_trail_6-19-2023 8.888889e-01  3 Extrapolation       0 2.333333
## 413       absent_trail_6-19-2023 9.629630e-01  4 Extrapolation       0 2.444444
## 513       absent_trail_6-19-2023 0.000000e+00  1   Rarefaction       1 1.000000
## 612       absent_trail_6-19-2023 6.666667e-01  2      Observed       1 2.000000
## 712       absent_trail_6-19-2023 8.888889e-01  3 Extrapolation       1 2.578947
## 811       absent_trail_6-19-2023 9.629630e-01  4 Extrapolation       1 2.914127
## 912       absent_trail_6-19-2023 0.000000e+00  1   Rarefaction       2 1.000000
## 1012      absent_trail_6-19-2023 6.666667e-01  2      Observed       2 2.000000
## 1112      absent_trail_6-19-2023 8.888889e-01  3 Extrapolation       2 3.000000
## 1212      absent_trail_6-19-2023 9.629630e-01  4 Extrapolation       2 4.000000
## 163   present_arboleda_6-18-2023 3.992122e-01  1   Rarefaction       0 1.000005
## 514   present_arboleda_6-18-2023 8.971732e-01  5   Rarefaction       0 2.333470
## 1013  present_arboleda_6-18-2023 9.564656e-01 11   Rarefaction       0 2.739064
## 1511  present_arboleda_6-18-2023 9.802371e-01 17   Rarefaction       0 2.940711
## 192   present_arboleda_6-18-2023 1.000000e+00 23      Observed       0 3.000000
## 202   present_arboleda_6-18-2023 3.992122e-01  1   Rarefaction       1 1.000005
## 242   present_arboleda_6-18-2023 8.971732e-01  5   Rarefaction       1 2.098868
## 292   present_arboleda_6-18-2023 9.564656e-01 11   Rarefaction       1 2.382571
## 342   present_arboleda_6-18-2023 9.802371e-01 17   Rarefaction       1 2.480874
## 382   present_arboleda_6-18-2023 1.000000e+00 23      Observed       1 2.527617
## 392   present_arboleda_6-18-2023 3.992122e-01  1   Rarefaction       2 1.000004
## 432   present_arboleda_6-18-2023 8.971732e-01  5   Rarefaction       2 1.925417
## 482   present_arboleda_6-18-2023 9.564656e-01 11   Rarefaction       2 2.203484
## 531   present_arboleda_6-18-2023 9.802371e-01 17   Rarefaction       2 2.301230
## 571   present_arboleda_6-18-2023 1.000000e+00 23      Observed       2 2.351111
## 165   present_arboleda_6-19-2023 1.388889e-01  1   Rarefaction       0 1.000000
## 516   present_arboleda_6-19-2023 5.753985e-01  5   Rarefaction       0 3.730167
## 914   present_arboleda_6-19-2023 8.222222e-01  9      Observed       0 5.000000
## 1412  present_arboleda_6-19-2023 9.417458e-01 14 Extrapolation       0 5.597618
## 184   present_arboleda_6-19-2023 9.761391e-01 18 Extrapolation       0 5.769584
## 193   present_arboleda_6-19-2023 1.388889e-01  1   Rarefaction       1 1.000000
## 233   present_arboleda_6-19-2023 5.753985e-01  5   Rarefaction       1 3.472611
## 273   present_arboleda_6-19-2023 8.222222e-01  9      Observed       1 4.585756
## 323   present_arboleda_6-19-2023 9.417458e-01 14 Extrapolation       1 5.328491
## 363   present_arboleda_6-19-2023 9.761391e-01 18 Extrapolation       1 5.689727
## 373   present_arboleda_6-19-2023 1.388889e-01  1   Rarefaction       2 1.000000
## 417   present_arboleda_6-19-2023 5.753985e-01  5   Rarefaction       2 3.214292
## 453   present_arboleda_6-19-2023 8.222222e-01  9      Observed       2 4.263158
## 503   present_arboleda_6-19-2023 9.417458e-01 14 Extrapolation       2 4.990099
## 542   present_arboleda_6-19-2023 9.761391e-01 18 Extrapolation       2 5.355372
## 167  present_cafeteria_6-18-2023 3.000030e-01  1   Rarefaction       0 1.000008
## 318  present_cafeteria_6-18-2023 6.000000e-01  3   Rarefaction       0 2.381950
## 518  present_cafeteria_6-18-2023 8.222222e-01  6 Extrapolation       0 3.266667
## 715  present_cafeteria_6-18-2023 9.209877e-01  8 Extrapolation       0 3.562963
## 915  present_cafeteria_6-18-2023 9.648834e-01 10 Extrapolation       0 3.694650
## 1015 present_cafeteria_6-18-2023 3.000030e-01  1   Rarefaction       1 1.000008
## 1215 present_cafeteria_6-18-2023 6.000000e-01  3   Rarefaction       1 2.173370
## 1413 present_cafeteria_6-18-2023 8.222222e-01  6 Extrapolation       1 2.790300
## 168  present_cafeteria_6-18-2023 9.209877e-01  8 Extrapolation       1 3.092823
## 185  present_cafeteria_6-18-2023 9.648834e-01 10 Extrapolation       1 3.294614
## 194  present_cafeteria_6-18-2023 3.000030e-01  1   Rarefaction       2 1.000006
## 218  present_cafeteria_6-18-2023 6.000000e-01  3   Rarefaction       2 