Input relevent data files

### Figure out average pollen consumption by treatment 


pollen <- read_csv("pollen1.csv", col_types = cols(round = col_factor(levels = c("1", 
                                                                                 "2")), treatment = col_factor(levels = c("1", 
                                                                                                                          "2", "3", "4", "5")), replicate = col_factor(levels = c("1", 
                                                                                                                                                                                  "2", "3", "4", "5", "6", "7", "9", "11", 
                                                                                                                                                                                  "12")), start_date = col_date(format = "%m/%d/%Y"), 
                                                   start_time = col_character(), end_date = col_date(format = "%m/%d/%Y"), 
                                                   end_time = col_character()))


pollen$colony <- as.factor(pollen$colony)
pollen$pid <- as.factor(pollen$pid)
pollen$count <- as.factor(pollen$count)

pollen <- subset(pollen, pollen$round != 1)

pollen <- na.omit(pollen)

range(pollen$difference)
## [1] -0.30646  1.56542
# get rid of negative numbers
pollen$difference[pollen$difference < 0] <- NA
pollen <- na.omit(pollen)
range(pollen$difference)
## [1] 0.002715 1.565420
# add queenright original colony column 
qro <- read_csv("qro.csv")
qro$colony <- as.factor(qro$colony)
qro$qro <- as.factor(qro$qro)

pollen <- merge(pollen, qro, by.x = "colony")

pollen$pid <- as.factor(pollen$pid)
pollen$dose_consumed <- as.numeric(pollen$dose_consumed)

Average pollen consumption per colony data input

pollen$whole_dif <- as.numeric(pollen$difference)
wd.1 <- lm(difference ~ treatment, data = pollen)
summary(wd.1)
## 
## Call:
## lm(formula = difference ~ treatment, data = pollen)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.4853 -0.2416 -0.1504  0.1576  1.0638 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 0.429541   0.024170  17.772   <2e-16 ***
## treatment2  0.072099   0.034886   2.067   0.0390 *  
## treatment3  0.078078   0.034406   2.269   0.0235 *  
## treatment4  0.058490   0.034988   1.672   0.0949 .  
## treatment5  0.004982   0.035040   0.142   0.8870    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3375 on 915 degrees of freedom
## Multiple R-squared:  0.009927,   Adjusted R-squared:  0.005599 
## F-statistic: 2.294 on 4 and 915 DF,  p-value: 0.05773
wd.emm <- emmeans(wd.1, "treatment")
summary(wd.emm)
##  treatment emmean     SE  df lower.CL upper.CL
##  1          0.430 0.0242 915    0.382    0.477
##  2          0.502 0.0252 915    0.452    0.551
##  3          0.508 0.0245 915    0.460    0.556
##  4          0.488 0.0253 915    0.438    0.538
##  5          0.435 0.0254 915    0.385    0.484
## 
## Confidence level used: 0.95
wd.summary <- pollen %>% 
  group_by(colony) %>%
  summarize(whole.mean = mean(difference),
            mean.dose = mean(dose_consumed))

as.data.frame(wd.summary)  # this is the data frame I will merge with subsequent data frames to contain average pollen consumption per colony as a new column  
##    colony whole.mean   mean.dose
## 1  1.11R2  0.2829509     0.00000
## 2  1.12R2  0.1697964     0.00000
## 3   1.1R2  0.5213458     0.00000
## 4   1.2R2  0.3374200     0.00000
## 5   1.3R2  0.4512891     0.00000
## 6   1.4R2  0.6063016     0.00000
## 7   1.5R2  0.7079516     0.00000
## 8   1.7R2  0.7400381     0.00000
## 9   1.9R2  0.2240081     0.00000
## 10 2.11R2  0.4178270    35.99958
## 11 2.12R2  0.4035568    35.62453
## 12  2.1R2  0.6101589    55.13368
## 13  2.2R2  0.5109234    47.65174
## 14  2.3R2  0.3280036    24.29676
## 15  2.4R2  0.3881394    32.86886
## 16  2.5R2  0.7194915    73.77696
## 17  2.7R2  0.5299685    46.45851
## 18  2.9R2  0.5857152    52.49618
## 19 3.11R2  0.4216410   357.65779
## 20 3.12R2  0.3390993   281.21803
## 21  3.1R2  0.3711948   307.88606
## 22  3.2R2  0.3461010   310.28287
## 23  3.3R2  0.8465806   919.09823
## 24  3.4R2  0.4120433   406.20875
## 25  3.5R2  0.8906211   969.89690
## 26  3.7R2  0.6266680   720.47811
## 27  3.9R2  0.4409511   417.98849
## 28 4.11R2  0.3456011  3697.92253
## 29 4.12R2  0.2496295  2085.61694
## 30  4.1R2  0.7074755  8936.65823
## 31  4.2R2  0.3871742  4380.60484
## 32  4.3R2  0.5800074  6846.91060
## 33  4.4R2  0.8356247 10230.80238
## 34  4.5R2  0.2335967  1757.69297
## 35  4.7R2  0.6237400  7030.06345
## 36  4.9R2  0.5322950  5682.26011
## 37 5.11R2  0.4113960 43070.09972
## 38 5.12R2  0.2077741 15383.81515
## 39  5.1R2  0.3782286 37367.48316
## 40  5.2R2  0.4912468 52985.85612
## 41  5.3R2  0.2128778 16364.60071
## 42  5.4R2  0.4563045 48624.01684
## 43  5.5R2  0.7095479 82144.93157
## 44  5.7R2  0.6113189 67415.74103
## 45  5.9R2  0.4188290 42601.27230

