hospital_mortality univariate logistic regression model
first_enc_table %>%
select("na_grp_mayo","age","Gender","White","na_first","Cirrhosis","chf","mi","pvd","Bipolar","Seizure","cancer","Schizophrenia","hospital_mortality"
) %>%
tbl_uvregression(
method = glm,
y = hospital_mortality,
method.args = list(family = binomial),
exponentiate = TRUE,
show_single_row=c(
"Gender","White","Cirrhosis","chf","mi","pvd","Bipolar","Seizure","cancer","Schizophrenia"),
pvalue_fun = ~style_pvalue(.x, digits = 3)
) %>%
bold_p(0.01) %>% # bold p-values under a given threshold (default 0.05)
bold_labels() %>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**hospital_mortality Univariate logistic regression **") %>%
add_n(location = "level")
Characteristic |
N |
**hospital_mortality Univariate logistic regression **
|
OR |
95% CI |
p-value |
na_grp_mayo |
|
|
|
|
optimal correct (6-10) |
952 |
— |
— |
|
overcorrect (>10) |
1,067 |
0.68 |
0.47, 0.97 |
0.034 |
undercorrect (<6) |
1,255 |
1.77 |
1.33, 2.39 |
<0.001 |
age |
3,274 |
0.98 |
0.98, 0.99 |
<0.001 |
Gender |
|
1.50 |
1.18, 1.91 |
0.001 |
White |
|
0.89 |
0.67, 1.22 |
0.463 |
first sodium value |
3,274 |
1.03 |
1.00, 1.07 |
0.102 |
Cirrhosis |
|
2.04 |
1.45, 2.81 |
<0.001 |
chf |
|
1.32 |
1.02, 1.69 |
0.031 |
mi |
|
0.85 |
0.62, 1.16 |
0.321 |
pvd |
|
0.62 |
0.44, 0.86 |
0.005 |
Bipolar |
|
0.32 |
0.17, 0.55 |
<0.001 |
Seizure |
|
0.26 |
0.08, 0.62 |
0.008 |
cancer |
|
1.91 |
1.50, 2.44 |
<0.001 |
Schizophrenia |
|
0.09 |
0.00, 0.39 |
0.015 |
hospital_mortality multivariate logistic regression model 1
m1 <- glm(hospital_mortality ~ na_grp_mayo+age+Gender+White+na_first, family = binomial(link = 'logit'),data=first_enc_table)
m1 %>% tbl_regression(exponentiate = TRUE,
show_single_row=c("White","Gender"),
pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels()%>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**hospital mortality logistic regression model 1 **")%>%
add_n(location = "level")
Characteristic |
N |
**hospital mortality logistic regression model 1 **
|
OR |
95% CI |
p-value |
na_grp_mayo |
|
|
|
|
optimal correct (6-10) |
952 |
— |
— |
|
overcorrect (>10) |
1,067 |
0.62 |
0.43, 0.89 |
0.010 |
undercorrect (<6) |
1,255 |
1.78 |
1.33, 2.41 |
<0.001 |
age |
3,274 |
0.98 |
0.97, 0.99 |
<0.001 |
Gender |
|
1.31 |
1.02, 1.68 |
0.036 |
White |
|
0.89 |
0.66, 1.22 |
0.455 |
first sodium value |
3,274 |
1.0 |
0.96, 1.03 |
0.780 |
hospital_mortality multivariate logistic regression model 2
m2 <- glm(hospital_mortality ~ na_grp_mayo+age+Gender+White+na_first+charlson, family = binomial(link = 'logit'),data=first_enc_table)
m2 %>% tbl_regression(exponentiate = TRUE,
show_single_row=c("White","Gender"),
pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels()%>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**hospital mortality logistic regression model 2 **")%>%
add_n(location = "level")
Characteristic |
N |
**hospital mortality logistic regression model 2 **
|
OR |
95% CI |
p-value |
na_grp_mayo |
|
|
|
|
optimal correct (6-10) |
952 |
— |
— |
|
overcorrect (>10) |
1,067 |
0.64 |
0.44, 0.93 |
0.020 |
undercorrect (<6) |
1,255 |
1.71 |
1.27, 2.31 |
<0.001 |
age |
3,274 |
0.97 |
0.97, 0.98 |
<0.001 |
Gender |
|
1.29 |
1.00, 1.66 |
0.046 |
White |
|
0.90 |
0.66, 1.23 |
0.487 |
first sodium value |
3,274 |
0.99 |
0.95, 1.03 |
0.574 |
Charlson Comorbidity Score |
3,274 |
1.08 |
1.05, 1.12 |
<0.001 |
hospital_mortality multivariate logistic regression model 3
m3 <- glm(hospital_mortality ~ na_grp_mayo+age+Gender+White+na_first+Cirrhosis+chf+mi+pvd+Bipolar+Seizure+cancer+Schizophrenia, family = binomial(link = 'logit'),data=first_enc_table)
m3 %>% tbl_regression(exponentiate = TRUE,show_single_row=c("White","Gender","cancer","Bipolar","Seizure","pvd","Cirrhosis","chf","mi","Schizophrenia"),
pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels()%>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**hospital mortality logistic regression model 3 **")%>%
add_n(location = "level")
Characteristic |
N |
**hospital mortality logistic regression model 3 **
|
OR |
95% CI |
p-value |
na_grp_mayo |
|
|
|
|
optimal correct (6-10) |
952 |
— |
— |
|
overcorrect (>10) |
1,067 |
0.74 |
0.51, 1.07 |
0.114 |
undercorrect (<6) |
1,255 |
1.66 |
1.23, 2.25 |
<0.001 |
age |
3,274 |
0.98 |
0.97, 0.99 |
<0.001 |
Gender |
|
1.27 |
0.98, 1.64 |
0.067 |
White |
|
0.89 |
0.66, 1.22 |
0.458 |