1.979741
## 234  present_cafeteria_6-18-2023 8.222222e-01  6 Extrapolation       2 2.400000
## 254  present_cafeteria_6-18-2023 9.209877e-01  8 Extrapolation       2 2.580645
## 274  present_cafeteria_6-18-2023 9.648834e-01 10 Extrapolation       2 2.702703
## 169  present_cafeteria_6-19-2023 1.110223e-16  2   Rarefaction       0 1.860807
## 219  present_cafeteria_6-19-2023 0.000000e+00  2   Rarefaction       0 2.387816
## 419  present_cafeteria_6-19-2023 3.305785e-01  5 Extrapolation       0 4.818182
## 616  present_cafeteria_6-19-2023 5.518749e-01  7 Extrapolation       0 6.035312
## 716  present_cafeteria_6-19-2023 6.333522e-01  8 Extrapolation       0 6.483437
## 815  present_cafeteria_6-19-2023 1.110223e-16  2   Rarefaction       1 1.860807
## 916  present_cafeteria_6-19-2023 0.000000e+00  2   Rarefaction       1 2.387816
## 1116 present_cafeteria_6-19-2023 3.305785e-01  5 Extrapolation       1 4.892184
## 1315 present_cafeteria_6-19-2023 5.518749e-01  7 Extrapolation       1 6.398349
## 1414 present_cafeteria_6-19-2023 6.333522e-01  8 Extrapolation       1 7.031954
## 1514 present_cafeteria_6-19-2023 1.110223e-16  2   Rarefaction       2 1.860807
## 1610 present_cafeteria_6-19-2023 0.000000e+00  2   Rarefaction       2 2.387816
## 186  present_cafeteria_6-19-2023 3.305785e-01  5 Extrapolation       2 5.000000
## 205  present_cafeteria_6-19-2023 5.518749e-01  7 Extrapolation       2 7.000000
## 2110 present_cafeteria_6-19-2023 6.333522e-01  8 Extrapolation       2 8.000000
## 170      present_trail_6-18-2023 3.111148e-01  1   Rarefaction       0 1.000010
## 320      present_trail_6-18-2023 6.821432e-01  3   Rarefaction       0 2.158334
## 520      present_trail_6-18-2023 8.571416e-01  5   Rarefaction       0 2.690472
## 717      present_trail_6-18-2023 9.472218e-01  7   Rarefaction       0 2.924999
## 917      present_trail_6-18-2023 1.000000e+00 10      Observed       0 3.000000
## 1017     present_trail_6-18-2023 3.111148e-01  1   Rarefaction       1 1.000009
## 1217     present_trail_6-18-2023 6.821432e-01  3   Rarefaction       1 2.001090
## 1415     present_trail_6-18-2023 8.571416e-01  5   Rarefaction       1 2.433573
## 1611     present_trail_6-18-2023 9.472218e-01  7   Rarefaction       1 2.647557
## 187      present_trail_6-18-2023 1.000000e+00 10      Observed       1 2.800094
## 196      present_trail_6-18-2023 3.111148e-01  1   Rarefaction       2 1.000007
## 2111     present_trail_6-18-2023 6.821432e-01  3   Rarefaction       2 1.849316
## 235      present_trail_6-18-2023 8.571416e-01  5   Rarefaction       2 2.227719
## 255      present_trail_6-18-2023 9.472218e-01  7   Rarefaction       2 2.441859
## 275      present_trail_6-18-2023 1.000000e+00 10      Observed       2 2.631579
## 178      present_trail_6-19-2023 0.000000e+00  1   Rarefaction       0 1.000000
## 226      present_trail_6-19-2023 6.666667e-01  2      Observed       0 2.000000
## 324      present_trail_6-19-2023 8.888889e-01  3 Extrapolation       0 2.333333
## 424      present_trail_6-19-2023 9.629630e-01  4 Extrapolation       0 2.444444
## 523      present_trail_6-19-2023 0.000000e+00  1   Rarefaction       1 1.000000
## 618      present_trail_6-19-2023 6.666667e-01  2      Observed       1 2.000000
## 718      present_trail_6-19-2023 8.888889e-01  3 Extrapolation       1 2.578947
## 817      present_trail_6-19-2023 9.629630e-01  4 Extrapolation       1 2.914127
## 918      present_trail_6-19-2023 0.000000e+00  1   Rarefaction       2 1.000000
## 1018     present_trail_6-19-2023 6.666667e-01  2      Observed       2 2.000000
## 1118     present_trail_6-19-2023 8.888889e-01  3 Extrapolation       2 3.000000
## 1218     present_trail_6-19-2023 9.629630e-01  4 Extrapolation       2 4.000000
##         qD.LCL    qD.UCL
## 1    0.7263815  1.273618
## 9    2.3969779  7.080853
## 17   2.9333951  9.066605
## 26   3.2484676 10.334661
## 34   3.3913059 11.030205
## 35   0.7384997  1.261500
## 43   2.3203503  5.934019
## 51   2.9280967  6.970257
## 60   3.2249142  7.623954
## 68   3.3806640  8.012088
## 69   0.7551780  1.244822
## 77   2.0750345  5.210681
## 85   2.5346339  6.092232
## 94   2.7132312  6.579804
## 102  2.7742447  6.849064
## 103  0.2033566  1.796643
## 105  0.2755771  4.988641
## 107  0.0000000  6.609774
## 110  