Worker Mortality data input

mortality  <- read_csv("surviving workers per colony.csv")

mortality$colony <- as.factor(mortality$colony)
brood <- read_csv("brood.csv", col_types = cols(round = col_factor(levels = c("1", 
    "2")), treatment = col_factor(levels = c("1", 
    "2", "3", "4", "5")), replicate = col_factor(levels = c("1", 
    "2", "3", "4", "5", "7", "9", "11", "12"))))

brood$colony <- as.factor(brood$colony)

brood <- subset(brood, brood$round != 1)

brood <- merge(wd.summary, brood, by.x = "colony")

brood <- merge(brood, mortality, by.x = "colony")

brood$qro <- as.factor(brood$qro)

Data Analysis

ggplot(pollen, aes(x=difference, fill = treatment)) +
  geom_histogram(position = "identity", binwidth = 0.05,col=I("black")) +
  scale_fill_manual(values = c("peachpuff3", "darkseagreen", "lightseagreen", "darkolivegreen3", "darkolivegreen4"),
                    name = "Pristine Level",
                    labels = c("Treatment 1 (control)", "Treatment 2", 
                               "Treatment 3", "Treatment 4", "Treatment 5")) +
  ggtitle("Pollen Consumption (g)") +
  labs(y = "Number of Pollen Balls", x = "Pollen Consumed (g)") +
  facet_wrap(vars(treatment)) +
  theme(legend.position = "none")

shapiro.test(pollen$difference)
## 
##  Shapiro-Wilk normality test
## 
## data:  pollen$difference
## W = 0.84265, p-value < 2.2e-16
pollen$boxp <- bcPower(pollen$difference, -3, gamma=1)

shapiro.test(pollen$boxp)
## 
##  Shapiro-Wilk normality test
## 
## data:  pollen$boxp
## W = 0.9588, p-value = 2.044e-15
ggplot(pollen, aes(x=boxp, fill = treatment)) +
  geom_histogram(position = "identity", binwidth = 0.009,col=I("black")) +
  scale_fill_manual(values = c("peachpuff3", "darkseagreen", "lightseagreen", "darkolivegreen3", "darkolivegreen4"),
                    name = "Pristine Level",
                    labels = c("Treatment 1 (control)", "Treatment 2", 
                               "Treatment 3", "Treatment 4", "Treatment 5")) +
  ggtitle("Pollen Consumption (g) - BoxCox Transformed") +
  labs(y = "Number of Pollen Balls", x = "Pollen Consumed (g), BoxCox power transformation")

