# # 2000 data: NAICS Based Measure
# 
# # NAICS is available in CBP data post 1997.
# 
# 
# # cbp employment raw data
# cbp <- fread(paste0("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/CBP/county/cbp",substr(st_yr,3,4),"co.txt"))
# cbp[,naics:=as.numeric(naics)]
# cbp <- cbp[!is.na(naics)]
# 
# cbp[,imp_emp:=n1_4*2.5+n5_9*7+n10_19*15+n20_49*35+n50_99*75+n100_249*175+n250_499*375+n500_999*750+n1000_1*1250+n1000_2*2000+n1000_3*3750+n1000_4*10000]
# 
# cbp[,imp_emp:=ifelse(!is.na(emp) & emp>0,emp,imp_emp)]
# 
# cbp[,fips:=paste0(str_pad(fipstate,2,"left","0"),str_pad(fipscty,3,"left","0"))]
# 
# cbp <- cbp[,c("fips","naics","imp_emp")]
# 
# naics_sic <- fread("David Dorn/NAICS97_6_to_SIC87_4.csv")
# cbp <- merge(cbp,naics_sic,by.x="naics",by.y="naics6",allow.cartesian = T)
# cbp[,imp_emp:=imp_emp*weight]
# 
# cbp[,emp_sic_n:=sum(imp_emp),by=sic4]
# cbp[,emp_fips:=sum(imp_emp),by=fips]
# 
# 
# 
# 
# us_imports <- fread("David Dorn/Imports_from_China_by_sic87dd_1991_2014.csv")
# us_imports <- us_imports[,c("sic87dd","l_import_usch_2000","l_import_usch_2007")]
# us_imports[,chg_st_ed:=l_import_usch_2007-l_import_usch_2000]
# 
# 
# 
# emp_naics <- merge(cbp,us_imports[,c("chg_st_ed","sic87dd")],by.x="sic4",by.y="sic87dd",all.x=T)
# 
# emp_naics[,chg_per_employee:=chg_st_ed/emp_sic_n]
# 
# emp_naics[,w_chg_per_employee:=chg_per_employee*imp_emp/emp_fips]
# 
# # d_tradeusch_pw_dr is our approximation of d_tradeusch_pw in ADH
# emp_czone <- emp_naics[,.(import_sensitivity=sum(w_chg_per_employee,na.rm=T)),by=fips]
# 
# 
# 
# 
# # Other country IV
# imports_oth <- fread("David Dorn/Imports_from_China_by_sic87dd_1991_2014.csv")
# imports_oth <- imports_oth[,c("sic87dd","l_import_otch_2000","l_import_otch_2007")]
# imports_oth[,chg_st_ed:=l_import_otch_2007-l_import_otch_2000]
# 
# cbp <- fread(paste0("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/CBP/county/cbp",substr(st_yr-2,3,4),"co.txt"))
# cbp[,naics:=as.numeric(naics)]
# cbp <- cbp[!is.na(naics)]
# 
# cbp[,imp_emp:=n1_4*2.5+n5_9*7+n10_19*15+n20_49*35+n50_99*75+n100_249*175+n250_499*375+n500_999*750+n1000_1*1250+n1000_2*2000+n1000_3*3750+n1000_4*10000]
# 
# cbp[,imp_emp:=ifelse(!is.na(emp) & emp>0,emp,imp_emp)]
# 
# cbp[,fips:=paste0(str_pad(fipstate,2,"left","0"),str_pad(fipscty,3,"left","0"))]
# 
# cbp <- cbp[,c("fips","naics","imp_emp")]
# 
# naics_sic <- fread("David Dorn/NAICS97_6_to_SIC87_4.csv")
# cbp <- merge(cbp,naics_sic,by.x="naics",by.y="naics6",allow.cartesian = T)
# cbp[,imp_emp:=imp_emp*weight]
# 
# cbp[,emp_sic_n:=sum(imp_emp),by=sic4]
# cbp[,emp_fips:=sum(imp_emp),by=fips]
# 
# 
# emp_naics_oc <- merge(cbp,imports_oth[,c("chg_st_ed","sic87dd")],by.x="sic4",by.y="sic87dd",all.x=T)
# 
# emp_naics_oc[,chg_per_employee:=chg_st_ed/emp_sic_n]
# 
# emp_naics_oc[,w_chg_per_employee:=chg_per_employee*imp_emp/emp_fips]
# 
# # tradeotch_pw_lag_dr is our approximation of tradeotch_pw_lag in ADH
# emp_naics_oc <- emp_naics_oc[,.(iv_import_sensitivity=sum(w_chg_per_employee,na.rm=T)),by=fips]
# 
# measures <- merge(emp_czone,emp_naics_oc,by="fips")
# 
# measures[,x_bin:=ntile(import_sensitivity,3)]
# measures[,iv_bin:=ntile(iv_import_sensitivity,100)]
# 
# saveRDS(measures,"measures_county_levels_sic87dd.rds")
# pop_data <- list()
# 
# pop_2000 <- get_decennial(geography = "county", variables = "P001001",year = 2000)
# pop_2000 <- pop_2000[,c("GEOID","value")]
# names(pop_2000) <- c("fips","population")
# pop_2000 <- data.table(pop_2000)
# pop_2000[,fips:=as.numeric(fips)]
# pop_2000[,year:=2000]
# pop_data[[1]] <- pop_2000
# 
# #https://repository.duke.edu/catalog/f49b199b-1496-4636-91f3-36226c8e7f80
# pop_csv <- fread("county_population_2000_2010.csv")
# pop_csv <- pop_csv[year %in% 2001:2009, c("fips","tot_pop","year")]
# names(pop_csv) <- c("fips","population","year")
# pop_data[[2]] <- pop_csv
# 
# i=3
# for(yr in 2010:2019){
#   pop <- get_acs(geography = "county", variables = c("B01003_001"), year = yr)
#   pop <- data.table(pop)
#   pop <- dcast(pop,GEOID~variable,value.var = "estimate",fun.aggregate = sum)
#   names(pop) <- c("fips","population")
#   pop[,year:=yr]
#   pop_data[[i]] <- pop
#   i=i+1
# }
# 
# pop_data <- do.call(rbind,pop_data)
# 
# pop_data[,fips:=str_pad(as.character(fips),width = 5,side = "left",pad = "0")]
# 
# 
# 
# #https://apps.bea.gov/regional/downloadzip.cfm
# county_data <- fread("bea_data_1969_2021.csv")
# 
# county_data[,variable:=ifelse(Description=="Personal income (thousands of dollars)","total_income",
#                               ifelse(Description=="Population (persons) 1/","population",
#                                      ifelse(Description=="Per capita personal income (dollars) 2/","income_per_capita","")))]
# 
# county_data <- county_data[variable %in% c("income_per_capita")]
# county_data[,c("GeoName","Region","TableName","LineCode","IndustryClassification","Unit","Description"):=list(NULL)]
# setnames(county_data,"GeoFIPS","fips")
# 
# county_data <- melt(county_data,id.vars = c("fips","variable"))
# county_data[,value:=as.numeric(value)]
# county_data <- dcast(county_data,fips+variable.1~variable,value.var = "value",fun.aggregate = sum)
# county_data[,variable.1:=as.numeric(as.character(variable.1))]
# 
# setnames(county_data,"variable.1","year")
# 
# unemp <- fread("la.data.64.County.txt")
# unemp <- unemp[substr(series_id,1,5)=="LAUCN"]
# unemp[,fips:=substr(series_id,6,10)]
# unemp <- unemp[substr(series_id,19,20)=="03"]
# unemp[,value:=as.numeric(value)]
# unemp <- unemp[,.(unemp_rate=mean(value,na.rm=T)),by=.(fips,year)]
# unemp[,c("series_id","period","footnote_codes"):=list(NULL)]
# 
# county_data <- merge(county_data,unemp,by=c("fips","year"))
# county_data <- merge(county_data,pop_data,by=c("fips","year"))
# 
# saveRDS(county_data,"county_data.rds")
# sod <- list()
# i=1
# for(fl in list.files(path="C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/SOD/data",full.names = T)){
#   sod[[i]] <- fread(fl,select = c("YEAR","CERT","DEPSUMBR","DEPSUM","RSSDHCR","RSSDID","STCNTYBR","ASSET","UNINUMBR","SIMS_ESTABLISHED_DATE","SIMS_LATITUDE","SIMS_LONGITUDE","ADDRESBR"))
#   i=i+1
# }
# 
# sod <- rbindlist(sod,fill=T)
# 
# sod[,DEPSUMBR:=str_remove_all(DEPSUMBR,",")]
# sod[,DEPSUM:=str_remove_all(DEPSUM,",")]
# sod[,ASSET:=str_remove_all(ASSET,",")]
# 
# sod[,DEPSUMBR:= as.numeric(DEPSUMBR)]
# sod[,DEPSUM:= as.numeric(DEPSUM)]
# sod[,ASSET:= as.numeric(ASSET)]
# 
# sod[,fips:=str_pad(STCNTYBR,5,"left","0")]
# sod[,SIMS_ESTABLISHED_DATE:=as.Date(SIMS_ESTABLISHED_DATE,"%m/%d/%Y")]
# 
# sod[,br_id:=paste0(tolower(ADDRESBR),round(SIMS_LATITUDE,1),round(SIMS_LONGITUDE,1))]
# 
# 
# 
# 
# br <- list()
# i <- 1
# for(yr in 2001:2020){
#   temp <- sod[YEAR==yr]
#   temp_p <- sod[YEAR==(yr-1)]
#   temp_a <- sod[YEAR==(yr+1)]
#   
#   # openings <- temp[year(SIMS_ESTABLISHED_DATE)==yr]
#   openings <- temp[DEPSUMBR> 0 & !UNINUMBR %in% temp_p[DEPSUMBR> 0]$UNINUMBR]
#   openings <- rbind(openings,temp[DEPSUMBR> 0 & !br_id %in% temp_p[DEPSUMBR> 0]$br_id])
#   openings <- openings[!duplicated(openings)]
#   openings <- openings[,.(openings=.N),by=fips]
#   
#   
#   closings <- temp[DEPSUMBR> 0 & !UNINUMBR %in% temp_a[DEPSUMBR> 0]$UNINUMBR]
#   closings <- rbind(closings,temp[DEPSUMBR> 0 & !br_id %in% temp_a[DEPSUMBR> 0]$br_id])
#   closings <- closings[!duplicated(closings)]
#   closings <- closings[,.(closings=.N),by=fips]
#   
#   temp<- data.table(fips=unique(sod$fips),YEAR=yr)
#   temp <- merge(temp,openings,by="fips",all.x = T)
#   temp <- merge(temp,closings,by="fips",all.x = T)
#   temp[is.na(temp)] <- 0
#   
#   br[[i]] <- temp
#   i=i+1
# }
# 
# br <- do.call(rbind,br)
# setorder(br,fips,YEAR)
# 
# 
# saveRDS(sod,"sod_sum.rds")
# saveRDS(br,"br_open_close.rds")
measures <- readRDS("measures_county_levels_sic87dd.rds")
measures[,import_sensitivity:=(import_sensitivity-min(measures$import_sensitivity,na.rm=T)+1)]
measures[,iv_import_sensitivity:=(iv_import_sensitivity-min(measures$iv_import_sensitivity,na.rm=T)+1)]
measures[,high_x:=ntile(import_sensitivity,2)]
measures[,is_q:=ntile(import_sensitivity,4)]
measures[,is_top_q:=ifelse(is_q==4,1,0)]
measures[,iv_q:=ntile(iv_import_sensitivity,4)]
measures[,iv_top_q:=ifelse(iv_q==4,1,0)]
county_data <- readRDS("county_data.rds")
sod <- readRDS("sod_sum.rds")