0.0000000  7.199525
## 112  0.0000000  7.262743
## 113  0.2451367  1.754863
## 115  0.2317404  4.739520
## 117  0.0000000  6.654207
## 120  0.0000000  7.734329
## 122  0.0000000  7.974710
## 123  0.2913163  1.708684
## 125  0.2470022  4.453193
## 127  0.0000000  6.274887
## 130  0.0000000  7.730234
## 132  0.0000000  8.275814
## 133  0.4171855  1.582814
## 134  0.0000000  4.165456
## 136  0.0000000  6.219705
## 138  0.0000000  7.445546
## 140  0.1370795  7.913702
## 141  0.4218005  1.578199
## 142  0.0000000  4.186591
## 144  0.0000000  6.400864
## 146  0.0000000  7.971583
## 148  0.0000000  8.920141
## 149  0.4238499  1.576150
## 150  0.0000000  4.218368
## 152  0.0000000  6.870913
## 154  0.0000000  9.261444
## 156  0.0000000 11.398432
## 157  0.0000000  4.804601
## 310  0.0000000  6.443033
## 410  0.0000000  7.030850
## 510  0.0000000  4.777115
## 610  0.0000000  5.340916
## 710  0.0000000  4.414332
## 910  0.0000000  5.482150
## 1010 0.0000000  6.548490
## 1110 0.0000000  7.326402
## 1210 0.0000000  5.986163
## 1310 0.0000000  5.546826
## 158  0.0000000  6.862507
## 161  0.0000000  5.596130
## 171  0.0000000  6.684095
## 181  0.0000000  7.518139
## 159  0.6998005  1.300206
## 511  1.1226896  4.988369
## 911  1.7648046  6.590751
## 1311 1.8071342  7.388101
## 172  1.7938477  7.745321
## 182  0.7253458  1.274660
## 221  1.3052433  4.205946
## 261  1.7905411  5.162764
## 301  1.8544979  5.750052
## 341  1.8907701  6.130788
## 351  0.7526445  1.247360
## 391  1.2619023  3.738063
## 431  1.6414424  4.512404
## 471  1.6433072  4.944928
## 512  1.6315074  5.225635
## 160  1.0000000  1.000000
## 212  1.1798492  2.820151
## 313  1.2397990  3.426868
## 413  1.2597822  3.629107
## 513  1.0000000  1.000000
## 612  1.1798492  2.820151
## 712  1.2839725  3.873922
## 811  1.3442544  4.484000
## 912  1.0000000  1.000000
## 1012 1.1798492  2.820151
## 1112 1.3596985  4.640302
## 1212 1.5395477  6.460452
## 163  0.9038660  1.096145
## 514  1.7850345  2.881905
## 1013 2.1485064  3.329622
## 1511 2.2903614  3.591061
## 192  2.3130134  3.686987
## 202  0.9155864  1.084423
## 242  1.6372243  2.560512
## 292  1.8965260  2.868616
## 342  1.9573856  3.004362
## 382  1.9934284  3.061806
## 392  0.9283877  1.071620
## 432  1.5186363  2.332197
## 482  1.7472098  2.659758
## 531  1.8024500  2.800011
## 571  1.8192245  2.882998
## 165  0.8373803  1.162620
## 516  2.0304359  5.429898
## 914  1.8029183  8.197082
## 1412 1.5609794  9.634256
## 184  1.4799084 10.059260
## 193  0.8584477  1.141552
## 233  1.9497459  4.995477
## 273  2.0441814  7.127331
## 323  2.1958933  8.461088
## 363  2.3922804  8.987174
## 373  0.8769707  1.123029
## 417  1.8578336  4.570750
## 453  2.3185534  6.207762
## 503  2.7335674  7.246631
## 542  2.9389870  7.771757
## 167  0.1451210  1.854896
## 318  0.8495380  3.914361
## 518  1.0967770  5.436556
## 715  1.0953136  6.030612
## 915  1.0830705  6.306230
## 1015 0.2366312  1.763384
## 1215 0.7333302  3.613410
## 1413 0.7831776  4.797423
## 168  0.6961964  5.489449
## 185  0.6638409  5.925387
## 194  0.3110134  1.689000
## 218  0.6485304  3.310951
## 234  0.6252062  4.174794
## 254  0.4139736  4.747317
## 274  0.2766187  5.128787
## 169  1.0665463  2.655068
## 219  1.1029087  3.672722
## 419  1.7991470  7.837217
## 616  2.0673614 10.003262
## 716  2.7335105 10.233363
## 815  1.0656638  2.655950
## 916  1.1008792  3.674752
## 1116 1.7694890  8.014880
## 1315 2.0350603 10.761638
## 1414 2.6725879 11.391320
## 1514 1.0643112  2.657303
## 1610 1.0986465  3.676985
## 186  1.7323218  8.267678
## 205  2.0072160 11.992784
## 2110 2.6362636 13.363736
## 170  0.5301067  1.469913
## 320  1.4720208  2.844648
## 520  2.0675114  3.313432
## 717  2.2417900  3.608208
## 917  2.2021964  3.797804
## 1017 0.7246930  1.275324
## 1217 1.4052630  2.596917
## 1415 1.8930037  2.974142
## 1611 2.1022904  3.192823
## 187  2.2379962  3.362192
## 196  0.8158835  1.184131
## 2111 1.3227429  2.375889
## 235  1.6730907  2.782348
## 255  1.7988653  3.084853
## 275  1.8831372  3.380021
## 178  1.0000000  1.000000
## 226  1.1798492  2.820151
## 324  1.2397990  3.426868
## 424  1.2597822  3.629107
## 523  1.0000000  1.000000
## 618  1.1798492  2.820151
## 718  1.2839725  3.873922
## 817  1.3442544  4.484000
## 918  1.0000000  1.000000
## 1018 1.1798492  2.820151
## 1118 1.3596985  4.640302
## 1218 1.5395477  6.460452
## 
## NOTE: The above output only shows five estimates for each assemblage; call iNEXT.object$iNextEst$coverage_based to view complete output.
