# This tutorial is part of Computerworld's How to Make a Map with R in 10 (fairly) Easy Steps
# https://www.computerworld.com/article/3038270/data-analytics/create-maps-in-r-in-10-fairly-easy-steps.html
# by Sharon Machlis sharon_machlis@idg.com
# Set various values needed, including names of files and FIPS codes for New Hampshire and South Carolina
nhdatafile <- "NHD2016.xlsx"
nhdatafilecsv <- "NHD2016.csv"
usshapefile <- "cb_2014_us_county_5m/cb_2014_us_county_5m.shp"
nhfipscode <- "33"
scdatafile <- "SCGOP2016.csv"
scfipscode <- "45"
# Run any of the install.packages() commands below for packages that are not yet on your system
library(tidyverse)
## Warning: package 'tidyr' was built under R version 4.3.1
library(tmap)
## Warning: package 'tmap' was built under R version 4.3.1
library(tmaptools)
## Warning: package 'tmaptools' was built under R version 4.3.1
library(leaflet)
## Warning: package 'leaflet' was built under R version 4.3.1
library(sf)
## Warning: package 'sf' was built under R version 4.3.1
library(leaflet.extras)
## Warning: package 'leaflet.extras' was built under R version 4.3.1
library(dplyr)
library(rio)
## Warning: package 'rio' was built under R version 4.3.1
library(sp)
## Warning: package 'sp' was built under R version 4.3.1
library(htmlwidgets)
## Warning: package 'htmlwidgets' was built under R version 4.3.1
library(scales)
## Warning: package 'scales' was built under R version 4.3.1
setwd("C:\\Users\\asing\\Desktop\\data_science\\data_110\\week_5\\GIS\\computerworldrmaptutorial\\data")
nhdata <- import(nhdatafile)
nhdata <- import(nhdatafilecsv)
nhdata <- nhdata[,c("County", "Clinton", "Sanders")]
nhdata$SandersMarginVotes <- nhdata$Sanders - nhdata$Clinton
nhdata$SandersPct <- (nhdata$Sanders) / (nhdata$Sanders + nhdata$Clinton)
# Will use formatting later to multiply by a hundred
nhdata$ClintonPct <- (nhdata$Clinton) / (nhdata$Sanders + nhdata$Clinton)
nhdata$SandersMarginPctgPoints <- nhdata$SandersPct - nhdata$ClintonPct
setwd("C:\\Users\\asing\\Desktop\\data_science\\data_110\\week_5\\GIS\\computerworldrmaptutorial\\data\\cb_2014_us_county_5m")
library(raster)
## Warning: package 'raster' was built under R version 4.3.1
##
## Attaching package: 'raster'
## The following object is masked from 'package:dplyr':
##
## select
library(rgdal)