1 Growth of US imports from China

us_imports_china <- fread("us_imports_china.csv")

ggplot(us_imports_china,aes(x=year,y=ch_imports_bn))+
  geom_rect(mapping=aes(xmin=2000, xmax=2008, ymin=0, ymax=550),fill="gray90", alpha=0.9)+
  geom_line()+geom_point()+
  theme_minimal()+labs(x="",y="USD billions",title="U.S. imports of trade goods from China ")

2 Change in number of branches, deposits, and deposit concentration

Import sensitivity for each county was calculated by following Autor,Dorn, and Hanson (2013). Data period 2000 to 2007.

Counties are categorized in to three groups: 1 - lowest third sensitivity, 2 - middle third senstivitiy, 3 - top third sensitivity

County-level per capita number of branches and per capita deposits were normalized using the year 2000 values.

sod_county_year <- sod[,.(no_branches=.N,total_deposits=sum(DEPSUMBR,na.rm=T)),by=.(fips,YEAR)]
sod_county_year <- merge(sod_county_year,measures,by="fips")
sod_county_year <- merge(sod_county_year,county_data,by.y=c("fips","year"),by.x=c("fips","YEAR"))
sod_county_year[,no_branches:=no_branches/population]
sod_county_year[,total_deposits:=total_deposits/population]

sod_cy_sum <- sod_county_year[,.(no_branches=mean(no_branches),total_deposits=median(total_deposits)),by=.(YEAR,x_bin)]

temp <-sod_cy_sum[YEAR==2000,c("x_bin","no_branches","total_deposits")] 
names(temp) <- c("x_bin","no_branches_st","total_deposits_st")

sod_cy_sum <- merge(sod_cy_sum,temp,by="x_bin")
sod_cy_sum[,no_branches:=no_branches/no_branches_st]
sod_cy_sum[,total_deposits:=total_deposits/total_deposits_st]
ggplot(sod_cy_sum[YEAR>=2000],aes(x=YEAR,y=no_branches,color=factor(x_bin)))+geom_line()+geom_point()+
  theme_minimal()+
  theme(legend.position = "bottom")+
  ggtitle("Per capita number of branches")

ggplot(sod_cy_sum[YEAR>=2000 & YEAR<2020],aes(x=YEAR,y=total_deposits,color=factor(x_bin)))+geom_line()+geom_point()+
  theme_minimal()+
  theme(legend.position = "bottom")+
  ggtitle("Per capita deposits")

sod_county_year <- sod[,.(bank_deposits=sum(DEPSUMBR,na.rm=T)),by=.(fips,YEAR,RSSDID)]
sod_county_year[,total_deposits:=sum(bank_deposits,na.rm=T),by=.(fips,YEAR)]
sod_county_year[,mkt_share2:=bank_deposits/total_deposits]
sod_county_year[,mkt_share2:=mkt_share2*mkt_share2]

sod_hhi <- sod_county_year[,.(hhi=sum(mkt_share2,na.rm = T)),by=.(fips,YEAR)]
sod_hhi <- merge(sod_hhi,measures,by="fips")
sod_hhi[, hhi := Winsorize(hhi, probs = c(0.025,0.975), na.rm = TRUE)]