pbox <- lmer(boxp ~ treatment*count + bees_alive  + qro + start_date + (1|colony), data = pollen)
summary(pbox)
## Linear mixed model fit by REML ['lmerMod']
## Formula: boxp ~ treatment * count + bees_alive + qro + start_date + (1 |  
##     colony)
##    Data: pollen
## 
## REML criterion at convergence: -2509.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5630 -0.5737  0.0368  0.6202  3.9231 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  colony   (Intercept) 0.000509 0.02256 
##  Residual             0.001552 0.03940 
## Number of obs: 920, groups:  colony, 45
## 
## Fixed effects:
##                      Estimate Std. Error t value
## (Intercept)        86.5331642 19.5487027   4.427
## treatment2         -0.0180558  0.0214217  -0.843
## treatment3         -0.0192845  0.0214074  -0.901
## treatment4         -0.0033824  0.0214026  -0.158
## treatment5         -0.0172195  0.0214038  -0.805
## count3             -0.0103931  0.0186840  -0.556
## count4             -0.0042830  0.0190132  -0.225
## count5             -0.0387872  0.0195496  -1.984
## count6             -0.0165258  0.0202766  -0.815
## count7              0.0338456  0.0211748   1.598
## count8              0.0535410  0.0222103   2.411
## count9              0.0749028  0.0233871   3.203
## count10             0.1045661  0.0246643   4.240
## count11             0.1419380  0.0260382   5.451
## count12             0.1562468  0.0274997   5.682
## count13             0.1633240  0.0290302   5.626
## count14             0.1709688  0.0306193   5.584
## count15             0.1771787  0.0322584   5.492
## count16             0.1967305  0.0339403   5.796
## count17             0.2138176  0.0359909   5.941
## count18             0.2117700  0.0373792   5.665
## count19             0.2255124  0.0391491   5.760
## count20             0.2157045  0.0409437   5.268
## count21             0.1949026  0.0446791   4.362
## count22             0.1965224  0.0464550   4.230
## count23             0.2017282  0.0482349   4.182
## count24             0.2272445  0.0545237   4.168
## count25             0.2366922  0.0562031   4.211
## count26             0.2515664  0.0579053   4.344
## count27             0.2495314  0.0596282   4.185
## count28             0.2793146  0.0674219   4.143
## count29             0.2565208  0.0693698   3.698
## bees_alive          0.0160070  0.0031809   5.032
## qroB3              -0.0064409  0.0128056  -0.503
## qroB4               0.0226992  0.0127494   1.780
## qroB5              -0.0129803  0.0099619  -1.303
## start_date         -0.0044974  0.0010169  -4.423
## treatment2:count3   0.0284732  0.0262662   1.084
## treatment3:count3   0.0245135  0.0262662   0.933
## treatment4:count3   0.0324498  0.0262686   1.235
## treatment5:count3   0.0275828  0.0262662   1.050
## treatment2:count4   0.0355395  0.0262662   1.353
## treatment3:count4   0.0175317  0.0262662   0.667
## treatment4:count4   0.0206685  0.0267265   0.773
## treatment5:count4  -0.0079657  0.0266922  -0.298
## treatment2:count5   0.0691795  0.0262662   2.634
## treatment3:count5   0.0826735  0.0272286   3.036
## treatment4:count5   0.0466502  0.0267265   1.745
## treatment5:count5   0.0440283  0.0262672   1.676
## treatment2:count6   0.0846647  0.0262662   3.223
## treatment3:count6   0.0609160  0.0262662   2.319
## treatment4:count6   0.0418735  0.0272662   1.536
## treatment5:count6   0.0067789  0.0266920   0.254
## treatment2:count7   0.0489226  0.0262662   1.863
## treatment3:count7   0.0323227  0.0262662   1.231
## treatment4:count7   0.0043374  0.0263042   0.165
## treatment5:count7  -0.0212626  0.0262672  -0.809
## treatment2:count8   0.0473865  0.0262686   1.804
## treatment3:count8   0.0342191  0.0262686   1.303
## treatment4:count8   0.0137990  0.0262876   0.525
## treatment5:count8   0.0156954  0.0262693   0.597
## treatment2:count9   0.0441203  0.0262686   1.680
## treatment3:count9   0.0397612  0.0262686   1.514
## treatment4:count9   0.0328302  0.0262876   1.249
## treatment5:count9   0.0264910  0.0262693   1.008
## treatment2:count10  0.0518504  0.0262757   1.973
## treatment3:count10  0.0353707  0.0262757   1.346
## treatment4:count10  0.0336417  0.0262757   1.280
## treatment5:count10  0.0176678  0.0262772   0.672
## treatment2:count11  0.0429482  0.0262876   1.634
## treatment3:count11  0.0327437  0.0262893   1.246
## treatment4:count11  0.0342425  0.0262686   1.304
## treatment5:count11  0.0121041  0.0267262   0.453
## treatment2:count12  0.0588385  0.0262876   2.238
## treatment3:count12  0.0486916  0.0262893   1.852
## treatment4:count12  