first sodium value |
3,274 |
0.99 |
0.96, 1.03 |
0.618 |
Cirrhosis |
|
1.46 |
1.02, 2.06 |
0.035 |
chf |
|
1.76 |
1.31, 2.36 |
<0.001 |
mi |
|
0.83 |
0.57, 1.18 |
0.307 |
pvd |
|
0.68 |
0.47, 0.96 |
0.035 |
Bipolar |
|
0.37 |
0.19, 0.64 |
0.001 |
Seizure |
|
0.29 |
0.09, 0.69 |
0.015 |
cancer |
|
1.84 |
1.43, 2.37 |
<0.001 |
Schizophrenia |
|
0.13 |
0.01, 0.60 |
0.044 |
propensity score analysis
Hospital_mortality propensity score analysis
##### weighted analysis
test$w <- get.weights(mnps.enc, stop.method = "es.mean")
design.mnps <- svydesign(ids=~1, weights=~w, data=test)
svyglm(hospital_mortality ~ as.factor(na_grp_mayo), design = design.mnps, family = quasibinomial()) %>%
tbl_regression(exponentiate = TRUE,pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels()%>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**hospital mortality propensity analysis logistic regression **")
Characteristic |
**hospital mortality propensity analysis logistic regression **
|
OR |
95% CI |
p-value |
as.factor(na_grp_mayo) |
|
|
|
optimal correct (6-10) |
— |
— |
|
overcorrect (>10) |
0.76 |
0.53, 1.11 |
0.152 |
undercorrect (<6) |
1.54 |
1.14, 2.08 |
0.005 |
30 day death univariate logistic regression model
first_enc_table %>%
select("na_grp_mayo","age","Gender","White","na_first","Cirrhosis","chf","mi","pvd","Bipolar","Seizure","cancer","Schizophrenia","death_30d"
) %>%
tbl_uvregression(
method = glm,
y = death_30d,
method.args = list(family = binomial),
exponentiate = TRUE,
show_single_row=c(
"Gender","White","Cirrhosis","chf","mi","pvd","Bipolar","Seizure","cancer","Schizophrenia"),
pvalue_fun = ~style_pvalue(.x, digits = 3)
) %>%
bold_p(0.01) %>% # bold p-values under a given threshold (default 0.05)
bold_labels() %>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**30 day death Univariate logistic regression **")%>%
add_n(location = "level")
Characteristic |
N |
**30 day death Univariate logistic regression **
|
OR |
95% CI |
p-value |
na_grp_mayo |
|
|
|
|
optimal correct (6-10) |
885 |
— |
— |
|
overcorrect (>10) |
1,004 |
0.69 |
0.51, 0.95 |
0.021 |
undercorrect (<6) |
1,194 |
2.23 |
1.74, 2.89 |
<0.001 |
age |
3,083 |
0.99 |
0.98, 1.0 |
<0.001 |
Gender |
|
1.47 |
1.20, 1.81 |
<0.001 |
White |
|
0.85 |
0.66, 1.11 |
0.222 |
first sodium value |
3,083 |
1.04 |
1.01, 1.08 |
0.008 |
Cirrhosis |
|
1.75 |
1.30, 2.33 |
<0.001 |
chf |
|
1.09 |
0.87, 1.34 |
0.454 |
mi |
|
0.81 |
0.62, 1.05 |
0.117 |
pvd |
|
0.63 |
0.48, 0.82 |
<0.001 |
Bipolar |
|
0.35 |
0.22, 0.54 |
<0.001 |
Seizure |
|
0.25 |
0.10, 0.52 |
<0.001 |
cancer |
|
3.08 |
2.49, 3.80 |
<0.001 |
Schizophrenia |
|
0.17 |
0.04, 0.46 |
0.003 |
30 day mortality multivariate logistic regression model 1
m1_30d <- glm(death_30d ~ na_grp_mayo+White+Gender+age+na_first, family = binomial(link = 'logit'),data=first_enc_table)
m1_30d %>% tbl_regression(exponentiate = TRUE,
show_single_row=c("White","Gender"),
pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels()%>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**30 day mortality logistic regression model 1 **")%>%
add_n(location = "level")
Characteristic |
N |
**30 day mortality logistic regression model 1 **
|
OR |
95% CI |
p-value |
na_grp_mayo |
|
|
|
|
optimal correct (6-10) |
885 |
— |
— |
|
overcorrect (>10) |
1,004 |
0.65 |
0.47, 0.90 |
0.009 |
undercorrect (<6) |
1,194 |
2.24 |
1.74, 2.91 |
<0.001 |
White |
|
0.84 |
0.65, 1.09 |
0.183 |
Gender |
|
1.31 |
1.06, 1.62 |
0.012 |
age |
3,083 |
0.99 |
0.98, 0.99 |
<0.001 |
first sodium value |
3,083 |
1.00 |
0.97, 1.03 |
0.980 |
30 day mortality multivariate logistic regression model 2
m2_30d <- glm(death_30d ~ na_grp_mayo+age+Gender+White+na_first+charlson, family = binomial(link = 'logit'),data=first_enc_table)
m2_30d %>% tbl_regression(exponentiate = TRUE,
show_single_row=c("White","Gender"),
pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels()%>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**30 day mortality logistic regression model 2 **")%>%
add_n(location = "level")
Characteristic |
N |
**30 day mortality logistic regression model 2 **
|
OR |
95% CI |
p-value |
na_grp_mayo |
|
|
|
|
optimal correct (6-10) |
885 |
— |
— |
|
overcorrect (>10) |
1,004 |
0.69 |
0.50, 0.96 |
0.026 |
undercorrect (<6) |
1,194 |
2.13 |
1.64, 2.77 |
<0.001 |
age |
3,083 |
0.97 |
0.97, 0.98 |
<0.001 |
Gender |
|
1.29 |
1.04, 1.60 |
0.021 |
White |
|
0.85 |
0.65, 1.11 |
0.221 |