sod_hhi <- sod_hhi[,.(hhi_mean=mean(hhi),hhi_median=median(hhi),hhi_q1=quantile(hhi,0.25),hhi_q3=quantile(hhi,0.75)),by=.(YEAR,x_bin)]

temp <-sod_hhi[YEAR==2000,c("x_bin","hhi_mean","hhi_median")] 
names(temp) <- c("x_bin","hhi_mean_st","hhi_median_st")

sod_hhi <- merge(sod_hhi,temp,by="x_bin")
sod_hhi[,hhi_mean:=hhi_mean/hhi_mean_st]
sod_hhi[,hhi_median:=hhi_median/hhi_median_st]
ggplot(sod_hhi[YEAR>=2000 & YEAR<2020],aes(x=YEAR,y=hhi_mean,color=factor(x_bin)))+geom_line()+geom_point()+
  theme_minimal()+
  theme(legend.position = "bottom")+
  ggtitle("Deposit concentration")

sod_county_year <- sod[,.(bank_deposits=sum(DEPSUMBR,na.rm=T)),by=.(fips,YEAR,RSSDID)]
sod_county_year[,total_deposits:=sum(bank_deposits,na.rm=T),by=.(fips,YEAR)]
sod_county_year[,mkt_share2:=bank_deposits/total_deposits]
sod_county_year[,mkt_share2:=mkt_share2*mkt_share2]

sod_hhi <- sod_county_year[,.(hhi=sum(mkt_share2,na.rm = T)),by=.(fips,YEAR)]

sod_chg <- sod[,.(no_branches=.N,total_deposits=sum(DEPSUMBR,na.rm=T)),by=.(fips,YEAR)]
sod_chg <- merge(sod_chg,county_data,by.x=c("fips","YEAR"),by.y = c("fips","year"))
sod_chg <- merge(sod_chg,sod_hhi,by= c("fips","YEAR"))
setorder(sod_chg,fips,YEAR)

sod_chg[,no_branches:=no_branches/population]
sod_chg[,total_deposits:=total_deposits/population]
sod_chg[,hhi_lag:=shift(hhi),by=fips]
sod_chg[,no_branches_lag:=shift(no_branches),by=fips]
sod_chg[,total_deposits_lag:=shift(total_deposits),by=fips]

sod_chg[,delta_hhi:=hhi/hhi_lag]
sod_chg[,delta_no_branches:=no_branches/no_branches_lag]
sod_chg[,delta_total_deposits:=total_deposits/total_deposits_lag]

sod_chg <- merge(sod_chg,measures,by="fips")
sod_chg[,state:=substr(fips,1,2)]
sod_chg[,state_yr:=paste(state,YEAR)]
r <- list()

r[[1]] <- felm(log(delta_no_branches)~is_top_q|YEAR|0|fips,data=sod_chg[YEAR %in% 2000:2007])
r[[2]] <- felm(log(delta_total_deposits)~is_top_q|YEAR|0|fips,data=sod_chg[YEAR %in%  2000:2007])
r[[3]] <- felm(log(delta_hhi)~is_top_q|YEAR|0|fips,data=sod_chg[YEAR %in%  2000:2007])

r[[4]] <- felm(log(delta_no_branches)~is_top_q|YEAR|0|fips,data=sod_chg[YEAR %in% 2008:2019])
r[[5]] <- felm(log(delta_total_deposits)~is_top_q|YEAR|0|fips,data=sod_chg[YEAR %in%  2008:2019])
r[[6]] <- felm(log(delta_hhi)~is_top_q|YEAR|0|fips,data=sod_chg[YEAR %in%  2008:2019])

stargazer(r,type="text",omit.stat = "ser",column.labels = c("2000-2007","2008-2019"),column.separate = c(3,3))
## 
## ============================================================================================================================================
##                                                                    Dependent variable:                                                      
##              -------------------------------------------------------------------------------------------------------------------------------
##              log(delta_no_branches) log(delta_total_deposits) log(delta_hhi) log(delta_no_branches) log(delta_total_deposits) log(delta_hhi)
##                                         2000-2007                                                       2008-2019                           
##                       (1)                      (2)                 (3)                (4)                      (5)                 (6)      
## --------------------------------------------------------------------------------------------------------------------------------------------
## is_top_q           -0.004***                -0.005***             0.002*            -0.001*                 -0.005***             -0.001    
##                     (0.001)                  (0.001)             (0.001)            (0.001)                  (0.001)             (0.001)    
##                                                                                                                                             
## --------------------------------------------------------------------------------------------------------------------------------------------
## Observations         19,277                  19,277               19,277             33,019                  33,019               33,019    
## R2                   0.002                    0.013               0.002              0.015                    0.007               0.003     
## Adjusted R2          0.002                    0.013               0.001              0.014                    0.007               0.002     
## ============================================================================================================================================
## Note:                                                                                                            *p<0.1; **p<0.05; ***p<0.01

3 Deposit and Branch Change from 2008 to 2019

main_st <- 2008
main_ed <- 2019
cont_st <- 2000
cont_ed <- 2007


# all 2008-2019
sod_st <- sod[YEAR==main_st,.(no_branches_st=.N,total_deposits_st=sum(DEPSUMBR,na.rm=T)),by=fips]
sod_st <- merge(sod_st,county_data[year==main_st],by="fips")
sod_st[,no_branches_pc_st:=no_branches_st/population]
sod_st[,total_deposits_pc_st:=total_deposits_st/population]

setnames(sod_hhi,"hhi","hhi_st")
sod_st <- merge(sod_st,sod_hhi[YEAR==main_st],by=c("fips"))

sod_ed <- sod[YEAR==main_ed,.(no_branches_ed=.N,total_deposits_ed=sum(DEPSUMBR,na.rm=T)),by=fips]
sod_ed <- merge(sod_ed,county_data[year==main_ed],by="fips")
sod_ed[,no_branches_pc_ed:=no_branches_ed/population]
sod_ed[,total_deposits_pc_ed:=total_deposits_ed/population]
setnames(sod_ed,c("income_per_capita","unemp_rate","population"),c("income_per_capita_ed","unemp_rate_ed","population_ed"))

setnames(sod_hhi,"hhi_st","hhi_ed")
sod_st <- merge(sod_st,sod_hhi[YEAR==main_ed],by=c("fips"))


sod_chg <- merge(sod_st,sod_ed,by="fips")

sod_chg[,sod_br_change:=no_branches_ed*100/no_branches_st-1]
sod_chg[,sod_deposit_change:=total_deposits_ed*100/total_deposits_st-1]
sod_chg[,sod_br_change_pc:=no_branches_pc_ed*100/no_branches_pc_st-1]
sod_chg[,sod_deposit_change_pc:=total_deposits_pc_ed*100/total_deposits_pc_st-1]
sod_chg[,hhi_change:=hhi_ed*100/hhi_st-1]