0.0331558  0.0262686   1.262
## treatment5:count12  0.0423302  0.0272633   1.553
## treatment2:count13  0.0509896  0.0262757   1.941
## treatment3:count13  0.0478751  0.0262698   1.822
## treatment4:count13  0.0249028  0.0262686   0.948
## treatment5:count13  0.0390906  0.0267262   1.463
## treatment2:count14  0.0451479  0.0262686   1.719
## treatment3:count14  0.0437573  0.0262698   1.666
## treatment4:count14  0.0226688  0.0266955   0.849
## treatment5:count14  0.0318472  0.0267262   1.192
## treatment2:count15  0.0348557  0.0262662   1.327
## treatment3:count15  0.0355391  0.0262698   1.353
## treatment4:count15  0.0089681  0.0262686   0.341
## treatment5:count15  0.0162470  0.0267262   0.608
## treatment2:count16  0.0113472  0.0266923   0.425
## treatment3:count16  0.0314799  0.0262698   1.198
## treatment4:count16 -0.0204105  0.0262686  -0.777
## treatment5:count16  0.0019678  0.0272515   0.072
## treatment2:count17  0.0089828  0.0266914   0.337
## treatment3:count17  0.0297449  0.0266927   1.114
## treatment4:count17 -0.0201039  0.0266914  -0.753
## treatment5:count17  0.0147797  0.0271318   0.545
## treatment2:count18  0.0055031  0.0262686   0.209
## treatment3:count18  0.0377654  0.0263062   1.436
## treatment4:count18  0.0047245  0.0262757   0.180
## treatment5:count18  0.0162292  0.0267577   0.607
## treatment2:count19 -0.0008599  0.0267543  -0.032
## treatment3:count19  0.0344056  0.0263278   1.307
## treatment4:count19 -0.0098333  0.0262757  -0.374
## treatment5:count19  0.0060246  0.0267812   0.225
## treatment2:count20  0.0001901  0.0267803   0.007
## treatment3:count20  0.0449391  0.0267480   1.680
## treatment4:count20  0.0238545  0.0267110   0.893
## treatment5:count20  0.0440210  0.0273427   1.610
## treatment2:count21  0.0286000  0.0297903   0.960
## treatment3:count21  0.0608540  0.0304185   2.001
## treatment4:count21  0.0307142  0.0325910   0.942
## treatment5:count21  0.0167351  0.0298138   0.561
## treatment2:count22  0.0530423  0.0345949   1.533
## treatment3:count22  0.0449991  0.0312919   1.438
## treatment4:count22  0.0357949  0.0383072   0.934
## treatment5:count22  0.0173960  0.0313235   0.555
## treatment2:count23  0.0805306  0.0476865   1.689
## treatment3:count23  0.0425356  0.0326223   1.304
## treatment4:count23  0.0409215  0.0383031   1.068
## treatment5:count23  0.0189413  0.0346081   0.547
## treatment2:count24  0.0562808  0.0525744   1.070
## treatment3:count24  0.0608178  0.0409778   1.484
## treatment4:count24  0.0076144  0.0525627   0.145
## treatment5:count24 -0.0027764  0.0525272  -0.053
## treatment3:count25  0.0159209  0.0524813   0.303
## treatment4:count25  0.0189102  0.0525627   0.360
## treatment5:count25 -0.0133602  0.0525272  -0.254
## treatment3:count26  0.0082840  0.0524813   0.158
## treatment4:count26  0.0136409  0.0525627   0.260
## treatment5:count26 -0.0077115  0.0525272  -0.147
## treatment3:count27  0.0079056  0.0524813   0.151
## treatment4:count27  0.0328278  0.0525627   0.625
## treatment5:count27  0.0123843  0.0525272   0.236
## treatment3:count28 -0.0785247  0.0600614  -1.307
## treatment4:count28  0.0065020  0.0598577   0.109
## treatment5:count28 -0.0125590  0.0601060  -0.209
## treatment5:count29  0.0130857  0.0596826   0.219
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 7 columns / coefficients
freq <- table(pollen$colony)
freq
## 
## 1.11R2 1.12R2  1.1R2  1.2R2  1.3R2  1.4R2  1.5R2  1.7R2  1.9R2 2.11R2 2.12R2 
##     22     22     19     27     22     19     19     19     26     20     21 
##  2.1R2  2.2R2  2.3R2  2.4R2  2.5R2  2.7R2  2.9R2 3.11R2 3.12R2  3.1R2  3.2R2 
##     19     23     19     17     20     20     21     21     27     23     20 
##  3.3R2  3.4R2  3.5R2  3.7R2  3.9R2 4.11R2 4.12R2  4.1R2  4.2R2  4.3R2  4.4R2 
##     18     21     19     22     19     18     19     20     20     19     19 
##  4.5R2  4.7R2  4.9R2 5.11R2 5.12R2  5.1R2  5.2R2  5.3R2  5.4R2  5.5R2  5.7R2 
##     27     18     18     20     27     21     22      9     20     19     18 
##  5.9R2 
##     21
drop1(pbox, test = "Chisq")
## Single term deletions
## 
## Model:
## boxp ~ treatment * count + bees_alive + qro + start_date + (1 | 
##     colony)
##                 npar     AIC     LRT   Pr(Chi)    
## <none>               -3117.9                      
## bees_alive         1 -3091.4  28.470 9.514e-08 ***
## qro                3 -3115.5   8.432   0.03787 *  
## start_date         1 -3099.5  20.408 6.258e-06 ***
## treatment:count  101 -3218.2 101.698   0.46181    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(pbox)