## 
## $AsyEst: asymptotic diversity estimates along with related statistics.
##                     Assemblage         Diversity Observed Estimator      s.e.
## 1    absent_arboleda_6-18-2023  Species richness 6.000000  7.882353 2.4942047
## 2    absent_arboleda_6-18-2023 Shannon diversity 4.949177  6.228502 1.4131704
## 3    absent_arboleda_6-18-2023 Simpson diversity 4.313433  5.440000 1.4633680
## 4    absent_arboleda_6-19-2023  Species richness 3.000000  3.200000 1.7366809
## 5    absent_arboleda_6-19-2023 Shannon diversity 2.871746  3.736207 1.8715485
## 6    absent_arboleda_6-19-2023 Simpson diversity 2.777778  5.000000 2.4604481
## 7   absent_cafeteria_6-18-2023  Species richness 3.000000  4.500000 2.1343747
## 8   absent_cafeteria_6-18-2023 Shannon diversity 2.828427  4.891309 3.2613332
## 9   absent_cafeteria_6-18-2023 Simpson diversity 2.666667  6.000000       NaN
## 10  absent_cafeteria_6-19-2023  Species richness 2.000000  2.333333 1.1758131
## 11  absent_cafeteria_6-19-2023 Shannon diversity 1.889882  2.519842 1.8407499
## 12  absent_cafeteria_6-19-2023 Simpson diversity 1.800000  3.000000       NaN
## 13      absent_trail_6-18-2023  Species richness 4.000000  4.888889 1.3068526
## 14      absent_trail_6-18-2023 Shannon diversity 3.369922  4.381978 0.9967327
## 15      absent_trail_6-18-2023 Simpson diversity 3.000000  4.000000 0.9626926
## 16      absent_trail_6-19-2023  Species richness 2.000000  2.500000 0.7032393
## 17      absent_trail_6-19-2023 Shannon diversity 2.000000  3.375000 1.1134622
## 18      absent_trail_6-19-2023 Simpson diversity 2.000000       Inf       NaN
## 19  present_arboleda_6-18-2023  Species richness 3.000000  3.000000 0.3588703
## 20  present_arboleda_6-18-2023 Shannon diversity 2.527617  2.646028 0.2892100
## 21  present_arboleda_6-18-2023 Simpson diversity 2.351111  2.504950 0.2973463
## 22  present_arboleda_6-19-2023  Species richness 5.000000  5.888889 2.2517286
## 23  present_arboleda_6-19-2023 Shannon diversity 4.585756  6.346291 1.8600886
## 24  present_arboleda_6-19-2023 Simpson diversity 4.263158  7.200000 2.3665046
## 25 present_cafeteria_6-18-2023  Species richness 3.000000  3.800000 1.5881111
## 26 present_cafeteria_6-18-2023 Shannon diversity 2.586409  3.698855 1.7305253
## 27 present_cafeteria_6-18-2023 Simpson diversity 2.272727  3.333333 2.2523837
## 28 present_cafeteria_6-19-2023  Species richness 4.000000  8.500000 2.5799146
## 29 present_cafeteria_6-19-2023 Shannon diversity 4.000000 12.275085 4.2689241
## 30 present_cafeteria_6-19-2023 Simpson diversity 4.000000       Inf       NaN
## 31     present_trail_6-18-2023  Species richness 3.000000  3.000000 0.3716639
## 32     present_trail_6-18-2023 Shannon diversity 2.800094  3.118342 0.3874074
## 33     present_trail_6-18-2023 Simpson diversity 2.631579  3.214286 0.5969419
## 34     present_trail_6-19-2023  Species richness 2.000000  2.500000 0.7088723
## 35     present_trail_6-19-2023 Shannon diversity 2.000000  3.375000 1.1223812
## 36     present_trail_6-19-2023 Simpson diversity 2.000000       Inf       NaN
##           LCL       UCL
## 1  6.00000000 12.770904
## 2  3.45873909  8.998265
## 3  2.57185134  8.308149
## 4  3.00000000  6.603832
## 5  0.06803958  7.404375
## 6  0.17761039  9.822390
## 7  3.00000000  8.683298
## 8  0.00000000 11.283405
## 9         NaN       NaN
## 10 2.00000000  4.637885
## 11 0.00000000  6.127646
## 12        NaN       NaN
## 13 4.00000000  7.450273
## 14 2.42841732  6.335538
## 15 2.11315714  5.886843
## 16 2.00000000  3.878324
## 17 1.19265427  5.557346
## 18        NaN       NaN
## 19 3.00000000  3.703373
## 20 2.07918684  3.212869
## 21 1.92216253  3.087738
## 22 5.00000000 10.302196
## 23 2.70058399  9.991997
## 24 2.56173617 11.838264
## 25 3.00000000  6.912641
## 26 0.30708742  7.090622
## 27 0.00000000  7.747924
## 28 4.00000000 13.556540
## 29 3.90814780 20.642023
## 30        NaN       NaN
## 31 3.00000000  3.728448
## 32 2.35903796  3.877647
## 33 2.04430112  4.384270
## 34 2.00000000  3.889364
## 35 1.17517325  5.574827
## 36        NaN       NaN