first sodium value |
3,083 |
0.99 |
0.96, 1.03 |
0.618 |
Charlson Comorbidity Score |
3,083 |
1.14 |
1.11, 1.18 |
<0.001 |
30 day mortality multivariate logistic regression model 3
m3_30d <- glm(death_30d ~ na_grp_mayo+age+Gender+White+na_first+Cirrhosis+chf+mi+pvd+Bipolar+Seizure+cancer+Schizophrenia, family = binomial(link = 'logit'),data=first_enc_table)
m3_30d %>% tbl_regression(exponentiate = TRUE,show_single_row=c("White","Gender","cancer","Bipolar","Seizure","pvd","Cirrhosis","chf","mi","Schizophrenia"),
pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels()%>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**30 day mortality logistic regression model 3 **")%>%
add_n(location = "level")
Characteristic |
N |
**30 day mortality logistic regression model 3 **
|
OR |
95% CI |
p-value |
na_grp_mayo |
|
|
|
|
optimal correct (6-10) |
885 |
— |
— |
|
overcorrect (>10) |
1,004 |
0.80 |
0.57, 1.10 |
0.173 |
undercorrect (<6) |
1,194 |
2.11 |
1.63, 2.76 |
<0.001 |
age |
3,083 |
0.99 |
0.98, 0.99 |
<0.001 |
Gender |
|
1.32 |
1.06, 1.65 |
0.014 |
White |
|
0.79 |
0.61, 1.04 |
0.090 |
first sodium value |
3,083 |
1.00 |
0.97, 1.03 |
0.847 |
Cirrhosis |
|
1.35 |
0.98, 1.86 |
0.065 |
chf |
|
1.39 |
1.08, 1.80 |
0.011 |
mi |
|
0.85 |
0.63, 1.16 |
0.315 |
pvd |
|
0.68 |
0.50, 0.91 |
0.012 |
Bipolar |
|
0.42 |
0.25, 0.66 |
<0.001 |
Seizure |
|
0.28 |
0.11, 0.60 |
0.003 |
cancer |
|
2.96 |
2.37, 3.70 |
<0.001 |
Schizophrenia |
|
0.27 |
0.07, 0.75 |
0.030 |
30 day propensity score analysis
##### weighted analysis
svyglm(death_30d ~ as.factor(na_grp_mayo), design = design.mnps, family = quasibinomial()) %>%
tbl_regression(exponentiate = TRUE,pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels()%>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**30 day mortality propensity analysis logistic regression **")
Characteristic |
**30 day mortality propensity analysis logistic regression **
|
OR |
95% CI |
p-value |
as.factor(na_grp_mayo) |
|
|
|
optimal correct (6-10) |
— |
— |
|
overcorrect (>10) |
0.80 |
0.58, 1.11 |
0.185 |
undercorrect (<6) |
1.91 |
1.47, 2.47 |
<0.001 |
Sensitivity analysis
sensitivity_master <- first_enc_table %>% mutate(correct_groups=ifelse(na_mayocorr<=8,"<=8",">8"))
sensitivity_master$correct_groups <- as.factor(sensitivity_master$correct_groups)
Sensitivity 30 day mortality logistic regression model 2
sensitivity_m2_30d <- glm(death_30d ~ correct_groups+age+Gender+White+na_first+charlson, family = binomial(link = 'logit'),data=sensitivity_master)
sensitivity_m2_30d %>% tbl_regression(exponentiate = TRUE,
show_single_row=c("White","Gender"),
pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels()%>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**Sensitivity 30 day death mortality logistic regression model 2 **") %>%
add_n(location = "level")
Characteristic |
N |
**Sensitivity 30 day death mortality logistic regression model 2 **
|
OR |
95% CI |
p-value |
correct_groups |
|
|
|
|
<=8 |
1,699 |
— |
— |
|
>8 |
1,384 |
0.42 |
0.32, 0.53 |
<0.001 |
age |
3,083 |
0.97 |
0.97, 0.98 |
<0.001 |
Gender |
|
1.32 |
1.06, 1.63 |
0.012 |
White |
|
0.86 |
0.66, 1.12 |
0.252 |
first sodium value |
3,083 |
1.00 |
0.97, 1.03 |
0.909 |
Charlson Comorbidity Score |
3,083 |
1.14 |
1.11, 1.18 |
<0.001 |
Sensitivity 30 day mortality logistic regression model 3
sensitivity_m3_30d <- glm(death_30d ~ correct_groups+age+Gender+White+na_first+Cirrhosis+chf+mi+pvd+Bipolar+Seizure+cancer+Schizophrenia, family = binomial(link = 'logit'),data=sensitivity_master)
sensitivity_m3_30d %>% tbl_regression(exponentiate = TRUE,show_single_row=c("White","Gender","cancer","Bipolar","Seizure","pvd","Cirrhosis","chf","mi","Schizophrenia"),
pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels()%>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**Sensitivity 30 day death mortality logistic regression model 3 **")%>%
add_n(location = "level")
Characteristic |
N |
**Sensitivity 30 day death mortality logistic regression model 3 **
|
OR |
95% CI |
p-value |
correct_groups |
|
|
|
|
<=8 |
1,699 |
— |
— |
|
>8 |
1,384 |
0.46 |
0.36, 0.59 |
<0.001 |
age |
3,083 |
0.99 |
0.98, 0.99 |
<0.001 |
Gender |
|
1.35 |
1.08, 1.68 |
0.008 |
White |
|
0.80 |
0.61, 1.05 |
0.104 |
first sodium value |
3,083 |
1.00 |
0.97, 1.04 |
0.935 |
Cirrhosis |
|
1.34 |
0.97, 1.84 |
0.071 |
chf |
|
1.41 |
1.09, 1.81 |
0.009 |
mi |
|
0.84 |
0.61, 1.13 |
0.252 |
pvd |