# all banks 2000-2008
sod_st <- sod[YEAR==cont_st,.(no_branches_st=.N,total_deposits_st=sum(DEPSUMBR,na.rm=T)),by=fips]
setnames(sod_hhi,"hhi_ed","hhi_st")
sod_st <- merge(sod_st,sod_hhi[YEAR==cont_st],by=c("fips"))

sod_ed <- sod[YEAR==cont_ed,.(no_branches_ed=.N,total_deposits_ed=sum(DEPSUMBR,na.rm=T)),by=fips]
setnames(sod_hhi,"hhi_st","hhi_ed")
sod_st <- merge(sod_st,sod_hhi[YEAR==cont_ed],by=c("fips"))

sod_chg_s <- merge(sod_st,sod_ed)

sod_chg_s[,sod_br_change_cont:=no_branches_ed*100/no_branches_st-1]
sod_chg_s[,sod_deposit_change_cont:=total_deposits_ed*100/total_deposits_st-1]
sod_chg_s[,hhi_change_cont:=hhi_ed*100/hhi_st-1]

sod_chg_s <- sod_chg_s[,c("fips","sod_br_change_cont","sod_deposit_change_cont","hhi_change_cont")]

reg_sample <- merge(sod_chg,sod_chg_s,by="fips",all.x=T)

reg_sample <- merge(reg_sample,measures,by="fips")

reg_sample[,import_sensitivity:=(import_sensitivity-min(reg_sample$import_sensitivity,na.rm=T)+1)]
reg_sample[,iv_import_sensitivity:=(iv_import_sensitivity-min(reg_sample$iv_import_sensitivity,na.rm=T)+1)]

reg_sample[,statefips:=substr(fips,1,2)]

This is similar to main results of Autor,Dorn, and Hanson (2013), but at county-level.

log(import sensitivity) is instrumented using log(iv import sensitivity) which is based on the import growth in other developed countries. (same as Autor,Dorn, and Hanson (2013))

3.1 First Stage

log-log specification has more first stage power.

ggplot(reg_sample[log(iv_import_sensitivity)>1 & log(iv_import_sensitivity)<2.5],aes(x=log(iv_import_sensitivity),y=log(import_sensitivity)))+geom_point()+geom_smooth(method="lm")

3.2 Descriptive statistics

var_list <- c("sod_br_change","sod_br_change_pc","sod_deposit_change","sod_deposit_change_pc","hhi_change","population","income_per_capita","import_sensitivity","iv_import_sensitivity")
stargazer(reg_sample[,..var_list],type="text",summary.stat = c("mean","sd","p25","median","p75","N"))
## 
## ============================================================================
## Statistic                Mean     St. Dev.   Pctl(25) Median  Pctl(75)   N  
## ----------------------------------------------------------------------------
## sod_br_change           88.593     17.176     78.851  89.476   99.000  2,747
## sod_br_change_pc        87.814     18.186     76.413  87.751   99.908  2,747
## sod_deposit_change     133.560     46.108    111.904  127.371 146.880  2,747
## sod_deposit_change_pc  131.313     39.927    112.738  127.168 143.827  2,747
## hhi_change             107.430     27.173     93.006  102.559 117.198  2,747
## population            86,658.340 228,507.200  11,103  25,981   64,391  2,747
## income_per_capita     33,771.630  8,775.446  28,247.5 32,400   37,330  2,747
## import_sensitivity      14.522      4.979     12.747  13.561   14.940  2,747
## iv_import_sensitivity   4.659       3.436     3.162    3.915   5.150   2,747
## ----------------------------------------------------------------------------

3.3 Impact on county-level branches

The first table below regresses the change in number of branches at county level from 2008 to 2019. Column 4 uses
per capita branches change

controls = "log(income_per_capita)+log(population)"

3.3.1 OLS

r <- list()

r[[1]] <- felm(sod_br_change_cont~is_top_q+log(income_per_capita)+log(population)|statefips|0|statefips,data=reg_sample)
r[[2]] <- felm(sod_deposit_change_cont~is_top_q+log(income_per_capita)+log(population)|statefips|0|statefips,data=reg_sample)
r[[3]] <- felm(hhi_change_cont~is_top_q+log(income_per_capita)+log(population)|statefips|0|statefips,data=reg_sample)

r[[4]] <- felm(sod_br_change_pc~is_top_q+log(income_per_capita)+log(population)|statefips|0|statefips,data=reg_sample)
r[[5]] <- felm(sod_deposit_change_pc~is_top_q+log(income_per_capita)+log(population)|statefips|0|statefips,data=reg_sample)
r[[6]] <- felm(hhi_change~is_top_q+log(income_per_capita)+log(population)|statefips|0|statefips,data=reg_sample)

stargazer(r,type="text",omit.stat = "ser",no.space = T,column.labels = c("2000-2007","2008-2019"),column.separate = c(3,3))
## 
## ===================================================================================================================================
##                                                                    Dependent variable:                                             
##                        ------------------------------------------------------------------------------------------------------------
##                        sod_br_change_cont sod_deposit_change_cont hhi_change_cont sod_br_change_pc sod_deposit_change_pc hhi_change
##                                                2000-2007                                              2008-2019                    
##                               (1)                   (2)                 (3)             (4)                 (5)             (6)    
## -----------------------------------------------------------------------------------------------------------------------------------
## is_top_q                     -0.893                0.061              2.452**          0.410              -0.785           -1.317  
##                             (0.924)               (3.326)             (1.173)         (0.747)             (2.192)         (1.512)  
## log(income_per_capita)     13.269***             37.849***            -0.423           -0.756            25.548***        -8.547** 
##                             (2.781)               (8.484)             (2.752)         (2.110)             (4.639)         (4.052)  
## log(population)             3.950***             10.122***             0.594         -3.642***             1.313           0.557   
##                             (0.921)               (2.345)             (0.870)         (0.373)             (1.177)         (0.596)  
## -----------------------------------------------------------------------------------------------------------------------------------
## Observations                 2,745                 2,745               2,745           2,747               2,747           2,747   
## R2                           0.127                 0.168               0.038           0.235               0.142           0.043   
## Adjusted R2                  0.113                 0.155               0.022           0.223               0.127           0.027   
## ===================================================================================================================================
## Note:                                                                                                   *p<0.1; **p<0.05; ***p<0.01

3.3.2 IV - 1

r <- list()

r[[1]] <- felm(sod_br_change_cont~log(income_per_capita)+log(population)|statefips|(log(import_sensitivity)~log(iv_import_sensitivity))|statefips,data=reg_sample)
r[[2]] <- felm(sod_deposit_change_cont~log(income_per_capita)+log(population)|statefips|(log(import_sensitivity)~log(iv_import_sensitivity))|statefips,data=reg_sample)
r[[3]] <- felm(hhi_change_cont~log(income_per_capita)+log(population)|statefips|(log(import_sensitivity)~log(iv_import_sensitivity))|statefips,data=reg_sample)

r[[4]] <- felm(sod_br_change_pc~log(income_per_capita)+log(population)|statefips|(log(import_sensitivity)~log(iv_import_sensitivity))|statefips,data=reg_sample)
r[[5]] <- felm(sod_deposit_change_pc~log(income_per_capita)+log(population)|statefips|(log(import_sensitivity)~log(iv_import_sensitivity))|statefips,data=reg_sample)
r[[6]] <- felm(hhi_change~log(income_per_capita)+log(population)|statefips|(log(import_sensitivity)~log(iv_import_sensitivity))|statefips,data=reg_sample)


stargazer(r,type="text",omit.stat = "ser",no.space = T,column.labels = c("2000-2007","2008-2019"),column.separate = c(3,3))
## 
## ===========================================================================================================================================
##                                                                            Dependent variable:                                             
##                                ------------------------------------------------------------------------------------------------------------
##                                sod_br_change_cont sod_deposit_change_cont hhi_change_cont sod_br_change_pc sod_deposit_change_pc hhi_change
##                                                        2000-2007                                              2008-2019                    
##                                       (1)                   (2)                 (3)             (4)                 (5)             (6)    
## -------------------------------------------------------------------------------------------------------------------------------------------
## log(income_per_capita)             12.996***             36.985***            -0.709           -1.197            25.455***        -7.652*  
##                                     (2.702)               (8.236)             (2.656)         (2.023)             (4.715)         (3.797)  
## log(population)                     4.051***             10.352***             0.595         -3.536***             1.362           0.357   
##                                     (0.923)               (2.366)             (0.863)         (0.369)             (1.096)         (0.594)  
## `log(import_sensitivity)(fit)`      -7.755**             -14.992*              3.094         -6.368***            -4.231          11.325** 
##                                     (3.605)               (7.861)             (3.117)         (2.089)             (9.581)         (4.526)  
## -------------------------------------------------------------------------------------------------------------------------------------------
## Observations                         2,745                 2,745               2,745           2,747               2,747           2,747   
## R2                                   0.129                 0.168               0.036           0.236               0.141           0.043   
## Adjusted R2                          0.115                 0.154               0.020           0.223               0.127           0.027   
## ===========================================================================================================================================
## Note:                                                                                                           *p<0.1; **p<0.05; ***p<0.01

