nhdatafilecsv <- "NHD2016.csv"
usshapefile <- "cb_2014_us_county_5m/cb_2014_us_county_5m.shp"
nhfipscode <- "33"
scdatafile <- "SCGOP2016.csv"
scfipscode <- "45"GIS Assignment
Load the tmap, tmaptools, and leaflet packages into your working session:
library(tidyverse)── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.2 ✔ readr 2.1.4
✔ forcats 1.0.0 ✔ stringr 1.5.0
✔ ggplot2 3.4.2 ✔ tibble 3.2.1
✔ lubridate 1.9.2 ✔ tidyr 1.3.0
✔ purrr 1.0.1
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tmap)The legacy packages maptools, rgdal, and rgeos, underpinning the sp package,
which was just loaded, will retire in October 2023.
Please refer to R-spatial evolution reports for details, especially
https://r-spatial.org/r/2023/05/15/evolution4.html.
It may be desirable to make the sf package available;
package maintainers should consider adding sf to Suggests:.
The sp package is now running under evolution status 2
(status 2 uses the sf package in place of rgdal)
library(tmaptools)
library(leaflet)
library(sf)Linking to GEOS 3.10.2, GDAL 3.4.2, PROJ 8.2.1; sf_use_s2() is TRUE
library(leaflet.extras)
library(rio)
library(sp)Step 1: Read in the NH election results file:
setwd("/Users/arifjadji/Desktop/DATA110/DATA110 Datasets/GIS")
nhdata <- import(nhdatafilecsv)Eliminate columns for minor candidates and just use County, Clinton and Sanders columns:
nhdata <- nhdata[,c("County", "Clinton", "Sanders")]Step 2: Decide what data to map ##Add columns for percents and margins:
nhdata$SandersMarginVotes <- nhdata$Sanders - nhdata$Clinton
nhdata$SandersPct <- (nhdata$Sanders) / (nhdata$Sanders + nhdata$Clinton)
# Will use formatting later to multiply by a hundred
nhdata$ClintonPct <- (nhdata$Clinton) / (nhdata$Sanders + nhdata$Clinton)
nhdata$SandersMarginPctgPoints <- nhdata$SandersPct - nhdata$ClintonPctStep 3: Get geographic data files ##Read in the shapefile for US states and counties:
library(raster)
Attaching package: 'raster'
The following object is masked from 'package:dplyr':
select
library(rgdal)Please note that rgdal will be retired during October 2023,
plan transition to sf/stars/terra functions using GDAL and PROJ
at your earliest convenience.
See https://r-spatial.org/r/2023/05/15/evolution4.html and https://github.com/r-spatial/evolution
rgdal: version: 1.6-7, (SVN revision 1203)
Geospatial Data Abstraction Library extensions to R successfully loaded
Loaded GDAL runtime: GDAL 3.4.2, released 2022/03/08
Path to GDAL shared files: /Library/Frameworks/R.framework/Versions/4.2/Resources/library/rgdal/gdal
GDAL binary built with GEOS: FALSE
Loaded PROJ runtime: Rel. 8.2.1, January 1st, 2022, [PJ_VERSION: 821]
Path to PROJ shared files: /Library/Frameworks/R.framework/Versions/4.2/Resources/library/rgdal/proj
PROJ CDN enabled: FALSE
Linking to sp version:1.6-1
To mute warnings of possible GDAL/OSR exportToProj4() degradation,
use options("rgdal_show_exportToProj4_warnings"="none") before loading sp or rgdal.
setwd("/Users/arifjadji/Desktop/DATA110/DATA110 Datasets/GIS")
usgeo <- shapefile("cb_2014_us_county_5m/cb_2014_us_county_5m.shp")Warning: [vect] Z coordinates ignored
Do a quick plot (qtm stands for quick thematic map) of the shapefile and check its structure:
tmap_options(check.and.fix = TRUE)
qtm(usgeo)Subset just the NH data from the US shapefile
nhgeo <- usgeo[usgeo$STATEFP==nhfipscode,]tmap test plot of the New Hampshire data
qtm(nhgeo)Match the two dataset variable headers for county (One is NAME and the other is County)
# Check if county names are in the same format in both files
str(nhgeo$NAME) chr [1:10] "Grafton" "Hillsborough" "Coos" "Belknap" "Rockingham" ...
str(nhdata$County) chr [1:10] "Belknap" "Carroll" "Cheshire" "Coos" "Grafton" "Hillsborough" ...