Adding Bee Richness to Site Dataset

Bee_richness <-Bee_iNEXT$AsyEst[Bee_iNEXT$AsyEst$Diversity == "Species richness",c(1,3:4)]
Bee_shannon <-Bee_iNEXT$AsyEst[Bee_iNEXT$AsyEst$Diversity == "Shannon diversity",c(1,3:4)]
Bee_simpson <-Bee_iNEXT$AsyEst[Bee_iNEXT$AsyEst$Diversity == "Simpson diversity",c(1,3:4)]

#Adding to site dataset
bee.data$bee.rare.richness <- Bee_richness$Estimator
bee.data$bee.shannon <-Bee_shannon$Estimator
bee.data$bee.simpson <-Bee_simpson$Estimator
bee.data
## # A tibble: 12 × 7
## # Groups:   treatment, site [6]
##    treatment site      date      n.obs bee.rare.richness bee.shannon bee.simpson
##    <chr>     <chr>     <chr>     <int>             <dbl>       <dbl>       <dbl>
##  1 absent    arboleda  6-18-2023    17              7.88        6.23        5.44
##  2 absent    arboleda  6-19-2023     5              3.2         3.74        5   
##  3 absent    cafeteria 6-18-2023     4              4.5         4.89        6   
##  4 absent    cafeteria 6-19-2023     3              2.33        2.52        3   
##  5 absent    trail     6-18-2023     9              4.89        4.38        4   
##  6 absent    trail     6-19-2023     2              2.5         3.38      Inf   
##  7 present   arboleda  6-18-2023    23              3           2.65        2.50
##  8 present   arboleda  6-19-2023     9              5.89        6.35        7.2 
##  9 present   cafeteria 6-18-2023     5              3.8         3.70        3.33
## 10 present   cafeteria 6-19-2023     4              8.5        12.3       Inf   
## 11 present   trail     6-18-2023    10              3           3.12        3.21
## 12 present   trail     6-19-2023     2              2.5         3.38      Inf

Data Exploration

#Histogram of Bee Abundance
hist(bee.data$n.obs,
     main = "Histogram of Bee Abundance",
     xlab = "Abundance")

#Histogram of Species Richness
hist(bee.data$bee.rare.richness,
     main = "Histogram of Species Richness",
     xlab = "Richness")

#Histogram of Shannon Diversity
hist(bee.data$bee.shannon,
     main = "Histogram of Shannon Diversity",
     xlab = "Shannon Diversity")

Analyses

Question 1: How does the presence of a predator impact the likelihood that a bee will forage for floral rewards, and does habitat type mediate this relationship?*

Hypothesis: The abundance of visitors at the traps without predators will be higher than at traps with predators.Canopy cover will mediate bee abundance in traps. Bees will be more abundant in predator traps in habitats with more canopy cover.

q1.mod.1 <- glm(n.obs ~ treatment:site + date, data = bee.data, family = poisson(link = "log"))
summary(q1.mod.1) 
## 
## Call:
## glm(formula = n.obs ~ treatment:site + date, family = poisson(link = "log"), 
##     data = bee.data)
## 
## Coefficients: (1 not defined because of singularities)
##                                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                     2.17181    0.29544   7.351 1.97e-13 ***
## date6-19-2023                  -1.00063    0.23389  -4.278 1.88e-05 ***
## treatmentabsent:sitearboleda    0.60614    0.35887   1.689  0.09122 .  
## treatmentpresent:sitearboleda   0.98083    0.33850   2.898  0.00376 ** 
## treatmentabsent:sitecafeteria  -0.53900    0.47559  -1.133  0.25708    
## treatmentpresent:sitecafeteria -0.28768    0.44096  -0.652  0.51414    
## treatmentabsent:sitetrail      -0.08701    0.41742  -0.208  0.83488    
## treatmentpresent:sitetrail           NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 51.3492  on 11  degrees of freedom
## Residual deviance:  3.4896  on  5  degrees of freedom
## AIC: 61.127
## 
## Number of Fisher Scoring iterations: 4
q1.mod.2 <- glm(n.obs ~ treatment+site + date, data = bee.data, family = poisson)
summary(q1.mod.2) #model 2 with the interaction is a slightly better fit, given by AIC
## 
## Call:
## glm(formula = n.obs ~ treatment + site + date, family = poisson, 
##     data = bee.data)
## 
## Coefficients:
##                  Estimate Std. Error z value Pr(>|z|)    
## (Intercept)        2.8322     0.1916  14.780  < 2e-16 ***
## treatmentpresent   0.2814     0.2094   1.344 0.179078    
## sitecafeteria     -1.2164     0.2846  -4.273 1.92e-05 ***
## sitetrail         -0.8535     0.2490  -3.428 0.000609 ***
## date6-19-2023     -1.0006     0.2339  -4.278 1.88e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 51.3492  on 11  degrees of freedom
## Residual deviance:  3.8231  on  7  degrees of freedom
## AIC: 57.461
## 
## Number of Fisher Scoring iterations: 4
plot(q1.mod.2)