3.3.3 IV - 2

r <- list()

r[[1]] <- felm(sod_br_change_cont~log(income_per_capita)+log(population)|statefips|(is_top_q~log(iv_import_sensitivity))|statefips,data=reg_sample)
r[[2]] <- felm(sod_deposit_change_cont~log(income_per_capita)+log(population)|statefips|(is_top_q~log(iv_import_sensitivity))|statefips,data=reg_sample)
r[[3]] <- felm(hhi_change_cont~log(income_per_capita)+log(population)|statefips|(is_top_q~log(iv_import_sensitivity))|statefips,data=reg_sample)

r[[4]] <- felm(sod_br_change_pc~log(income_per_capita)+log(population)|statefips|(is_top_q~log(iv_import_sensitivity))|statefips,data=reg_sample)
r[[5]] <- felm(sod_deposit_change_pc~log(income_per_capita)+log(population)|statefips|(is_top_q~log(iv_import_sensitivity))|statefips,data=reg_sample)
r[[6]] <- felm(hhi_change~log(income_per_capita)+log(population)|statefips|(is_top_q~log(iv_import_sensitivity))|statefips,data=reg_sample)


stargazer(r,type="text",omit.stat = "ser",no.space = T,column.labels = c("2000-2007","2008-2019"),column.separate = c(3,3))
## 
## ===================================================================================================================================
##                                                                    Dependent variable:                                             
##                        ------------------------------------------------------------------------------------------------------------
##                        sod_br_change_cont sod_deposit_change_cont hhi_change_cont sod_br_change_pc sod_deposit_change_pc hhi_change
##                                                2000-2007                                              2008-2019                    
##                               (1)                   (2)                 (3)             (4)                 (5)             (6)    
## -----------------------------------------------------------------------------------------------------------------------------------
## log(income_per_capita)     12.676***             36.366***            -0.581           -1.460            25.281***        -7.185*  
##                             (2.728)               (8.202)             (2.681)         (1.981)             (4.766)         (3.842)  
## log(population)             4.012***             10.277***             0.610         -3.568***             1.341           0.414   
##                             (0.919)               (2.375)             (0.866)         (0.370)             (1.133)         (0.594)  
## `is_top_q(fit)`             -4.043*              -7.815**              1.613         -3.320***            -2.206          5.904**  
##                             (2.013)               (3.692)             (1.651)         (1.114)             (4.879)         (2.506)  
## -----------------------------------------------------------------------------------------------------------------------------------
## Observations                 2,745                 2,745               2,745           2,747               2,747           2,747   
## R2                           0.124                 0.166               0.038           0.229               0.141           0.032   
## Adjusted R2                  0.110                 0.152               0.022           0.216               0.127           0.016   
## ===================================================================================================================================
## Note:                                                                                                   *p<0.1; **p<0.05; ***p<0.01

4 Deposit Rates

measures <- readRDS("measures_county_levels_sic87dd.rds")
measures[,import_sensitivity:=(import_sensitivity-min(measures$import_sensitivity,na.rm=T)+1)]
measures[,iv_import_sensitivity:=(iv_import_sensitivity-min(measures$iv_import_sensitivity,na.rm=T)+1)]
measures[,high_x:=ntile(import_sensitivity,2)-1]
measures[,low_x:=2-high_x]
measures[,rev_x_bin:=3-x_bin]
measures[,is_q:=ntile(import_sensitivity,4)]
measures[,is_top_q:=ifelse(is_q==4,1,0)]
sod <- readRDS("sod_sum.rds")

asset_w <- sod[,c("CERT","YEAR","ASSET")]
asset_w <- asset_w[!duplicated(asset_w)]
asset_w[,tot_assets:=sum(ASSET,na.rm=T),by=YEAR]
asset_w[,w_asset:=ASSET/tot_assets]
asset_w[,q80:=quantile(ASSET,0.8,na.rm=T),by=YEAR]
asset_w[,q95:=quantile(ASSET,0.95,na.rm=T),by=YEAR]
asset_w[,size:=ifelse(ASSET <q80,1,ifelse(ASSET<q95,2,0))]

bank_import_exposure <- sod[YEAR %in% 1994:2000]

bank_import_exposure <- bank_import_exposure[,.(county_deposits=sum(DEPSUMBR,na.rm=T)),by=.(CERT,fips)]

bank_import_exposure <- merge( bank_import_exposure,measures,by="fips")

bank_import_exposure[,total_deposits:=sum(county_deposits,na.rm=T),by=CERT]

bank_import_exposure[,wa_exposure:=county_deposits*import_sensitivity/total_deposits]

bank_import_exposure <- bank_import_exposure[,.(wa_exposure=sum(wa_exposure,na.rm=T)),by=CERT]

bank_import_exposure[,exp_q:=ntile(wa_exposure,4)]
bank_import_exposure[,exp_top_q:=ifelse(exp_q==4,1,0)]
bank_import_exposure[,exp_bin:=ntile(bank_import_exposure,3)]
rw_inst <- fread("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/RateWatch/Deposit_InstitutionDetails.txt")
rw_inst <- rw_inst[,c("ACCT_NBR","RSSD_ID","CERT_NBR","STATE_FPS","CNTY_FPS")]
rw_inst[,fips:=paste0(str_pad(STATE_FPS,2,"left","0"),str_pad(CNTY_FPS,3,"left","0"))]
rw_inst[,c("STATE_FPS","CNTY_FPS"):=list(NULL)]

rw_summary <- readRDS("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/RateWatch/rate_watch_summary_12MCD10K_weekly.rds")
rw_summary[,year:=year(qtr)]
# rw_summary <- rw_summary[,.(mean_apy=mean(mean_apy,na.rm=T),median_apy=median(median_apy,na.rm=T)),by=.(year,ACCOUNTNUMBER,PRD_TYP_JOIN)]

rw_summary <- merge(rw_summary,rw_inst,by.x="ACCOUNTNUMBER",by.y="ACCT_NBR")

# rw_bank <- rw_summary[,.(mean_apy=mean(mean_apy,na.rm=T),median_apy=median(median_apy,na.rm = T)),by=.(year,PRD_TYP_JOIN,CERT_NBR)]
# rw_county <- rw_summary[,.(mean_apy=mean(mean_apy,na.rm=T),median_apy=median(median_apy,na.rm = T)),by=.(year,PRD_TYP_JOIN,fips)]
# rw_bank_county <- rw_summary[,.(mean_apy=mean(mean_apy,na.rm=T),median_apy=median(median_apy,na.rm = T)),by=.(year,PRD_TYP_JOIN,CERT_NBR,fips)]
reg_sample <- merge(measures,rw_summary,by="fips")
reg_sample <- merge(bank_import_exposure,reg_sample,by.x="CERT",by.y="CERT_NBR")


reg_sample[,fips_qt:=paste(fips,qtr)]
reg_sample[,bank_qt:=paste(CERT,qtr)]
reg_sample[,state:=substr(fips,1,2)]
reg_sample[,state_qt:=paste(state,year)]

reg_sample <- reg_sample[log(1+wa_exposure)>=2 & log(1+wa_exposure)<=4 & log(import_sensitivity)>=2 & log(import_sensitivity)<=4]

reg_sample <- merge(reg_sample,asset_w[,c("CERT","YEAR","w_asset","ASSET","size")],by.x=c("CERT","year"),by.y=c("CERT","YEAR"))

reg_sample[,is_top_q_exp_top_q:=ifelse(is_top_q==1 & exp_top_q==1,1,0)]

reg_sample[,mn:=mean(mean_apy),by=qtr]

reg_sample[,rate_diff:=mean_apy-mn]

Data: The following results are based on RateWatch data. RateWatch data starts in 2001, and provides deposit rates for different products offered by each branch weekly.

