# This tutorial is part of Computerworld's How to Make a Map with R in 10 (fairly) Easy Steps
# https://www.computerworld.com/article/3038270/data-analytics/create-maps-in-r-in-10-fairly-easy-steps.html
# by Sharon Machlis sharon_machlis@idg.com


# Set various values needed, including names of files and FIPS codes for New Hampshire and South Carolina
nhdatafile <- "NHD2016.xlsx"
nhdatafilecsv <- "NHD2016.csv"
usshapefile <- "cb_2014_us_county_5m/cb_2014_us_county_5m.shp"
nhfipscode <- "33"
scdatafile <- "SCGOP2016.csv"
scfipscode <- "45"
# Run any of the install.packages() commands below for packages that are not yet on your system
library(tidyverse)
## Warning: package 'tidyr' was built under R version 4.3.1
library(tmap)
## Warning: package 'tmap' was built under R version 4.3.1
library(tmaptools)
## Warning: package 'tmaptools' was built under R version 4.3.1
library(leaflet)
## Warning: package 'leaflet' was built under R version 4.3.1
library(sf)
## Warning: package 'sf' was built under R version 4.3.1
library(leaflet.extras)
## Warning: package 'leaflet.extras' was built under R version 4.3.1
library(dplyr)
library(rio)
## Warning: package 'rio' was built under R version 4.3.1
library(sp)
## Warning: package 'sp' was built under R version 4.3.1
library(htmlwidgets)
## Warning: package 'htmlwidgets' was built under R version 4.3.1
library(scales)
## Warning: package 'scales' was built under R version 4.3.1

Step 1: Read in the NH election results file:

setwd("C:\\Users\\asing\\Desktop\\data_science\\data_110\\week_5\\GIS\\computerworldrmaptutorial\\data")
nhdata <- import(nhdatafile)
nhdata <- import(nhdatafilecsv)

Eliminate columns for minor candidates and just use County, Clinton and Sanders columns:

nhdata <- nhdata[,c("County", "Clinton", "Sanders")]

Step 2: Decide what data to map

Add columns for percents and margins:

nhdata$SandersMarginVotes <- nhdata$Sanders - nhdata$Clinton
nhdata$SandersPct <- (nhdata$Sanders) / (nhdata$Sanders + nhdata$Clinton) 
# Will use formatting later to multiply by a hundred
nhdata$ClintonPct <- (nhdata$Clinton) / (nhdata$Sanders + nhdata$Clinton)
nhdata$SandersMarginPctgPoints <- nhdata$SandersPct - nhdata$ClintonPct

Step 3: Get geographic data files

Read in the shapefile for US states and counties:

• If libraries with raster and rgdal don’t work (see next chunk), try library(sf) with the command st_read

• All these options are here and should help you get the qtm command in the next chunk

setwd("C:\\Users\\asing\\Desktop\\data_science\\data_110\\week_5\\GIS\\computerworldrmaptutorial\\data\\cb_2014_us_county_5m")
library(raster)
## Warning: package 'raster' was built under R version 4.3.1
## 
## Attaching package: 'raster'
## The following object is masked from 'package:dplyr':
## 
##     select
library(rgdal)
## Warning: package 'rgdal' was built under R version 4.3.1
## Please note that rgdal will be retired during October 2023,
## plan transition to sf/stars/terra functions using GDAL and PROJ
## at your earliest convenience.
## See https://r-spatial.org/r/2023/05/15/evolution4.html and https://github.com/r-spatial/evolution
## rgdal: version: 1.6-7, (SVN revision 1203)
## Geospatial Data Abstraction Library extensions to R successfully loaded
## Loaded GDAL runtime: GDAL 3.6.2, released 2023/01/02
## Path to GDAL shared files: C:/Users/asing/AppData/Local/R/win-library/4.3/rgdal/gdal
##  GDAL does not use iconv for recoding strings.
## GDAL binary built with GEOS: TRUE 
## Loaded PROJ runtime: Rel. 9.2.0, March 1st, 2023, [PJ_VERSION: 920]
## Path to PROJ shared files: C:/Users/asing/AppData/Local/R/win-library/4.3/rgdal/proj
## PROJ CDN enabled: FALSE
## Linking to sp version:2.0-0
## To mute warnings of possible GDAL/OSR exportToProj4() degradation,
## use options("rgdal_show_exportToProj4_warnings"="none") before loading sp or rgdal.
usgeo <- shapefile("cb_2014_us_county_5m.shp")
## Warning: [vect] Z coordinates ignored

Do a quick plot (qtm stands for quick thematic map) of the shapefile and check its structure:

tmap_options(check.and.fix =  TRUE)
qtm(usgeo)

Subset just the NH data from the US shapefile

nhgeo <- usgeo[usgeo$STATEFP==nhfipscode,]

##tmap test plot of the New Hampshire data

qtm(nhgeo)

Structure of the object

## I EDITED THE STRING OUT BECAUSE IT WAS TO LONG

#str(nhgeo)
#str(nhdata$County)