plot_model(q1.mod.2, vline.color = "red",sort.est = TRUE,show.values = TRUE, value.offset = .3,axis.labels = c("Cafeteria Site","Date Two","Trail Site","Predator Present"), title = "The Effect of Predator Presence and Habitat Type on Bee Abundance")+
  theme_few()

report(q1.mod.2)
## We fitted a poisson model (estimated using ML) to predict n.obs with treatment,
## site and date (formula: n.obs ~ treatment + site + date). The model's
## explanatory power is substantial (Nagelkerke's R2 = 0.99). The model's
## intercept, corresponding to treatment = absent, site = arboleda and date =
## 6-18-2023, is at 2.83 (95% CI [2.44, 3.19], p < .001). Within this model:
## 
##   - The effect of treatment [present] is statistically non-significant and
## positive (beta = 0.28, 95% CI [-0.13, 0.70], p = 0.179; Std. beta = 0.28, 95%
## CI [-0.13, 0.70])
##   - The effect of site [cafeteria] is statistically significant and negative
## (beta = -1.22, 95% CI [-1.81, -0.68], p < .001; Std. beta = -1.22, 95% CI
## [-1.81, -0.68])
##   - The effect of site [trail] is statistically significant and negative (beta =
## -0.85, 95% CI [-1.36, -0.38], p < .001; Std. beta = -0.85, 95% CI [-1.36,
## -0.38])
##   - The effect of date [6-19-2023] is statistically significant and negative
## (beta = -1.00, 95% CI [-1.48, -0.56], p < .001; Std. beta = -1.00, 95% CI
## [-1.48, -0.56])
## 
## Standardized parameters were obtained by fitting the model on a standardized
## version of the dataset. 95% Confidence Intervals (CIs) and p-values were
## computed using a Wald z-distribution approximation.
exp(-1.2164)
## [1] 0.2962949

#Visualizing Q1

palette <-c("#03fce7","#fc0303")

plot1 <- ggplot(data = bee.data, aes(x=site,y=n.obs))+
  geom_boxplot(aes(fill=factor(treatment)))+
  theme_few()+
    labs(y = "bee abundance")+
  theme(axis.text.x = element_text(size = 16),
  axis.text.y = element_text(size = 16),
  axis.title.x = element_text(size = 18),
  axis.title.y = element_text(size = 18))+
  scale_color_brewer(palette)
plot1 

## Questions 2

Question 2: How does the presence of a predator impact the richness of bee species that forage for floral rewards, and does habitat type mediate this relationship?*

Hypothesis: The richness of visitors at the traps without predators will be higher than at traps with predators. Canopy cover will mediate bee richness in traps. Bees will be more species rich in predator traps in habitats with more canopy cover.

bee.data$log_bee.shannon <-log(bee.data$bee.shannon)
shapiro.test(bee.data$log_bee.shannon)
## 
##  Shapiro-Wilk normality test
## 
## data:  bee.data$log_bee.shannon
## W = 0.9, p-value = 0.1586
bee.data$log_bee.rare.richness <-log(bee.data$bee.rare.richness)
shapiro.test(bee.data$log_bee.rare.richness)
## 
##  Shapiro-Wilk normality test
## 
## data:  bee.data$log_bee.rare.richness
## W = 0.91336, p-value = 0.2356
q2.mod.1 <- lm(log_bee.shannon ~ treatment:site + date, data = bee.data)
summary(q2.mod.1) 
## 
## Call:
## lm(formula = log_bee.shannon ~ treatment:site + date, data = bee.data)
## 
## Residuals:
##        1        2        3        4        5        6        7        8 
##  0.31537 -0.31537  0.39147 -0.39147  0.19039 -0.19039 -0.37757  0.37757 
##        9       10       11       12 
## -0.53994  0.53994  0.02029 -0.02029 
## 
## Coefficients: (1 not defined because of singularities)
##                                Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                     1.11701    0.41086   2.719   0.0418 *
## date6-19-2023                   0.11967    0.31058   0.385   0.7159  
## treatmentabsent:sitearboleda    0.39675    0.53794   0.738   0.4939  
## treatmentpresent:sitearboleda   0.23362    0.53794   0.434   0.6822  
## treatmentabsent:sitecafeteria   0.07898    0.53794   0.147   0.8890  
## treatmentpresent:sitecafeteria  0.73095    0.53794   1.359   0.2323  
## treatmentabsent:sitetrail       0.17010    0.53794   0.316   0.7646  
## treatmentpresent:sitetrail           NA         NA      NA       NA  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5379 on 5 degrees of freedom
## Multiple R-squared:  0.3388, Adjusted R-squared:  -0.4546 
## F-statistic: 0.427 on 6 and 5 DF,  p-value: 0.8351
q2.mod.2 <- lm(log_bee.shannon ~ treatment+site + date, data = bee.data)
summary(q2.mod.2)
## 
## Call:
## lm(formula = log_bee.shannon ~ treatment + site + date, data = bee.data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.66433 -0.20228 -0.08505  0.26430  0.81280 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)   
## (Intercept)       1.37908    0.33573   4.108  0.00453 **
## treatmentpresent  0.10624    0.30029   0.354  0.73390   
## sitecafeteria     0.08978    0.36778   0.244  0.81415   
## sitetrail        -0.23014    0.36778  -0.626  0.55133   
## date6-19-2023     0.11967    0.30029   0.399  0.70213   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5201 on 7 degrees of freedom
## Multiple R-squared:  0.1346, Adjusted R-squared:  -0.3598 
## F-statistic: 0.2723 on 4 and 7 DF,  p-value: 0.8869
q2.mod.3 <- lm(log_bee.rare.richness ~ treatment:site + date, data = bee.data)
summary(q2.mod.3) 
## 
## Call:
## lm(formula = log_bee.rare.richness ~ treatment:site + date, data = bee.data)
## 
## Residuals:
##        1        2        3        4        5        6        7        8 
##  0.37309 -0.37309  0.25075 -0.25075  0.25769 -0.25769 -0.41487  0.41487 
##        9       10       11       12 
## -0.48018  0.48018  0.01352 -0.01352 
## 
## Coefficients: (1 not defined because of singularities)
##                                Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                      1.0851     0.3958   2.742   0.0407 *
## date6-19-2023                   -0.1553     0.2992  -0.519   0.6259  
## treatmentabsent:sitearboleda     0.6064     0.5182   1.170   0.2946  
## treatmentpresent:sitearboleda    0.4284     0.5182   0.827   0.4461  
## treatmentabsent:sitecafeteria    0.1682     0.5182   0.325   0.7586  
## treatmentpresent:sitecafeteria   0.7301     0.5182   1.409   0.2179  
## treatmentabsent:sitetrail        0.2442     0.5182   0.471   0.6573  
## treatmentpresent:sitetrail           NA         NA      NA       NA  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5182 on 5 degrees of freedom
## Multiple R-squared:  0.3839, Adjusted R-squared:  -0.3555 
## F-statistic: 0.5192 on 6 and 5 DF,  p-value: 0.776
q2.mod.4 <- lm(log_bee.rare.richness ~ treatment+site + date, data = bee.data)
summary(q2.mod.4)
## 
## Call:
## lm(formula = log_bee.rare.richness ~ treatment + site + date, 
##     data = bee.data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.5272 -0.2321 -0.1221  0.3277  0.7378 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)   
## (Intercept)       1.57924    0.32212   4.903  0.00175 **
## treatmentpresent  0.04654    0.28811   0.162  0.87624   
## sitecafeteria    -0.06825    0.35287  -0.193  0.85212   
## sitetrail        -0.39532    0.35287  -1.120  0.29953   
## date6-19-2023    -0.15529    0.28811  -0.539  0.60661   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.499 on 7 degrees of freedom
## Multiple R-squared:  0.2001, Adjusted R-squared:  -0.257 
## F-statistic: 0.4378 on 4 and 7 DF,  p-value: 0.7783
plot(q2.mod.2)