Sample: Bank-county-year-product level. For each, bank-county-year-product, mean_apy, was calculated and was used as the dependent variable. Key product types are CD, SAV, MM, and INTCK (checking).

Key variables:

  • import_sensitivity: County-level sensitivity to Chinese imports based on Autor et al, 2013

  • is_top_q: This is a dummy variable that takes the value 1 if the import_sensitivity is in the forth quartile

  • wa_exposure: This is a bank-level variable, which calculates the weighted average exposure to chinese imports based on the county-level deposit composition

  • exp_top_q: takes the value 1 if wa_exposure is in the forth quartile

Specification: County, Year, Bank, and Product type fixed effects. Standard errors clustered at bank level

Main takeaway: Banks that are more exposed to Chinese imports (based on wa_exposure) offer higher rates in counties that are less exposed to Chinese imports?

4.1 12 Month CD rates overtime

cd_rates <- reg_sample[,.(mean_apy=mean(mean_apy),sd_apy=sd(mean_apy),count=.N),by=qtr]

cd_rates <- cd_rates %>%
  mutate(
    lower_ci = mean_apy - 1.96 * sd_apy ,
    upper_ci = mean_apy + 1.96 * sd_apy 
  )
ggplot(cd_rates, aes(x = qtr, y = mean_apy)) +
  geom_line() +
  geom_ribbon(aes(ymin = lower_ci, ymax = upper_ci), alpha = 0.3) +
  labs(x = "", y = "12 Month 10k CD Rate") +
  theme_minimal()

4.2 12 Month CD rates overtime - by exposure

cd_rates <- reg_sample[,.(mean_apy=mean(rate_diff),sd_apy=sd(mean_apy),count=.N),by=.(year,is_top_q_exp_top_q)]
cd_rates[,mean_apy_min:=mean_apy[which.min(year)],by=is_top_q_exp_top_q]
cd_rates[,mean_apy:=mean_apy-mean_apy_min]
ggplot(cd_rates, aes(x = year, y = mean_apy,color=factor(is_top_q_exp_top_q))) +
  geom_line() +
  labs(x = "", y = "12 Month 10k CD Rate") +
  theme_minimal()

4.3 Effect of County Exposure on deposit rates

\[ apy=log(import.sensitivity) + State*Week FE+Bank*WeekFE\]

Q: “Before going to the interaction of county exposure and bank exposure, did you first examine the effect of county exposure alone on deposit rates? Basically the same regression with county, year, bank and product type fixed effects.”



A: Not able to use county fixed effects since import sensitivity is not time varying. Used state*yr fixed effects instead

4.3.1 All Banks

min_yr = 2000
max_yr = 2007

r <- list()

reg_formula <- as.formula("mean_apy~log(import_sensitivity)|state_qt+bank_qt|0|CERT")

r[[1]] <- felm(reg_formula,data=reg_sample[year>=min_yr & year<=max_yr])

reg_formula <- as.formula("mean_apy~factor(is_q)|state_qt+bank_qt|0|CERT")

r[[2]] <- felm(reg_formula,data=reg_sample[ year>=min_yr & year<=max_yr])

reg_formula <- as.formula("mean_apy~is_top_q|state_qt+bank_qt|0|CERT")

r[[3]] <- felm(reg_formula,data=reg_sample[ year>=min_yr & year<=max_yr])


min_yr = 2008
max_yr = 2019

reg_formula <- as.formula("mean_apy~log(import_sensitivity)|state_qt+bank_qt|0|CERT")

r[[4]] <- felm(reg_formula,data=reg_sample[year>=min_yr & year<=max_yr])

reg_formula <- as.formula("mean_apy~factor(is_q)|state_qt+bank_qt|0|CERT")

r[[5]] <- felm(reg_formula,data=reg_sample[ year>=min_yr & year<=max_yr])

reg_formula <- as.formula("mean_apy~is_top_q|state_qt+bank_qt|0|CERT")

r[[6]] <- felm(reg_formula,data=reg_sample[ year>=min_yr & year<=max_yr])

stargazer(r,type="text",column.labels = c("2000-2007","2008-2019"),column.separate = c(3,3),omit.stat = "ser")
## 
## ===================================================================================
##                                             Dependent variable:                    
##                         -----------------------------------------------------------
##                                                  mean_apy                          
##                                   2000-2007                     2008-2019          
##                            (1)       (2)       (3)       (4)       (5)       (6)   
## -----------------------------------------------------------------------------------
## log(import_sensitivity)   0.030                       -0.047**                     
##                          (0.029)                       (0.019)                     
##                                                                                    
## factor(is_q)2                       0.002                         0.002            
##                                    (0.013)                       (0.009)           
##                                                                                    
## factor(is_q)3                      -0.002                        -0.018*           
##                                    (0.015)                       (0.010)           
##                                                                                    
## factor(is_q)4                      -0.003                       -0.021**           
##                                    (0.016)                       (0.010)           
##                                                                                    
## is_top_q                                     -0.003                       -0.012** 
##                                              (0.010)                       (0.006) 
##                                                                                    
## -----------------------------------------------------------------------------------
## Observations            3,187,263 3,187,263 3,187,263 4,316,471 4,316,471 4,316,471
## R2                        0.935     0.935     0.935     0.960     0.960     0.960  
## Adjusted R2               0.883     0.883     0.883     0.907     0.907     0.907  
## ===================================================================================
## Note:                                                   *p<0.1; **p<0.05; ***p<0.01