|
0.69 |
0.50, 0.92 |
0.014 |
Bipolar |
|
0.42 |
0.26, 0.66 |
<0.001 |
Seizure |
|
0.29 |
0.11, 0.61 |
0.003 |
cancer |
|
2.99 |
2.40, 3.73 |
<0.001 |
Schizophrenia |
|
0.27 |
0.06, 0.73 |
0.027 |
Sensitivity hospital_mortality mortality logistic regression model
2
sensitivity_m2_hospital_mortality <- glm(hospital_mortality ~ correct_groups+age+Gender+White+na_first+charlson, family = binomial(link = 'logit'),data=sensitivity_master)
sensitivity_m2_hospital_mortality %>% tbl_regression(exponentiate = TRUE,
show_single_row=c("White","Gender"),
pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels()%>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**Sensitivity hospital_mortality mortality logistic regression model 2 **")%>%
add_n(location = "level")
Characteristic |
N |
**Sensitivity hospital_mortality mortality logistic regression model 2 **
|
OR |
95% CI |
p-value |
correct_groups |
|
|
|
|
<=8 |
1,798 |
— |
— |
|
>8 |
1,476 |
0.47 |
0.35, 0.62 |
<0.001 |
age |
3,274 |
0.97 |
0.97, 0.98 |
<0.001 |
Gender |
|
1.31 |
1.02, 1.68 |
0.034 |
White |
|
0.91 |
0.67, 1.24 |
0.531 |
first sodium value |
3,274 |
0.99 |
0.96, 1.03 |
0.751 |
Charlson Comorbidity Score |
3,274 |
1.08 |
1.05, 1.12 |
<0.001 |
Sensitivity hospital_mortality mortality logistic regression model
3
sensitivity_m3_hospital_mortality <- glm(hospital_mortality ~ correct_groups+age+Gender+White+na_first+Cirrhosis+chf+mi+pvd+Bipolar+Seizure+cancer+Schizophrenia, family = binomial(link = 'logit'),data=sensitivity_master)
sensitivity_m3_hospital_mortality %>% tbl_regression(exponentiate = TRUE,show_single_row=c("White","Gender","cancer","Bipolar","Seizure","pvd","Cirrhosis","chf","mi","Schizophrenia"),
pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels()%>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**Sensitivity hospital_mortality mortality logistic regression model 3 **")%>%
add_n(location = "level")
Characteristic |
N |
**Sensitivity hospital_mortality mortality logistic regression model 3 **
|
OR |
95% CI |
p-value |
correct_groups |
|
|
|
|
<=8 |
1,798 |
— |
— |
|
>8 |
1,476 |
0.54 |
0.40, 0.71 |
<0.001 |
age |
3,274 |
0.98 |
0.97, 0.99 |
<0.001 |
Gender |
|
1.29 |
1.00, 1.66 |
0.051 |
White |
|
0.90 |
0.66, 1.23 |
0.498 |
first sodium value |
3,274 |
0.99 |
0.96, 1.03 |
0.750 |
Cirrhosis |
|
1.45 |
1.02, 2.05 |
0.036 |
chf |
|
1.78 |
1.33, 2.38 |
<0.001 |
mi |
|
0.82 |
0.57, 1.16 |
0.266 |
pvd |
|
0.68 |
0.47, 0.97 |
0.037 |
Bipolar |
|
0.37 |
0.19, 0.65 |
0.001 |
Seizure |
|
0.28 |
0.09, 0.69 |
0.015 |
cancer |
|
1.86 |
1.44, 2.40 |
<0.001 |
Schizophrenia |
|
0.13 |
0.01, 0.59 |
0.042 |
Sensitivity length of stay linear regression model 2
sensitivity_m2_los <- glm(hospital_los~ na_grp_mayo+age+Gender+White+na_first+charlson,data=sensitivity_master)
sensitivity_m2_los %>% tbl_regression(exponentiate = F,
show_single_row=c("White","Gender"),
pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels()%>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**Sensitivity hospital_los linear regression model 2 **") %>%
add_n(location = "level")
Characteristic |
N |
**Sensitivity hospital_los linear regression model 2 **
|
Beta |
95% CI |
p-value |
na_grp_mayo |
|
|
|
|
optimal correct (6-10) |
952 |
— |
— |
|
overcorrect (>10) |
1,067 |
-2.4 |
-3.6, -1.2 |
<0.001 |
undercorrect (<6) |
1,255 |
0.06 |
-1.1, 1.2 |
0.917 |
age |
3,274 |
-0.09 |
-0.12, -0.05 |
<0.001 |
Gender |
|
1.4 |
0.51, 2.4 |
0.003 |
White |
|
0.95 |
-0.22, 2.1 |
0.112 |
first sodium value |
3,274 |
-0.15 |
-0.28, -0.02 |
0.022 |
Charlson Comorbidity Score |
3,274 |
-0.03 |
-0.16, 0.11 |
0.695 |
30 days excluded patients
table(final1$death_30days,useNA = "always")
##
## alive dead <NA>
## 3342 1267 3476
Time to index time
pre_to_index_hours_median
## [1] 20.3
pre_to_index_hours_IQR25
## 25%
## 16.47083
pre_to_index_hours_IQR75
## 75%
## 22.33333
pre_to_index_hours24_median
## [1] 3.7
pre_to_index_hours24_IQR25
## 25%
## 1.666667
pre_to_index_hours24_IQR75
## 75%
## 7.529167
post_to_index_hours24_median
## [1] 3.975
post_to_index_hours24_IQR25
## 25%
## 1.666667
post_to_index_hours24_IQR75
## 75%
## 8.683333
Number of patients with serum sodium <=105 at index
admission
t1 <- first_enc_table %>% mutate(cat_105=ifelse(na_first<=105,"<=105",">105"))
table(t1$cat_105,t1$na_grp_mayo)
##
## optimal correct (6-10) overcorrect (>10) undercorrect (<6)
## <=105 12 63 5
## >105 940 1004 1250
Number of patients with serum sodium <=110 at index