## Warning: package 'rgdal' was built under R version 4.3.1
## Please note that rgdal will be retired during October 2023,
## plan transition to sf/stars/terra functions using GDAL and PROJ
## at your earliest convenience.
## See https://r-spatial.org/r/2023/05/15/evolution4.html and https://github.com/r-spatial/evolution
## rgdal: version: 1.6-7, (SVN revision 1203)
## Geospatial Data Abstraction Library extensions to R successfully loaded
## Loaded GDAL runtime: GDAL 3.6.2, released 2023/01/02
## Path to GDAL shared files: C:/Users/asing/AppData/Local/R/win-library/4.3/rgdal/gdal
## GDAL does not use iconv for recoding strings.
## GDAL binary built with GEOS: TRUE
## Loaded PROJ runtime: Rel. 9.2.0, March 1st, 2023, [PJ_VERSION: 920]
## Path to PROJ shared files: C:/Users/asing/AppData/Local/R/win-library/4.3/rgdal/proj
## PROJ CDN enabled: FALSE
## Linking to sp version:2.0-0
## To mute warnings of possible GDAL/OSR exportToProj4() degradation,
## use options("rgdal_show_exportToProj4_warnings"="none") before loading sp or rgdal.
usgeo <- shapefile("cb_2014_us_county_5m.shp")
## Warning: [vect] Z coordinates ignored
tmap_options(check.and.fix = TRUE)
qtm(usgeo)
nhgeo <- usgeo[usgeo$STATEFP==nhfipscode,]
##tmap test plot of the New Hampshire data
qtm(nhgeo)
## I EDITED THE STRING OUT BECAUSE IT WAS TO LONG
#str(nhgeo)
#str(nhdata$County)
# They're not. Change the county names to plain characters in nhgeo:
nhgeo$NAME <- as.character(nhgeo$NAME)
nhgeo <- nhgeo[order(nhgeo$NAME),]
nhdata <- nhdata[order(nhdata$County),]
# Are the two county columns identical now? They should be:
identical(nhgeo$NAME,nhdata$County)
## [1] TRUE
library(sf) # sf stands for simple features#
nhmap <- merge(nhgeo, nhdata, by.x = "NAME", by.y = "County")
# See the new data structure with
# I EDITED THE STRING OUT CAUSE IT WAS TO LONG
#str(nhmap)
qtm(nhmap, "SandersMarginVotes")
## Some legend labels were too wide. These labels have been resized to 0.62, 0.62, 0.62, 0.57, 0.53. Increase legend.width (argument of tm_layout) to make the legend wider and therefore the labels larger.
qtm(nhmap, "SandersMarginPctgPoints")
tm_shape(nhmap) +
tm_fill("SandersMarginVotes", title="Sanders Margin, Total Votes", palette = "PRGn") +
tm_borders(alpha=.5) +
tm_text("NAME", size=0.8)
## Some legend labels were too wide. These labels have been resized to 0.62, 0.62, 0.62, 0.57, 0.53. Increase legend.width (argument of tm_layout) to make the legend wider and therefore the labels larger.
nhstaticmap <- tm_shape(nhmap) +
tm_fill("SandersMarginVotes", title="Sanders Margin, Total Votes", palette = "viridis") + #I like viridis
tm_borders(alpha=.5) +
tm_text("NAME", size=0.8) +
tm_style("classic")
nhstaticmap
## Some legend labels were too wide. These labels have been resized to 0.62, 0.62, 0.62, 0.57, 0.53. Increase legend.width (argument of tm_layout) to make the legend wider and therefore the labels larger.
tmap_save(nhstaticmap, filename="nhdemprimary.jpg")
## Map saved to C:\Users\asing\Desktop\data_science\data_110\week_5\nhdemprimary.jpg
## Resolution: 1501.336 by 2937.385 pixels
## Size: 5.004452 by 9.791282 inches (300 dpi)
Next up: Code for a basic interactive map, this time for Clinton percentages in NH
clintonPalette <- colorNumeric(palette = "Blues", domain=nhmap$ClintonPct)
library(scales)
#library(raster)
nhpopup <- paste0("County: ", nhmap$NAME, "<br /><br /> Sanders: ", percent(nhmap$SandersPct), " Clinton: ", percent(nhmap$ClintonPct))
nhmap_projected <- sp::spTransform(nhmap, "+proj=longlat +datum=WGS84")
leaflet(nhmap_projected) %>%
addProviderTiles("CartoDB.Positron") %>%
addPolygons(stroke=FALSE,
smoothFactor = 0.2,
fillOpacity = .8,
popup=nhpopup,
color= ~clintonPalette(nhmap$ClintonPct)
)
setwd("C:\\Users\\asing\\Desktop\\data_science\\data_110\\week_5\\GIS\\computerworldrmaptutorial\\data")
scdata <- rio::import(scdatafile)
scgeo <- usgeo[usgeo@data$STATEFP=="45",]
qtm(scgeo)
candidates <- colnames(scdata[2:7])
for(i in 2:7){
j = i + 7
temp <- scdata[[i]] / scdata$Total
scdata[[j]] <- temp
colnames(scdata)[j] <- paste0(colnames(scdata)[i], "Pct")
}
winner <- colnames(scdata[2:7])
for(i in 1:nrow(scdata)){
scdata$winner[i] <- names(which.max(scdata[i,2:7]))
}
setwd("C:\\Users\\asing\\Desktop\\data_science\\data_110\\week_5\\GIS\\computerworldrmaptutorial\\data")
sced <- rio::import("SCdegree.xlsx")
str(scgeo$NAME)
## chr [1:46] "Edgefield" "Lee" "Horry" "Allendale" "Marion" "Dorchester" ...
## chr [1:46] "Edgefield" "Lee" "Horry" "Allendale" "Marion" "Dorchester" ...
str(scdata$County)