nhgeo$NAME # they are the same [1] "Grafton" "Hillsborough" "Coos" "Belknap" "Rockingham"
[6] "Cheshire" "Strafford" "Merrimack" "Carroll" "Sullivan"
Order each data set by county name (alphabetically)
nhgeo <- nhgeo[order(nhgeo$NAME),]
nhdata <- nhdata[order(nhdata$County),]
if (identical(nhgeo$NAME,nhdata$County)) {
nhmap <- merge(nhgeo, nhdata, by.x = "NAME", by.y = "County") # Merge geo and vote datasets
} else {stop}Step 4: Merge geo data with results data using the merge function
# See the new data structure with
head(nhmap) NAME STATEFP COUNTYFP COUNTYNS AFFGEOID GEOID LSAD ALAND
1 Belknap 33 001 00873174 0500000US33001 33001 06 1036582289
2 Carroll 33 003 00873175 0500000US33003 33003 06 -1883508361
3 Cheshire 33 005 00873176 0500000US33005 33005 06 1830366195
4 Coos 33 007 00873177 0500000US33007 33007 06 353249502
5 Grafton 33 009 00873178 0500000US33009 33009 06 130959956
6 Hillsborough 33 011 00873179 0500000US33011 33011 06 -2025747080
AWATER Clinton Sanders SandersMarginVotes SandersPct ClintonPct
1 177039345 3495 6005 2510 0.6321053 0.3678947
2 158933434 3230 5638 2408 0.6357691 0.3642309
3 57990901 5132 12441 7309 0.7079611 0.2920389
4 90773891 2013 3639 1626 0.6438429 0.3561571
5 105375486 6918 14245 7327 0.6731087 0.3268913
6 41604851 28147 39245 11098 0.5823392 0.4176608
SandersMarginPctgPoints
1 0.2642105
2 0.2715381
3 0.4159222
4 0.2876858
5 0.3462175
6 0.1646783
Step 5: Create a static map with tmap’s qtm() function:
qtm(nhmap, "SandersMarginVotes")Some legend labels were too wide. These labels have been resized to 0.63, 0.63, 0.63, 0.58, 0.54. Increase legend.width (argument of tm_layout) to make the legend wider and therefore the labels larger.
qtm(nhmap, "SandersMarginPctgPoints")For more control over look and feel, use the tm_shape() function:
tm_shape(nhmap) +
tm_fill("SandersMarginPctgPoints", title="Sanders Margin, Total Votes", palette = "PRGn") +
tm_borders(alpha=.5) +
tm_text("NAME", size=0.8)Same code as above, but store the static map in a variable, and change the theme to “classic” style:
nhstaticmap <- tm_shape(nhmap) +
tm_fill("SandersMarginPctgPoints", title="Sanders Margin, Total Votes", palette = "PRGn") + #I like viridis
tm_borders(alpha=.5) +
tm_text("NAME", size=0.8) +
tm_style("classic")View the map
nhstaticmapPart 6 Next up: Code for a basic interactive map, this time for Clinton percentages in NH
Create a palette
clintonPalette <- colorNumeric(palette = "Blues", domain=nhmap$ClintonPct) # color palette for Clintonand a pop-up window
library(scales)
Attaching package: 'scales'
The following object is masked from 'package:purrr':
discard
The following object is masked from 'package:readr':
col_factor
nhpopup <- paste0("County: ", nhmap$NAME, "<br /><br /> Sanders: ", percent(nhmap$SandersPct), " Clinton: ", percent(nhmap$ClintonPct)) # popup contentStep 7: Now generate the interactive map:
# add the appropriate projection, WGS84
nhmap_projected <- spTransform(nhmap, "+proj=longlat +datum=WGS84")
leaflet(nhmap_projected) %>%
addProviderTiles("CartoDB.Positron") %>%
addPolygons(stroke=FALSE,
smoothFactor = 0.2,
fillOpacity = .8,
popup=nhpopup,
color= ~clintonPalette(nhmap$ClintonPct))South Carolina data
setwd("/Users/arifjadji/Desktop/DATA110/DATA110 Datasets/GIS")
scdata <- rio::import(scdatafile)South Carolina shapefile and Quick plot of scgeo SC geospatial object:
scgeo <- usgeo[usgeo@data$STATEFP=="45",]
qtm(scgeo)Add a column with percent of votes for each candidate. Candidates are in columns 2-7:
candidates <- colnames(scdata[2:7])
for(i in 2:7){
j = i + 7
temp <- scdata[[i]] / scdata$Total
scdata[[j]] <- temp
colnames(scdata)[j] <- paste0(colnames(scdata)[i], "Pct")
}
winner <- colnames(scdata[2:7])Get winner in each precinct
for(i in 1:nrow(scdata)){
scdata$winner[i] <- names(which.max(scdata[i,2:7]))
}Import spreadsheet with percent of adult population holding at least a 4-yr college degree
setwd("/Users/arifjadji/Desktop/DATA110/DATA110 Datasets/GIS")
sced <- rio::import("SCdegree.xlsx")Check if county names are in the same format in both files
# Change the county names to plain characters in scgeo:
scgeo$NAME <- as.character(scgeo$NAME)
# Order each data set by county name
scgeo <- scgeo[order(scgeo$NAME),]
scdata <- scdata[order(scdata$County),]
# check name and county columns are identical
if (identical(scgeo$NAME,scdata$County )) {
scmap <- merge(scgeo, scdata, by.x = "NAME", by.y = "County")
} else {stop}
str(scgeo$NAME) chr [1:46] "Abbeville" "Aiken" "Allendale" "Anderson" "Bamberg" "Barnwell" ...