4.3.2 By Bank Size

Size=1 => Small Bank
Size=2 => Medium Bank
Size=0 => Large Bank

min_yr = 2000
max_yr = 2007

r <- list()

reg_formula <- as.formula("mean_apy~log(import_sensitivity)*factor(size)|state_qt+bank_qt|0|CERT")

r[[1]] <- felm(reg_formula,data=reg_sample[year>=min_yr & year<=max_yr])


reg_formula <- as.formula("mean_apy~is_top_q*factor(size)|state_qt+bank_qt|0|CERT")

r[[2]] <- felm(reg_formula,data=reg_sample[ year>=min_yr & year<=max_yr])


min_yr = 2008
max_yr = 2019

reg_formula <- as.formula("mean_apy~log(import_sensitivity)*factor(size)|state_qt+bank_qt|0|CERT")


r[[3]] <- felm(reg_formula,data=reg_sample[year>=min_yr & year<=max_yr ])

reg_formula <- as.formula("mean_apy~is_top_q*factor(size)|state_qt+bank_qt|0|CERT")

r[[4]] <- felm(reg_formula,data=reg_sample[ year>=min_yr & year<=max_yr])


stargazer(r,type="text",column.labels = c("2000-2007","2008-2019"),column.separate = c(2,2),omit.stat = "ser")
## 
## =============================================================================
##                                                 Dependent variable:          
##                                       ---------------------------------------
##                                                      mean_apy                
##                                            2000-2007           2008-2019     
##                                          (1)       (2)       (3)       (4)   
## -----------------------------------------------------------------------------
## log(import_sensitivity)                -0.006             -0.066***          
##                                        (0.042)             (0.024)           
##                                                                              
## is_top_q                                         -0.024             -0.023***
##                                                  (0.015)             (0.008) 
##                                                                              
## factor(size)1                                                                
##                                        (0.000)   (0.000)   (0.000)   (0.000) 
##                                                                              
## factor(size)2                                                                
##                                        (0.000)   (0.000)   (0.000)   (0.000) 
##                                                                              
## log(import_sensitivity):factor(size)1   0.074               0.079            
##                                        (0.066)             (0.052)           
##                                                                              
## log(import_sensitivity):factor(size)2   0.063               0.011            
##                                        (0.068)             (0.051)           
##                                                                              
## is_top_q:factor(size)1                           0.040*              0.042** 
##                                                  (0.023)             (0.017) 
##                                                                              
## is_top_q:factor(size)2                           0.044*               0.009  
##                                                  (0.024)             (0.013) 
##                                                                              
## -----------------------------------------------------------------------------
## Observations                          3,187,263 3,187,263 4,316,471 4,316,471
## R2                                      0.935     0.935     0.960     0.960  
## Adjusted R2                             0.883     0.883     0.907     0.907  
## =============================================================================
## Note:                                             *p<0.1; **p<0.05; ***p<0.01

4.4 Effect of Bank and County Exposure on deposit rates

\[ apy=import.sensitivity.top.q \times bank.exposure.top.q + County*Week FE+Bank*Week FE+ ProductTypeFE\]

min_yr = 2000
max_yr = 2007

r <- list()

reg_formula <- as.formula("mean_apy~is_top_q*exp_top_q|state_qt+bank_qt|0|CERT")
r[[1]] <- felm(reg_formula,data=reg_sample[year>=min_yr & year<=max_yr])

reg_formula <- as.formula("mean_apy~factor(is_q)*exp_top_q|state_qt+bank_qt|0|CERT")
r[[2]] <- felm(reg_formula,data=reg_sample[year>=min_yr  & year<=max_yr])

reg_formula <- as.formula("mean_apy~log(import_sensitivity)*exp_top_q|state_qt+bank_qt|0|CERT")
r[[3]] <- felm(reg_formula,data=reg_sample[year>=min_yr  & year<=max_yr])


min_yr = 2008
max_yr = 2019

reg_formula <- as.formula("mean_apy~is_top_q*exp_top_q|state_qt+bank_qt|0|CERT")
r[[4]] <- felm(reg_formula,data=reg_sample[year>=min_yr & year<=max_yr])

reg_formula <- as.formula("mean_apy~factor(is_q)*exp_top_q|state_qt+bank_qt|0|CERT")
r[[5]] <- felm(reg_formula,data=reg_sample[year>=min_yr  & year<=max_yr])

reg_formula <- as.formula("mean_apy~log(import_sensitivity)*exp_top_q|state_qt+bank_qt|0|CERT")
r[[6]] <- felm(reg_formula,data=reg_sample[year>=min_yr  & year<=max_yr])



stargazer(r,type="text",column.labels = c("2000-2007","2008-2019"),column.separate = c(3,3),omit.stat = "ser")
## 
## =============================================================================================
##                                                       Dependent variable:                    
##                                   -----------------------------------------------------------
##                                                            mean_apy                          
##                                             2000-2007                     2008-2019          
##                                      (1)       (2)       (3)       (4)       (5)       (6)   
## ---------------------------------------------------------------------------------------------
## is_top_q                            0.009                        -0.001                      
##                                    (0.012)                       (0.007)                     
##                                                                                              
## factor(is_q)2                                 0.008                         0.005            
##                                              (0.014)                       (0.009)           
##                                                                                              
## factor(is_q)3                                 0.004                        -0.016            
##                                              (0.017)                       (0.010)           
##                                                                                              
## factor(is_q)4                                 0.013                        -0.007            
##                                              (0.018)                       (0.011)           
##                                                                                              
## log(import_sensitivity)                                0.075*                        -0.011  
##                                                        (0.039)                       (0.022) 
##                                                                                              
## exp_top_q                                                                                    
##                                    (0.000)   (0.000)   (0.000)   (0.000)   (0.000)   (0.000) 
##                                                                                              
## is_top_q:exp_top_q                 -0.032                       -0.036***                    
##                                    (0.021)                       (0.014)                     
##                                                                                              
## factor(is_q)2:exp_top_q                      -0.030                        -0.020            
##                                              (0.040)                       (0.026)           
##                                                                                              
## factor(is_q)3:exp_top_q                      -0.034                        -0.017            
##                                              (0.045)                       (0.033)           
##                                                                                              
## factor(is_q)4:exp_top_q                      -0.062                        -0.054*           
##                                              (0.048)                       (0.032)           
##                                                                                              
## log(import_sensitivity):exp_top_q                      -0.112*                      -0.098** 
##                                                        (0.058)                       (0.044) 
##                                                                                              
## ---------------------------------------------------------------------------------------------
## Observations                      3,187,263 3,187,263 3,187,263 4,316,471 4,316,471 4,316,471
## R2                                  0.935     0.935     0.935     0.960     0.960     0.960  
## Adjusted R2                         0.883     0.883     0.883     0.907     0.907     0.907  
## =============================================================================================
## Note:                                                             *p<0.1; **p<0.05; ***p<0.01

4.4.1 By Bank Size

Size=1 => Small Bank
Size=2 => Medium Bank
Size=0 => Large Bank

min_yr = 2000
max_yr = 2007

r <- list()

reg_formula <- as.formula("mean_apy~is_top_q*exp_top_q*factor(size)|state_qt+bank_qt|0|CERT")
r[[1]] <- felm(reg_formula,data=reg_sample[year>=min_yr & year<=max_yr])

reg_formula <- as.formula("mean_apy~log(import_sensitivity)*log(wa_exposure)*factor(size)|state_qt+bank_qt|0|CERT")
r[[2]] <- felm(reg_formula,data=reg_sample[year>=min_yr  & year<=max_yr])

min_yr = 2008
max_yr = 2019

reg_formula <- as.formula("mean_apy~is_top_q*exp_top_q*factor(size)|state_qt+bank_qt|0|CERT")
r[[3]] <- felm(reg_formula,data=reg_sample[year>=min_yr & year<=max_yr])


reg_formula <- as.formula("mean_apy~log(import_sensitivity)*log(wa_exposure)*factor(size)|state_qt+bank_qt|0|CERT")
r[[4]] <- felm(reg_formula,data=reg_sample[year>=min_yr  & year<=max_yr])