# They're not. Change the county names to plain characters in nhgeo:
nhgeo$NAME <- as.character(nhgeo$NAME)

Order each data set by county name

nhgeo <- nhgeo[order(nhgeo$NAME),]
nhdata <- nhdata[order(nhdata$County),]
# Are the two county columns identical now? They should be:
identical(nhgeo$NAME,nhdata$County)
## [1] TRUE

Step 4: Merge geo data with results data using the merge function

library(sf)  # sf stands for simple features#

nhmap <- merge(nhgeo, nhdata, by.x = "NAME", by.y = "County")
# See the new data structure with

# I EDITED THE STRING OUT CAUSE IT WAS TO LONG

#str(nhmap)

Step 5: Create a static map with tmap’s qtm() function:

qtm(nhmap, "SandersMarginVotes")
## Some legend labels were too wide. These labels have been resized to 0.62, 0.62, 0.62, 0.57, 0.53. Increase legend.width (argument of tm_layout) to make the legend wider and therefore the labels larger.

qtm(nhmap, "SandersMarginPctgPoints")

For more control over look and feel, use the tm_shape() function:

tm_shape(nhmap) +
  tm_fill("SandersMarginVotes", title="Sanders Margin, Total Votes", palette = "PRGn") +
  tm_borders(alpha=.5) +
  tm_text("NAME", size=0.8)
## Some legend labels were too wide. These labels have been resized to 0.62, 0.62, 0.62, 0.57, 0.53. Increase legend.width (argument of tm_layout) to make the legend wider and therefore the labels larger.

Same code as above, but store the static map in a variable, and change the theme to “classic” style:

nhstaticmap <- tm_shape(nhmap) +
tm_fill("SandersMarginVotes", title="Sanders Margin, Total Votes", palette = "viridis") + #I like viridis
tm_borders(alpha=.5) +
tm_text("NAME", size=0.8) + 
tm_style("classic")

View the map

nhstaticmap
## Some legend labels were too wide. These labels have been resized to 0.62, 0.62, 0.62, 0.57, 0.53. Increase legend.width (argument of tm_layout) to make the legend wider and therefore the labels larger.

Save the map to a jpg file with tmap’s tmap_save():

tmap_save(nhstaticmap, filename="nhdemprimary.jpg") 
## Map saved to C:\Users\asing\Desktop\data_science\data_110\week_5\nhdemprimary.jpg
## Resolution: 1501.336 by 2937.385 pixels
## Size: 5.004452 by 9.791282 inches (300 dpi)

Part 6

Next up: Code for a basic interactive map, this time for Clinton percentages in NH

Create a palette

clintonPalette <- colorNumeric(palette = "Blues", domain=nhmap$ClintonPct)

and a pop-up window

library(scales)
#library(raster)
nhpopup <- paste0("County: ", nhmap$NAME, "<br /><br /> Sanders:  ", percent(nhmap$SandersPct), " Clinton: ", percent(nhmap$ClintonPct))

Step 7: Now generate the interactive map:

For more information on CRS (coordinate reference systems) projection, see this document:

https://rspatial.org/raster/spatial/6-crs.html

nhmap_projected <- sp::spTransform(nhmap, "+proj=longlat +datum=WGS84")
leaflet(nhmap_projected) %>%
  addProviderTiles("CartoDB.Positron") %>%
  addPolygons(stroke=FALSE, 
              smoothFactor = 0.2, 
              fillOpacity = .8, 
              popup=nhpopup, 
              color= ~clintonPalette(nhmap$ClintonPct)
  ) 

South Carolina data

setwd("C:\\Users\\asing\\Desktop\\data_science\\data_110\\week_5\\GIS\\computerworldrmaptutorial\\data")
scdata <- rio::import(scdatafile)

South Carolina shapefile and Quick plot of scgeo SC geospatial object:

scgeo <- usgeo[usgeo@data$STATEFP=="45",]
qtm(scgeo)

Add a column with percent of votes for each candidate. Candidates are in columns 2-7:

candidates <- colnames(scdata[2:7])
for(i in 2:7){
  j = i + 7
  temp <- scdata[[i]] / scdata$Total
  scdata[[j]] <- temp
  colnames(scdata)[j] <- paste0(colnames(scdata)[i], "Pct")
}  
winner <- colnames(scdata[2:7])

Get winner in each precinct

for(i in 1:nrow(scdata)){
  scdata$winner[i] <- names(which.max(scdata[i,2:7]))
}

Import spreadsheet with percent of adult population holding at least a 4-yr college degree

setwd("C:\\Users\\asing\\Desktop\\data_science\\data_110\\week_5\\GIS\\computerworldrmaptutorial\\data")
sced <- rio::import("SCdegree.xlsx")