admission
t2 <- first_enc_table %>% mutate(cat_110=ifelse(na_first<=110,"<=110",">110"))
table(t2$cat_110,t2$na_grp_mayo)
##
## optimal correct (6-10) overcorrect (>10) undercorrect (<6)
## <=110 85 197 46
## >110 867 870 1209
Addmission sodium
first_enc_table <- first_enc_table %>% mutate(ad_sodium_cat=case_when(na_first<=105 ~ "<=105",
na_first>105 & na_first <= 110 ~ "106-110",
na_first>110 & na_first <= 115 ~"111-115",
na_first>115 & na_first <= 120 ~"116-120"))
count <- table(first_enc_table$ad_sodium_cat,useNA = "always")
count
##
## <=105 106-110 111-115 116-120 <NA>
## 80 248 784 2162 0
Addmission sodium percentage
round(count / sum(count) * 100, 2)
##
## <=105 106-110 111-115 116-120 <NA>
## 2.44 7.57 23.95 66.04 0.00
plot na_corrate
#### bar plot
library(trend)
# Create a bar plot
mean_first_enc <- first_enc %>%
group_by(admit_yr) %>%
summarize(mean_na_corrate = mean(na_corrate))
cor(mean_first_enc$admit_yr, mean_first_enc$mean_na_corrate)
## [1] -0.5636314
mk.test(mean_first_enc$mean_na_corrate)
##
## Mann-Kendall trend test
##
## data: mean_first_enc$mean_na_corrate
## z = -2.6009, n = 26, p-value = 0.009298
## alternative hypothesis: true S is not equal to 0
## sample estimates:
## S varS tau
## -119.0000000 2058.3333333 -0.3661538
ggplot(mean_first_enc, aes(x = admit_yr, y = mean_na_corrate)) +
geom_bar(stat = "identity",fill ="#0080FF") +
xlab("Year") +
ylab("Mean Na corrate") +
ggtitle("Mean Na corrate by Year")+
annotate("text", x = 2013, y = 7,
label = " Mann-Kendall trend test P-value: <0.05
Correlation coefficient: -0.56
")+
annotate("text", x = mean_first_enc$admit_yr, y = mean_first_enc$mean_na_corrate,
label = round(mean_first_enc$mean_na_corrate,2), vjust = -0.5, size = 3.5)+
theme(plot.title = element_text(hjust = 0.5),panel.background = element_blank(),axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5))+
scale_x_continuous(breaks = mean_first_enc$admit_yr, labels = mean_first_enc$admit_yr)

Subgroups models death_30d
Cirrhosis <- first_enc_table %>% filter(Cirrhosis==1)
Cirrhosis2 <- glm(death_30d ~ na_grp_mayo+age+Gender+White+na_first+charlson, family = binomial(link = 'logit'),data=Cirrhosis)
Cirrhosis2 %>% tbl_regression(exponentiate = TRUE,
show_single_row=c("White","Gender"),
pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels()%>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**Cirrhosis 30 day death mortality logistic regression model 2 **")%>%
add_n(location = "level")
Characteristic |
N |
**Cirrhosis 30 day death mortality logistic regression model 2 **
|
OR |
95% CI |
p-value |
na_grp_mayo |
|
|
|
|
optimal correct (6-10) |
95 |
— |
— |
|
overcorrect (>10) |
54 |
0.31 |
0.09, 0.85 |
0.033 |
undercorrect (<6) |
167 |
1.13 |
0.61, 2.14 |
0.698 |
age |
316 |
1.00 |
0.97, 1.02 |
0.910 |
Gender |
|
1.63 |
0.90, 3.05 |
0.115 |
White |
|
0.67 |
0.33, 1.40 |
0.268 |
first sodium value |
316 |
1.03 |
0.92, 1.17 |
0.615 |
Charlson Comorbidity Score |
316 |
1.14 |
1.05, 1.24 |
0.003 |
Cancer <- first_enc_table %>% filter(cancer==1)
Cancer2 <- glm(death_30d ~ na_grp_mayo+age+Gender+White+na_first+charlson, family = binomial(link = 'logit'),data=Cancer)
Cancer2 %>% tbl_regression(exponentiate = TRUE,
show_single_row=c("White","Gender"),
pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels()%>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**Cancer 30 day death mortality logistic regression model 2 **")%>%
add_n(location = "level")
Characteristic |
N |
**Cancer 30 day death mortality logistic regression model 2 **
|
OR |
95% CI |
p-value |
na_grp_mayo |
|
|
|
|
optimal correct (6-10) |
342 |
— |
— |
|
overcorrect (>10) |
305 |
0.71 |
0.45, 1.11 |
0.138 |
undercorrect (<6) |
546 |
2.18 |
1.55, 3.10 |
<0.001 |
age |
1,193 |
0.97 |
0.96, 0.98 |
<0.001 |
Gender |
|
1.22 |
0.91, 1.63 |
0.176 |
White |
|
0.68 |
0.47, 0.98 |
0.036 |
first sodium value |
1,193 |
1.00 |
0.96, 1.05 |
0.934 |
Charlson Comorbidity Score |
1,193 |
1.07 |
1.03, 1.13 |
0.003 |
chf <- first_enc_table %>% filter(chf==1)
chf2 <- glm(death_30d ~ na_grp_mayo+age+Gender+White+na_first+charlson, family = binomial(link = 'logit'),data=chf)
chf2 %>% tbl_regression(exponentiate = TRUE,
show_single_row=c("White","Gender"),
pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels()%>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**chf 30 day death mortality logistic regression model 2 **")%>%