## chr [1:46] "Abbeville" "Aiken" "Allendale" "Anderson" "Bamberg" "Barnwell" ...
## chr [1:46] "Abbeville" "Aiken" "Allendale" "Anderson" "Bamberg" "Barnwell" ...
# Change the county names to plain characters in scgeo:
scgeo$NAME <- as.character(scgeo$NAME)
# Order each data set by county name
scgeo <- scgeo[order(scgeo$NAME),]
scdata <- scdata[order(scdata$County),]
# Are the two county columns identical now? They should be:
identical(scgeo$NAME,scdata$County )
## [1] TRUE
scmap <- merge(scgeo, scdata, by.x = "NAME", by.y = "County")
# Use same intensity for all - get minimum and maximum for the top 3 combined
minpct <- min(c(scdata$`Donald J TrumpPct`, scdata$`Marco RubioPct`, scdata$`Ted CruzPct`))
maxpct <- max(c(scdata$`Donald J TrumpPct`, scdata$`Marco RubioPct`, scdata$`Ted CruzPct`))
trumpPalette <- colorNumeric(palette = "Purples", domain=c(minpct, maxpct))
rubioPalette <- colorNumeric(palette = "Reds", domain = c(minpct, maxpct))
cruzPalette <- colorNumeric(palette = "Oranges", domain = c(minpct, maxpct))
winnerPalette <- colorFactor(palette=c("#984ea3", "#e41a1c"), domain = scmap$winner)
edPalette <- colorNumeric(palette = "Blues", domain=scmap$PctCollegeDegree)
scpopup <- paste0("<b>County: ", scmap$NAME, "<br />Winner: ", scmap$winner, "</b><br /><br />Trump: ", percent(scmap$`Donald J TrumpPct`), "<br />Rubio: ", percent(scmap$`Marco RubioPct`), "<br />Cruz: ", percent(scmap$`Ted CruzPct`), "<br /><br />Pct w college ed: ", sced$PctCollegeDegree, "% vs state-wide avg of 25%")
scmap <- sp::spTransform(scmap, "+proj=longlat +datum=WGS84")
leaflet(scmap) %>%
addProviderTiles("CartoDB.Positron") %>%
addPolygons(stroke=TRUE,
weight=1,
smoothFactor = 0.2,
fillOpacity = .75,
popup=scpopup,
color= ~winnerPalette(scmap$winner),
group="Winners" ) %>%
addLegend(position="bottomleft", colors=c("#984ea3", "#e41a1c"), labels=c("Trump", "Rubio"))
scGOPmap <- leaflet(scmap) %>%
addProviderTiles("CartoDB.Positron") %>%
addPolygons(stroke=TRUE,
weight=1,
smoothFactor = 0.2,
fillOpacity = .75,
popup=scpopup,
color= ~winnerPalette(scmap$winner),
group="Winners" ) %>%
addLegend(position="bottomleft", colors=c("#984ea3", "#e41a1c"), labels=c("Trump", "Rubio")) %>%
addPolygons(stroke=TRUE,
weight=1,
smoothFactor = 0.2,
fillOpacity = .75,
popup=scpopup,
color= ~trumpPalette(scmap$`Donald J TrumpPct`),
group="Trump") %>%
addPolygons(stroke=TRUE,
weight=1,
smoothFactor = 0.2,
fillOpacity = .75,
popup=scpopup,
color= ~rubioPalette(scmap$`Marco RubioPct`),
group="Rubio") %>%
addPolygons(stroke=TRUE,
weight=1,
smoothFactor = 0.2,
fillOpacity = .75,
popup=scpopup,
color= ~cruzPalette(scmap$`Ted CruzPct`),
group="Cruz") %>%
addPolygons(stroke=TRUE,
weight=1,
smoothFactor = 0.2,
fillOpacity = .75,
popup=scpopup,
color= ~edPalette(sced$PctCollegeDegree), #this data is in the sced table, not scmaps
group="College degs") %>%
addLayersControl(
baseGroups=c("Winners", "Trump", "Rubio", "Cruz", "College degs"),
position = "bottomleft",
options = layersControlOptions(collapsed = FALSE))
# Now display the map
scGOPmap
library(htmlwidgets)
htmlwidgets::saveWidget(scGOPmap, file="scGOPwidget2.html")
# save as an HTML file with dependencies in another directory:
#htmlwidgets::saveWidget(widget=scGOPmap2, file="scGOPprimary_withdependencies.html", selfcontained=FALSE, libdir = "js")