Check if county names are in the same format in both files

str(scgeo$NAME)
##  chr [1:46] "Edgefield" "Lee" "Horry" "Allendale" "Marion" "Dorchester" ...
##  chr [1:46] "Edgefield" "Lee" "Horry" "Allendale" "Marion" "Dorchester" ...
str(scdata$County)
##  chr [1:46] "Abbeville" "Aiken" "Allendale" "Anderson" "Bamberg" "Barnwell" ...
##  chr [1:46] "Abbeville" "Aiken" "Allendale" "Anderson" "Bamberg" "Barnwell" ...
# Change the county names to plain characters in scgeo:
scgeo$NAME <- as.character(scgeo$NAME)

# Order each data set by county name
scgeo <- scgeo[order(scgeo$NAME),]
scdata <- scdata[order(scdata$County),]

# Are the two county columns identical now? They should be:
identical(scgeo$NAME,scdata$County )
## [1] TRUE

Add the election results and rename county column

scmap <- merge(scgeo, scdata, by.x = "NAME", by.y = "County") 

Instead of just coloring the winner, let’s color by strength of win with multiple layers

# Use same intensity for all - get minimum and maximum for the top 3 combined
minpct <- min(c(scdata$`Donald J TrumpPct`, scdata$`Marco RubioPct`, scdata$`Ted CruzPct`))
maxpct <- max(c(scdata$`Donald J TrumpPct`, scdata$`Marco RubioPct`, scdata$`Ted CruzPct`))

Create leaflet palettes for each layer of the map:

trumpPalette <- colorNumeric(palette = "Purples", domain=c(minpct, maxpct))
rubioPalette <- colorNumeric(palette = "Reds", domain = c(minpct, maxpct))
cruzPalette <- colorNumeric(palette = "Oranges", domain = c(minpct, maxpct))

winnerPalette <- colorFactor(palette=c("#984ea3", "#e41a1c"), domain = scmap$winner)
edPalette <- colorNumeric(palette = "Blues", domain=scmap$PctCollegeDegree)

Create a pop-up:

scpopup <- paste0("<b>County: ", scmap$NAME, "<br />Winner: ", scmap$winner, "</b><br /><br />Trump: ", percent(scmap$`Donald J TrumpPct`), "<br />Rubio: ", percent(scmap$`Marco RubioPct`), "<br />Cruz: ", percent(scmap$`Ted CruzPct`), "<br /><br />Pct w college ed: ", sced$PctCollegeDegree, "% vs state-wide avg of 25%")

Add the projection we know from the NH map we’ll need for this data on a Leaflet map:

scmap <- sp::spTransform(scmap, "+proj=longlat +datum=WGS84")

Basic interactive map showing winner in each county:

leaflet(scmap) %>%
  addProviderTiles("CartoDB.Positron") %>%
  addPolygons(stroke=TRUE,
              weight=1,
              smoothFactor = 0.2,
              fillOpacity = .75,
              popup=scpopup, 
              color= ~winnerPalette(scmap$winner),
              group="Winners" ) %>%
    addLegend(position="bottomleft", colors=c("#984ea3", "#e41a1c"), labels=c("Trump", "Rubio")) 

Put top 3 candidates in their own layers and add education layer, store in scGOPmap variable

scGOPmap <- leaflet(scmap) %>%
  addProviderTiles("CartoDB.Positron") %>%
  addPolygons(stroke=TRUE,
              weight=1,
              smoothFactor = 0.2,
              fillOpacity = .75,
              popup=scpopup, 
              color= ~winnerPalette(scmap$winner),
              group="Winners"  ) %>% 
    addLegend(position="bottomleft", colors=c("#984ea3", "#e41a1c"), labels=c("Trump", "Rubio"))  %>%

  addPolygons(stroke=TRUE,
     weight=1,
     smoothFactor = 0.2, 
     fillOpacity = .75, 
     popup=scpopup, 
     color= ~trumpPalette(scmap$`Donald J TrumpPct`),
     group="Trump") %>%

  addPolygons(stroke=TRUE,
              weight=1,
              smoothFactor = 0.2, 
              fillOpacity = .75, 
              popup=scpopup, 
              color= ~rubioPalette(scmap$`Marco RubioPct`),
              group="Rubio") %>%

  addPolygons(stroke=TRUE,
              weight=1,
              smoothFactor = 0.2, 
              fillOpacity = .75, 
              popup=scpopup, 
              color= ~cruzPalette(scmap$`Ted CruzPct`),
              group="Cruz") %>%

  addPolygons(stroke=TRUE,
              weight=1,
              smoothFactor = 0.2, 
              fillOpacity = .75, 
              popup=scpopup, 
              color= ~edPalette(sced$PctCollegeDegree), #this data is in the sced table, not scmaps
              group="College degs") %>%

  addLayersControl(
      baseGroups=c("Winners", "Trump", "Rubio", "Cruz", "College degs"),
      position = "bottomleft",
      options = layersControlOptions(collapsed = FALSE))

# Now display the map
scGOPmap 

Save as self-contained HTML file

library(htmlwidgets)
htmlwidgets::saveWidget(scGOPmap, file="scGOPwidget2.html")

# save as an HTML file with dependencies in another directory:
#htmlwidgets::saveWidget(widget=scGOPmap2, file="scGOPprimary_withdependencies.html", selfcontained=FALSE, libdir = "js")