add_n(location = "level")
Characteristic |
N |
**chf 30 day death mortality logistic regression model 2 **
|
OR |
95% CI |
p-value |
na_grp_mayo |
|
|
|
|
optimal correct (6-10) |
293 |
— |
— |
|
overcorrect (>10) |
258 |
0.71 |
0.40, 1.24 |
0.234 |
undercorrect (<6) |
464 |
1.77 |
1.17, 2.75 |
0.009 |
age |
1,015 |
0.99 |
0.98, 1.00 |
0.103 |
Gender |
|
1.31 |
0.92, 1.88 |
0.136 |
White |
|
0.84 |
0.54, 1.32 |
0.434 |
first sodium value |
1,015 |
0.98 |
0.93, 1.04 |
0.513 |
Charlson Comorbidity Score |
1,015 |
1.03 |
0.98, 1.08 |
0.290 |
Subgroups models hospital_mortality
Cirrhosis <- first_enc_table %>% filter(Cirrhosis==1)
Cirrhosis2_in <- glm(hospital_mortality ~ na_grp_mayo+age+Gender+White+na_first+charlson, family = binomial(link = 'logit'),data=Cirrhosis)
Cirrhosis2_in %>% tbl_regression(exponentiate = TRUE,
show_single_row=c("White","Gender"),
pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels()%>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**Cirrhosis hospital_mortality logistic regression model 2 **")%>%
add_n(location = "level")
Characteristic |
N |
**Cirrhosis hospital_mortality logistic regression model 2 **
|
OR |
95% CI |
p-value |
na_grp_mayo |
|
|
|
|
optimal correct (6-10) |
101 |
— |
— |
|
overcorrect (>10) |
55 |
0.35 |
0.09, 1.02 |
0.074 |
undercorrect (<6) |
174 |
0.89 |
0.46, 1.75 |
0.726 |
age |
330 |
0.99 |
0.96, 1.02 |
0.383 |
Gender |
|
1.15 |
0.61, 2.22 |
0.662 |
White |
|
0.98 |
0.46, 2.31 |
0.962 |
first sodium value |
330 |
1.01 |
0.90, 1.15 |
0.874 |
Charlson Comorbidity Score |
330 |
1.08 |
0.99, 1.19 |
0.093 |
Cancer <- first_enc_table %>% filter(cancer==1)
Cancer2_in <- glm(hospital_mortality ~ na_grp_mayo+age+Gender+White+na_first+charlson, family = binomial(link = 'logit'),data=Cancer)
Cancer2_in %>% tbl_regression(exponentiate = TRUE,
show_single_row=c("White","Gender"),
pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels()%>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**Cancer hospital_mortality logistic regression model 2 **")%>%
add_n(location = "level")
Characteristic |
N |
**Cancer hospital_mortality logistic regression model 2 **
|
OR |
95% CI |
p-value |
na_grp_mayo |
|
|
|
|
optimal correct (6-10) |
358 |
— |
— |
|
overcorrect (>10) |
311 |
0.69 |
0.38, 1.21 |
0.200 |
undercorrect (<6) |
558 |
1.96 |
1.29, 3.06 |
0.002 |
age |
1,227 |
0.97 |
0.95, 0.98 |
<0.001 |
Gender |
|
1.19 |
0.83, 1.70 |
0.333 |
White |
|
0.67 |
0.44, 1.04 |
0.069 |
first sodium value |
1,227 |
0.98 |
0.93, 1.04 |
0.547 |
Charlson Comorbidity Score |
1,227 |
1.02 |
0.96, 1.08 |
0.587 |
chf <- first_enc_table %>% filter(chf==1)
chf2_in <- glm(hospital_mortality ~ na_grp_mayo+age+Gender+White+na_first+charlson, family = binomial(link = 'logit'),data=chf)
chf2_in %>% tbl_regression(exponentiate = TRUE,
show_single_row=c("White","Gender"),
pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels()%>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**chf hospital_mortality logistic regression model 2 **") %>%
add_n(location = "level")
Characteristic |
N |
**chf hospital_mortality logistic regression model 2 **
|
OR |
95% CI |
p-value |
na_grp_mayo |
|
|
|
|
optimal correct (6-10) |
307 |
— |
— |
|
overcorrect (>10) |
263 |
0.84 |
0.45, 1.58 |
0.595 |
undercorrect (<6) |
476 |
1.77 |
1.09, 2.94 |
0.024 |
age |
1,046 |
0.99 |
0.98, 1.01 |
0.439 |
Gender |
|
1.29 |
0.86, 1.95 |
0.218 |
White |
|
0.99 |
0.60, 1.69 |
0.955 |
first sodium value |
1,046 |
0.98 |
0.93, 1.05 |
0.591 |
Charlson Comorbidity Score |
1,046 |
0.95 |
0.89, 1.01 |
0.095 |
Cirrhosis na_mayocorr
mean(Cirrhosis$na_mayocorr,na.rm = T)
## [1] 6.171678
sd(Cirrhosis$na_mayocorr,na.rm = T)
## [1] 5.132014
Cirrhosis na_mayocorr by groups
Cirrhosis_g <- first_enc_table %>% group_by(na_grp_mayo) %>%
summarise(count = n(),mean = mean(na_mayocorr, na.rm = TRUE),
sd = sd(na_mayocorr, na.rm = TRUE))
Cirrhosis_g
## # A tibble: 3 × 4
## na_grp_mayo count mean sd
## <fct> <int> <dbl> <dbl>
## 1 optimal correct (6-10) 952 7.82 1.20
## 2 overcorrect (>10) 1067 16.2 6.35
## 3 undercorrect (<6) 1255 3.00 2.20
summary(aov(na_mayocorr ~ na_grp_mayo, data = Cirrhosis))
## Df Sum Sq Mean Sq F value Pr(>F)
## na_grp_mayo 2 6412 3206 465.2 <2e-16 ***
## Residuals 327 2253 7
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
CHF na_mayocorr
mean(chf$na_mayocorr,na.rm = T)
## [1] 7.644498
sd(chf$na_mayocorr,na.rm = T)