str(scdata$County) chr [1:46] "Abbeville" "Aiken" "Allendale" "Anderson" "Bamberg" "Barnwell" ...
Instead of just coloring the winner, let’s color by strength of win with multiple layers
# Use same intensity for all - get minimum and maximum for the top 3 combined
minpct <- min(c(scdata$`Donald J TrumpPct`, scdata$`Marco RubioPct`, scdata$`Ted CruzPct`))
maxpct <- max(c(scdata$`Donald J TrumpPct`, scdata$`Marco RubioPct`, scdata$`Ted CruzPct`))Create leaflet palettes for each layer of the map:
trumpPalette <- colorNumeric(palette = "Purples", domain=c(minpct, maxpct))
rubioPalette <- colorNumeric(palette = "Reds", domain = c(minpct, maxpct))
cruzPalette <- colorNumeric(palette = "Oranges", domain = c(minpct, maxpct))
winnerPalette <- colorFactor(palette=c("#984ea3", "#e41a1c"), domain = scmap$winner)
edPalette <- colorNumeric(palette = "Blues", domain=scmap$PctCollegeDegree)Create a pop-up:
scpopup <- paste0("<b>County: ", scmap$NAME, "<br />Winner: ", scmap$winner, "</b><br /><br />Trump: ", percent(scmap$`Donald J TrumpPct`), "<br />Rubio: ", percent(scmap$`Marco RubioPct`), "<br />Cruz: ", percent(scmap$`Ted CruzPct`), "<br /><br />Pct w college ed: ", sced$PctCollegeDegree, "% vs state-wide avg of 25%")Add the projection we know from the NH map we’ll need for this data on a Leaflet map:
scmap <- sp::spTransform(scmap, "+proj=longlat +datum=WGS84")Basic interactive map showing winner in each county:
leaflet(scmap) %>%
addProviderTiles("CartoDB.Positron") %>%
addPolygons(stroke=TRUE,
weight=1,
smoothFactor = 0.2,
fillOpacity = .75,
popup=scpopup,
color= ~winnerPalette(scmap$winner),
group="Winners" ) %>%
addLegend(position="bottomleft", colors=c("#984ea3", "#e41a1c"), labels=c("Trump", "Rubio"))Put top 3 candidates in their own layers and add education layer, store in scGOPmap2 variable
scGOPmap <- leaflet(scmap) %>%
addProviderTiles("CartoDB.Positron") %>%
addPolygons(stroke=TRUE,
weight=1,
smoothFactor = 0.2,
fillOpacity = .75,
popup=scpopup,
color= ~winnerPalette(scmap$winner),
group="Winners" ) %>%
addLegend(position="bottomleft", colors=c("#984ea3", "#e41a1c"), labels=c("Trump", "Rubio")) %>%
addPolygons(stroke=TRUE,
weight=1,
smoothFactor = 0.2,
fillOpacity = .75,
popup=scpopup,
color= ~trumpPalette(scmap$`Donald J TrumpPct`),
group="Trump") %>%
addPolygons(stroke=TRUE,
weight=1,
smoothFactor = 0.2,
fillOpacity = .75,
popup=scpopup,
color= ~rubioPalette(scmap$`Marco RubioPct`),
group="Rubio") %>%
addPolygons(stroke=TRUE,
weight=1,
smoothFactor = 0.2,
fillOpacity = .75,
popup=scpopup,
color= ~cruzPalette(scmap$`Ted CruzPct`),
group="Cruz") %>%
addPolygons(stroke=TRUE,
weight=1,
smoothFactor = 0.2,
fillOpacity = .75,
popup=scpopup,
color= ~edPalette(sced$PctCollegeDegree), #this data is in the sced table, not scmaps
group="College degs") %>%
addLayersControl(
baseGroups=c("Winners", "Trump", "Rubio", "Cruz", "College degs"),
position = "bottomleft",
options = layersControlOptions(collapsed = FALSE))
# Now display the map
scGOPmap