plot_model(q2.mod.2, vline.color = "red",sort.est = TRUE,show.values = TRUE, value.offset = .3,axis.labels = c("Cafeteria Site","Date Two","Trail Site","Predator Present"), title = "The Effect of Predator Presence and Habitat Type on Shannon Diversity")+
  theme_few()

report(q1.mod.2)
## We fitted a poisson model (estimated using ML) to predict n.obs with treatment,
## site and date (formula: n.obs ~ treatment + site + date). The model's
## explanatory power is substantial (Nagelkerke's R2 = 0.99). The model's
## intercept, corresponding to treatment = absent, site = arboleda and date =
## 6-18-2023, is at 2.83 (95% CI [2.44, 3.19], p < .001). Within this model:
## 
##   - The effect of treatment [present] is statistically non-significant and
## positive (beta = 0.28, 95% CI [-0.13, 0.70], p = 0.179; Std. beta = 0.28, 95%
## CI [-0.13, 0.70])
##   - The effect of site [cafeteria] is statistically significant and negative
## (beta = -1.22, 95% CI [-1.81, -0.68], p < .001; Std. beta = -1.22, 95% CI
## [-1.81, -0.68])
##   - The effect of site [trail] is statistically significant and negative (beta =
## -0.85, 95% CI [-1.36, -0.38], p < .001; Std. beta = -0.85, 95% CI [-1.36,
## -0.38])
##   - The effect of date [6-19-2023] is statistically significant and negative
## (beta = -1.00, 95% CI [-1.48, -0.56], p < .001; Std. beta = -1.00, 95% CI
## [-1.48, -0.56])
## 
## Standardized parameters were obtained by fitting the model on a standardized
## version of the dataset. 95% Confidence Intervals (CIs) and p-values were
## computed using a Wald z-distribution approximation.

#Visualizing Q1

palette <-c("#03fce7","#fc0303")

plot2 <- ggplot(data = bee.data, aes(x=site,y=bee.rare.richness))+
  geom_boxplot(aes(fill=factor(treatment)))+
  theme_few()+
    labs(y = "species richness")+
  theme(axis.text.x = element_text(size = 16),
  axis.text.y = element_text(size = 16),
  axis.title.x = element_text(size = 18),
  axis.title.y = element_text(size = 18))+
  scale_color_brewer(palette)
plot2 

plot3 <- ggplot(data = bee.data, aes(x=site,y=bee.shannon))+
  geom_boxplot(aes(fill=factor(treatment)))+
  theme_few()+
    labs(y = "shannon index")+
  theme(axis.text.x = element_text(size = 16),
  axis.text.y = element_text(size = 16),
  axis.title.x = element_text(size = 18),
  axis.title.y = element_text(size = 18))+
  scale_color_brewer(palette)
plot3 

Q3: Community Composition

set.seed(1000)

#Creating matrix for metaMDS
BeeNMDSinput <-t(species.iNEXTinput)