## [1] 6.316357
CHF na_mayocorr by groups
chf_g <- first_enc_table %>% group_by(na_grp_mayo) %>%
summarise(count = n(),mean = mean(na_mayocorr, na.rm = TRUE),
sd = sd(na_mayocorr, na.rm = TRUE))
chf_g
## # A tibble: 3 × 4
## na_grp_mayo count mean sd
## <fct> <int> <dbl> <dbl>
## 1 optimal correct (6-10) 952 7.82 1.20
## 2 overcorrect (>10) 1067 16.2 6.35
## 3 undercorrect (<6) 1255 3.00 2.20
summary(aov(na_mayocorr ~ na_grp_mayo, data = chf))
## Df Sum Sq Mean Sq F value Pr(>F)
## na_grp_mayo 2 28717 14358 1154 <2e-16 ***
## Residuals 1043 12975 12
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Cancer na_mayocorr
mean(Cancer$na_mayocorr,na.rm = T)
## [1] 7.553166
sd(Cancer$na_mayocorr,na.rm = T)
## [1] 6.076614
Cancer na_mayocorr by groups
Cancer_g <- first_enc_table %>% group_by(na_grp_mayo) %>%
summarise(count = n(),mean = mean(na_mayocorr, na.rm = TRUE),
sd = sd(na_mayocorr, na.rm = TRUE))
Cancer_g
## # A tibble: 3 × 4
## na_grp_mayo count mean sd
## <fct> <int> <dbl> <dbl>
## 1 optimal correct (6-10) 952 7.82 1.20
## 2 overcorrect (>10) 1067 16.2 6.35
## 3 undercorrect (<6) 1255 3.00 2.20
summary(aov(na_mayocorr ~ na_grp_mayo, data = Cancer))
## Df Sum Sq Mean Sq F value Pr(>F)
## na_grp_mayo 2 30780 15390 1300 <2e-16 ***
## Residuals 1224 14490 12
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
mean na_mayocorr in days with SD for 3 categories of sodium
correction
first_enc_table %>% group_by(na_grp_mayo) %>%
summarise(count = n(),mean = mean(na_mayocorr, na.rm = TRUE),
sd = sd(na_mayocorr, na.rm = TRUE))
## # A tibble: 3 × 4
## na_grp_mayo count mean sd
## <fct> <int> <dbl> <dbl>
## 1 optimal correct (6-10) 952 7.82 1.20
## 2 overcorrect (>10) 1067 16.2 6.35
## 3 undercorrect (<6) 1255 3.00 2.20
summary(aov(na_mayocorr ~ na_grp_mayo, data = first_enc_table))
## Df Sum Sq Mean Sq F value Pr(>F)
## na_grp_mayo 2 100871 50435 3267 <2e-16 ***
## Residuals 3271 50503 15
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
mean hospital_mortality in days with SD for 3 categories of sodium
correction
first_enc_table %>% group_by(na_grp_mayo) %>%
summarise(count = n(),mean = mean(hospital_los, na.rm = TRUE),
sd = sd(hospital_los, na.rm = TRUE))
## # A tibble: 3 × 4
## na_grp_mayo count mean sd
## <fct> <int> <dbl> <dbl>
## 1 optimal correct (6-10) 952 9.84 17.5
## 2 overcorrect (>10) 1067 8.05 10.1
## 3 undercorrect (<6) 1255 9.77 12.4
summary(aov(hospital_los ~ na_grp_mayo, data = first_enc_table))
## Df Sum Sq Mean Sq F value Pr(>F)
## na_grp_mayo 2 2210 1104.9 6.094 0.00228 **
## Residuals 3271 593074 181.3
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Hospital mortality % for <=8 and >8
table(sensitivity_master$hospital_mortality,sensitivity_master$correct_groups,useNA = "always" )
##
## <=8 >8 <NA>
## 0 1593 1394 0
## 1 205 82 0
## <NA> 0 0 0
30 day mortality % for <=8 and >8
table(sensitivity_master$death_30d,sensitivity_master$correct_groups,useNA = "always" )
##
## <=8 >8 <NA>
## 0 1382 1272 0
## 1 317 112 0
## <NA> 99 92 0
LOS
los_1 <- first_enc_table %>% group_by(hospital_mortality) %>%
summarise(count = n(),mean = mean(hospital_los, na.rm = TRUE),
sd = sd(hospital_los, na.rm = TRUE))
los_1
## # A tibble: 2 × 4
## hospital_mortality count mean sd
## <fct> <int> <dbl> <dbl>
## 1 0 2987 8.84 12.5
## 2 1 287 13.3 20.6
summary(aov(hospital_los ~ hospital_mortality, data = first_enc_table))
## Df Sum Sq Mean Sq F value Pr(>F)
## hospital_mortality 1 5089 5089 28.21 1.16e-07 ***
## Residuals 3272 590195 180
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
LOS hospital mortality =1
los_2 <- first_enc_table %>% filter(hospital_mortality ==1)%>% group_by(hospital_mortality) %>%
summarise(count = n(),mean = mean(hospital_los, na.rm = TRUE),
sd = sd(hospital_los, na.rm = TRUE))
los_2
## # A tibble: 1 × 4
## hospital_mortality count mean sd
## <fct> <int> <dbl> <dbl>
## 1 1 287 13.3 20.6
Cirrhosis univariate 30 day mortality
glm(death_30d ~ na_grp_mayo, family = binomial(link = 'logit'),data=Cirrhosis) %>% tbl_regression(exponentiate = TRUE,
pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels() %>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**Cirrhosis 30 day mortality logistic regression**") %>%
add_n(location = "level") %>%
add_global_p()
Characteristic |
N |
Cirrhosis 30 day mortality logistic regression
|
OR |
95% CI |
p-value |
na_grp_mayo |
|
|
|
0.043 |
optimal correct (6-10) |