stargazer(r,type="text",column.labels = c("2000-2007","2008-2019"),column.separate = c(2,2),omit.stat = "ser")
## 
## ==============================================================================================
##                                                                  Dependent variable:          
##                                                        ---------------------------------------
##                                                                       mean_apy                
##                                                             2000-2007           2008-2019     
##                                                           (1)       (2)       (3)       (4)   
## ----------------------------------------------------------------------------------------------
## is_top_q                                                -0.012              -0.017*           
##                                                         (0.017)             (0.008)           
##                                                                                               
## exp_top_q                                                                                     
##                                                         (0.000)             (0.000)           
##                                                                                               
## log(import_sensitivity)                                           3.576*               1.113  
##                                                                   (1.881)             (0.770) 
##                                                                                               
## log(wa_exposure)                                                                              
##                                                                   (0.000)             (0.000) 
##                                                                                               
## factor(size)1                                                                                 
##                                                         (0.000)   (0.000)   (0.000)   (0.000) 
##                                                                                               
## factor(size)2                                                                                 
##                                                         (0.000)   (0.000)   (0.000)   (0.000) 
##                                                                                               
## is_top_q:exp_top_q                                      -0.042              -0.026            
##                                                         (0.035)             (0.020)           
##                                                                                               
## is_top_q:factor(size)1                                   0.021             0.062***           
##                                                         (0.029)             (0.020)           
##                                                                                               
## is_top_q:factor(size)2                                  0.062**             0.025*            
##                                                         (0.029)             (0.015)           
##                                                                                               
## exp_top_q:factor(size)1                                                                       
##                                                         (0.000)             (0.000)           
##                                                                                               
## exp_top_q:factor(size)2                                                                       
##                                                         (0.000)             (0.000)           
##                                                                                               
## is_top_q:exp_top_q:factor(size)1                         0.060              -0.036            
##                                                         (0.050)             (0.035)           
##                                                                                               
## is_top_q:exp_top_q:factor(size)2                        -0.040              -0.030            
##                                                         (0.053)             (0.031)           
##                                                                                               
## log(import_sensitivity):log(wa_exposure)                          -1.333*             -0.439  
##                                                                   (0.700)             (0.288) 
##                                                                                               
## log(import_sensitivity):factor(size)1                             -3.506*             -0.316  
##                                                                   (1.925)             (0.876) 
##                                                                                               
## log(import_sensitivity):factor(size)2                             -2.350              -0.372  
##                                                                   (2.008)             (0.897) 
##                                                                                               
## log(wa_exposure):factor(size)1                                                                
##                                                                   (0.000)             (0.000) 
##                                                                                               
## log(wa_exposure):factor(size)2                                                                
##                                                                   (0.000)             (0.000) 
##                                                                                               
## log(import_sensitivity):log(wa_exposure):factor(size)1            1.332*               0.156  
##                                                                   (0.715)             (0.323) 
##                                                                                               
## log(import_sensitivity):log(wa_exposure):factor(size)2             0.908               0.150  
##                                                                   (0.746)             (0.332) 
##                                                                                               
## ----------------------------------------------------------------------------------------------
## Observations                                           3,187,263 3,187,263 4,316,471 4,316,471
## R2                                                       0.935     0.935     0.960     0.960  
## Adjusted R2                                              0.883     0.883     0.907     0.907  
## ==============================================================================================
## Note:                                                              *p<0.1; **p<0.05; ***p<0.01

5 Deposit Growth

sod <- readRDS("sod_sum.rds")
sod <- sod[!is.na(UNINUMBR)]
setorder(sod,UNINUMBR,YEAR)
sod[,lagged_DEPSUMBR:= shift(DEPSUMBR,n=1,type="lag"),by=.(UNINUMBR)]
sod[,deposit_growth:= DEPSUMBR/(lagged_DEPSUMBR+1)-1]

sod <- sod[deposit_growth<1 & deposit_growth > - 0.25]
# sod <- sod[deposit_growth<2 & deposit_growth > - 0.5]
sod[,state:=substr(fips,1,2)]
sod[,state_yr:=paste(state,YEAR)]
sod[,county_yr:=paste(fips,YEAR)]
sod[,bank_yr:=paste(CERT,YEAR)]
sod <- readRDS("sod_sum.rds")
sod <- sod[,.(deposits_bank_fips=sum(DEPSUMBR,na.rm=T)),by=.(YEAR,CERT,fips)]
setorder(sod,fips,CERT,YEAR)

sod[,lagged_deposits_bank_fips:= shift(deposits_bank_fips,n=1,type="lag"),by=.(fips,CERT)]
sod[,deposit_growth:= deposits_bank_fips/(lagged_deposits_bank_fips+1)-1]

sod <- sod[deposit_growth<10 & deposit_growth > - 0.2]
sod[,state:=substr(fips,1,2)]
sod[,state_yr:=paste(state,YEAR)]
sod[,county_yr:=paste(fips,YEAR)]
sod[,bank_yr:=paste(CERT,YEAR)]
reg_sample <- merge(sod,measures,by="fips")
reg_sample <- merge(bank_import_exposure,reg_sample,by="CERT")
reg_sample[,is_top_q_exp_top_q:=ifelse(exp_top_q==1 & is_top_q==1,1,0)]
plot_summary <- reg_sample[YEAR<=2019,.(deposit_growth=mean(deposit_growth,na.rm=T)),by=.(YEAR,is_top_q_exp_top_q)]

ggplot(plot_summary,aes(x=YEAR,y=deposit_growth,color=factor(is_top_q_exp_top_q)))+geom_line()

reg_formula_2 <- as.formula("deposit_growth~is_top_q*exp_top_q|bank_yr+state_yr|0|CERT")
reg_formula_1 <- as.formula("deposit_growth~is_top_q|bank_yr+state_yr|0|CERT")
r_t <- list()
r_t[[1]] <- felm(reg_formula_1,data=reg_sample[YEAR %in% 1996:1999])
r_t[[2]] <- felm(reg_formula_2,data=reg_sample[YEAR %in% 1996:1999 ])
r_t[[3]] <- felm(reg_formula_1,data=reg_sample[YEAR %in% 2000:2007])
r_t[[4]] <- felm(reg_formula_2,data=reg_sample[YEAR %in% 2000:2007])
r_t[[5]] <- felm(reg_formula_1,data=reg_sample[YEAR %in% 2008:2019])
r_t[[6]] <- felm(reg_formula_2,data=reg_sample[YEAR %in% 2008:2019])

stargazer(r_t,type="text",no.space = T,omit.stat = "ser",column.labels = c("1996-1999","2000-2007","2008-2019"),column.separate = c(2,2,2),
          add.lines=list(c("Bank*Yr",rep("Y",6)),c("State*Yr",rep("Y",6))))
## 
## =============================================================================
##                                       Dependent variable:                    
##                    ----------------------------------------------------------
##                                          deposit_growth                      
##                        1996-1999           2000-2007           2008-2019     
##                      (1)       (2)       (3)       (4)       (5)       (6)   
## -----------------------------------------------------------------------------
## is_top_q           -0.015** 0.027***  -0.024*** 0.023***  -0.011***  0.010** 
##                    (0.008)   (0.009)   (0.005)   (0.008)   (0.003)   (0.004) 
## exp_top_q                                                                    
##                              (0.000)             (0.000)             (0.000) 
## is_top_q:exp_top_q          -0.127***           -0.150***           -0.066***
##                              (0.017)             (0.012)             (0.007) 
## -----------------------------------------------------------------------------
## Bank*Yr               Y         Y         Y         Y         Y         Y    
## State*Yr              Y         Y         Y         Y         Y         Y    
## Observations        85,082   85,082    183,561   183,561   278,289   278,289 
## R2                  0.466     0.467     0.349     0.351     0.246     0.247  
## Adjusted R2         -0.071   -0.069    -0.044    -0.041    -0.014    -0.014  
## =============================================================================
## Note:                                             *p<0.1; **p<0.05; ***p<0.01