Bees.nmds <- metaMDS(BeeNMDSinput, distance = "bray", k=2) #Creating Bee NMDS
## Wisconsin double standardization
## Run 0 stress 0.1198121 
## Run 1 stress 0.1198121 
## ... Procrustes: rmse 0.0001349135  max resid 0.0003039394 
## ... Similar to previous best
## Run 2 stress 0.1367906 
## Run 3 stress 0.1582009 
## Run 4 stress 0.1366986 
## Run 5 stress 0.1466947 
## Run 6 stress 0.1668436 
## Run 7 stress 0.1517568 
## Run 8 stress 0.1198121 
## ... Procrustes: rmse 0.0001096376  max resid 0.0002307718 
## ... Similar to previous best
## Run 9 stress 0.1366998 
## Run 10 stress 0.1326014 
## Run 11 stress 0.1599083 
## Run 12 stress 0.1198121 
## ... Procrustes: rmse 0.0001077014  max resid 0.0002516444 
## ... Similar to previous best
## Run 13 stress 0.1302663 
## Run 14 stress 0.1310474 
## Run 15 stress 0.1198121 
## ... Procrustes: rmse 0.0001385556  max resid 0.0003357684 
## ... Similar to previous best
## Run 16 stress 0.1198121 
## ... Procrustes: rmse 0.0001785926  max resid 0.0003417156 
## ... Similar to previous best
## Run 17 stress 0.1302665 
## Run 18 stress 0.1407991 
## Run 19 stress 0.1198122 
## ... Procrustes: rmse 0.0002556891  max resid 0.0006268501 
## ... Similar to previous best
## Run 20 stress 0.2009723 
## *** Best solution repeated 6 times
#Creating dataframe of environmental variables of interest
env <-bee.data[,1:3]

#Running envfit function
envfit.results <-envfit(Bees.nmds,env, permutations = 999, na.rm= TRUE)
envfit.results
## 
## ***FACTORS:
## 
## Centroids:
##                    NMDS1   NMDS2
## treatmentabsent  -0.1948 -0.2272
## treatmentpresent  0.1948  0.2272
## sitearboleda     -0.1339  0.1554
## sitecafeteria    -0.5956 -0.0118
## sitetrail         0.7295 -0.1436
## date6-18-2023    -0.2007 -0.0846
## date6-19-2023     0.2007  0.0846
## 
## Goodness of fit:
##               r2 Pr(>r)  
## treatment 0.1217  0.261  
## site      0.4302  0.026 *
## date      0.0644  0.566  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Permutation: free
## Number of permutations: 999
genus_specie <-species.wide$genus_specie
#Figure out which species are driving site distribution pattern
sppfit.results <- envfit(Bees.nmds, BeeNMDSinput, permutations = 999)
sppfit.results
## 
## ***VECTORS
## 
##          NMDS1    NMDS2     r2 Pr(>r)  
##  [1,]  0.83301 -0.55326 0.0259  0.877  
##  [2,] -0.33669  0.94162 0.5401  0.031 *
##  [3,] -0.75180 -0.65939 0.0609  0.762  
##  [4,] -0.60428  0.79677 0.4717  0.059 .
##  [5,] -0.95836  0.28556 0.2029  0.352  
##  [6,]  0.40803 -0.91297 0.0000  1.000  
##  [7,]  0.36940  0.92927 0.0430  0.806  
##  [8,] -0.07337 -0.99730 0.1387  0.563  
##  [9,]  0.78829  0.61530 0.6054  0.082 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Permutation: free
## Number of permutations: 999
Bees.nmds$species
##             MDS1        MDS2
##  [1,]  0.2699083 -0.14124510
##  [2,] -0.4506024  0.81300402
##  [3,] -0.2193381 -0.24766484
##  [4,] -0.8639449  0.44592829
##  [5,] -0.6888294 -0.35214242
##  [6,]  0.7730793 -0.64748363
##  [7,]  0.2298522  0.09848662
##  [8,] -0.1082257 -0.77726761
##  [9,]  1.8513384  0.76351823
## attr(,"shrinkage")
##      MDS1      MDS2 
## 0.7661137 0.5776601 
## attr(,"centre")
##         MDS1         MDS2 
## 2.862294e-17 1.734723e-17
#Extracting scores from NMDS
##Site scores
data.scores <- as.data.frame(scores(Bees.nmds$points))
data.scores$site <-bee.data$site
data.scores$treatment <-bee.data$treatment

##Species scores
species.scores <-as.data.frame(scores(Bees.nmds$species))
species.scores$species <-species.wide$genus_specie
species.scores$pvals <-sppfit.results$vectors$pvals
sig.species.scores <-subset(species.scores, pvals <=0.06)
sig.species.scores$species.clean <-c("Euglossa ignita","Euglossa viridissima")

Model Checks

stressplot(Bees.nmds) #Shepard Stressplot. Not too much scatter away from line= good

NMDS.graph <-ggplot(data=data.scores, aes(x=MDS1, y=MDS2, color = site)) + 
  stat_ellipse()+
   geom_point(aes(x=MDS1,y=MDS2),size=4) +
  labs(x="NMDS1", y = "NMDS2")+
  theme_few()+
  theme(axis.text.x = element_text(size = 16, hjust =.75),
  axis.text.y = element_text(size = 16),
  axis.title.x = element_text(size = 20),
  axis.title.y = element_text(size = 20),
  legend.title = element_text(size=18),
  legend.text = element_text(size=16),
  legend.position = "right")

NMDS.graph