95 |
— |
— |
|
overcorrect (>10) |
54 |
0.36 |
0.11, 0.95 |
|
undercorrect (<6) |
167 |
1.11 |
0.61, 2.05 |
|
Cancer univariate 30 day mortality
glm(death_30d ~ na_grp_mayo, family = binomial(link = 'logit'),data=Cancer) %>% tbl_regression(exponentiate = TRUE,
pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels() %>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**Cancer 30 day mortality logistic regression**") %>%
add_n(location = "level") %>%
add_global_p()
Characteristic |
N |
Cancer 30 day mortality logistic regression
|
OR |
95% CI |
p-value |
na_grp_mayo |
|
|
|
<0.001 |
optimal correct (6-10) |
342 |
— |
— |
|
overcorrect (>10) |
305 |
0.74 |
0.48, 1.14 |
|
undercorrect (<6) |
546 |
2.20 |
1.58, 3.09 |
|
chf univariate 30 day mortality
glm(death_30d ~ na_grp_mayo, family = binomial(link = 'logit'),data=chf) %>% tbl_regression(exponentiate = TRUE,
pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels() %>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**chf 30 day mortality logistic regression**") %>%
add_n(location = "level") %>%
add_global_p()
Characteristic |
N |
chf 30 day mortality logistic regression
|
OR |
95% CI |
p-value |
na_grp_mayo |
|
|
|
<0.001 |
optimal correct (6-10) |
293 |
— |
— |
|
overcorrect (>10) |
258 |
0.76 |
0.43, 1.30 |
|
undercorrect (<6) |
464 |
1.75 |
1.16, 2.70 |
|
Cirrhosis univariate hospital_mortality
glm(hospital_mortality ~ na_grp_mayo, family = binomial(link = 'logit'),data=Cirrhosis) %>% tbl_regression(exponentiate = TRUE,
pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels() %>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**Cirrhosis hospital_mortality logistic regression**") %>%
add_n(location = "level") %>%
add_global_p()
Characteristic |
N |
Cirrhosis hospital_mortality logistic regression
|
OR |
95% CI |
p-value |
na_grp_mayo |
|
|
|
0.147 |
optimal correct (6-10) |
101 |
— |
— |
|
overcorrect (>10) |
55 |
0.36 |
0.10, 1.03 |
|
undercorrect (<6) |
174 |
0.88 |
0.46, 1.72 |
|
Cancer univariate hospital_mortality
glm(hospital_mortality ~ na_grp_mayo, family = binomial(link = 'logit'),data=Cancer) %>% tbl_regression(exponentiate = TRUE,
pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels() %>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**Cancer hospital_mortality logistic regression**") %>%
add_n(location = "level") %>%
add_global_p()
Characteristic |
N |
Cancer hospital_mortality logistic regression
|
OR |
95% CI |
p-value |
na_grp_mayo |
|
|
|
<0.001 |
optimal correct (6-10) |
358 |
— |
— |
|
overcorrect (>10) |
311 |
0.73 |
0.41, 1.26 |
|
undercorrect (<6) |
558 |
1.91 |
1.27, 2.93 |
|
#chf univariate hospital_mortality
glm(hospital_mortality ~ na_grp_mayo, family = binomial(link = 'logit'),data=chf) %>% tbl_regression(exponentiate = TRUE,
pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels() %>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**chf hospital_mortality logistic regression**") %>%
add_n(location = "level") %>%
add_global_p()
Characteristic |
N |
chf hospital_mortality logistic regression
|
OR |
95% CI |
p-value |
na_grp_mayo |
|
|
|
0.018 |
optimal correct (6-10) |
307 |
— |
— |
|
overcorrect (>10) |
263 |
0.93 |
0.50, 1.71 |
|
undercorrect (<6) |
476 |
1.72 |
1.07, 2.85 |
|
Model 2 run a new model with reference group as <6 group and
compare the reference group to >10 group
first_enc_table <- first_enc_table %>% mutate(group2=case_when(na_mayocorr<6 ~"<6",
na_mayocorr>10 ~">10"))
first_enc_table$group2 <- as.factor(first_enc_table$group2)
first_enc_table$group2 <- relevel(first_enc_table$group2, ref = "<6")
glm(hospital_mortality ~ group2+age+Gender+White+na_first+charlson, family = binomial(link = 'logit'),data=first_enc_table) %>%
tbl_regression(exponentiate = TRUE,
show_single_row=c("White","Gender"),
pvalue_fun = ~style_pvalue(.x, digits = 3)) %>% bold_p() %>% # bold p-values under a given threshold (default 0.05)
bold_labels()%>%
modify_spanning_header(
c(estimate, ci, p.value) ~
"**hospital mortality logistic regression model 2 **")
Characteristic |
**hospital mortality logistic regression model 2 **
|
OR |
95% CI |
p-value |
group2 |
|
|
|
<6 |
— |
— |
|
>10 |
0.37 |
0.26, 0.52 |
<0.001 |
age |
0.97 |
0.96, 0.98 |
<0.001 |
Gender |
1.16 |
0.87, 1.55 |
0.322 |
White |
0.90 |
0.64, 1.30 |
0.568 |
first sodium value |
0.99 |
0.95, 1.04 |
0.760 |
Charlson Comorbidity Score |
1.08 |
1.04, 1.13 |
<0.001 |