qqnorm(resid(pbox));qqline(resid(pbox)) 

boxemm <- emmeans(pbox, pairwise ~ treatment | count)
pairs(boxemm)
## count = 2:
##  contrast                 estimate     SE  df t.ratio p.value
##  treatment1 - treatment2  0.018056 0.0214 335   0.843  0.9170
##  treatment1 - treatment3  0.019285 0.0214 337   0.901  0.8965
##  treatment1 - treatment4  0.003382 0.0214 337   0.158  0.9999
##  treatment1 - treatment5  0.017219 0.0214 337   0.805  0.9291
##  treatment2 - treatment3  0.001229 0.0214 337   0.057  1.0000
##  treatment2 - treatment4 -0.014673 0.0214 335  -0.685  0.9596
##  treatment2 - treatment5 -0.000836 0.0214 336  -0.039  1.0000
##  treatment3 - treatment4 -0.015902 0.0214 337  -0.743  0.9462
##  treatment3 - treatment5 -0.002065 0.0214 337  -0.096  1.0000
##  treatment4 - treatment5  0.013837 0.0214 337   0.646  0.9672
## 
## count = 3:
##  contrast                 estimate     SE  df t.ratio p.value
##  treatment1 - treatment2 -0.010417 0.0214 335  -0.486  0.9886
##  treatment1 - treatment3 -0.005229 0.0214 337  -0.244  0.9992
##  treatment1 - treatment4 -0.029067 0.0214 337  -1.358  0.6550
##  treatment1 - treatment5 -0.010363 0.0214 337  -0.484  0.9888
##  treatment2 - treatment3  0.005188 0.0214 337   0.242  0.9992
##  treatment2 - treatment4 -0.018650 0.0214 335  -0.870  0.9076
##  treatment2 - treatment5  0.000054 0.0214 336   0.003  1.0000
##  treatment3 - treatment4 -0.023838 0.0214 337  -1.113  0.7995
##  treatment3 - treatment5 -0.005134 0.0214 337  -0.240  0.9993
##  treatment4 - treatment5  0.018704 0.0214 337   0.874  0.9064
## 
## count = 4:
##  contrast                 estimate     SE  df t.ratio p.value
##  treatment1 - treatment2 -0.017484 0.0214 335  -0.816  0.9256
##  treatment1 - treatment3  0.001753 0.0214 337   0.082  1.0000
##  treatment1 - treatment4 -0.017286 0.0220 359  -0.787  0.9343
##  treatment1 - treatment5  0.025185 0.0219 359   1.149  0.7803
##  treatment2 - treatment3  0.019236 0.0214 337   0.899  0.8973
##  treatment2 - treatment4  0.000198 0.0220 358   0.009  1.0000
##  treatment2 - treatment5  0.042669 0.0219 357   1.945  0.2956
##  treatment3 - treatment4 -0.019039 0.0220 359  -0.866  0.9090
##  treatment3 - treatment5  0.023432 0.0219 358   1.069  0.8225
##  treatment4 - treatment5  0.042471 0.0225 380   1.890  0.3247
## 
## count = 5:
##  contrast                 estimate     SE  df t.ratio p.value
##  treatment1 - treatment2 -0.051124 0.0214 335  -2.387  0.1215
##  treatment1 - treatment3 -0.063389 0.0226 385  -2.808  0.0416
##  treatment1 - treatment4 -0.043268 0.0220 359  -1.970  0.2830
##  treatment1 - treatment5 -0.026809 0.0214 337  -1.253  0.7204
##  treatment2 - treatment3 -0.012265 0.0226 385  -0.543  0.9827
##  treatment2 - treatment4  0.007856 0.0220 358   0.357  0.9965
##  treatment2 - treatment5  0.024315 0.0214 335   1.135  0.7878
##  treatment3 - treatment4  0.020121 0.0231 406   0.870  0.9077
##  treatment3 - treatment5  0.036580 0.0226 385   1.620  0.4853
##  treatment4 - treatment5  0.016459 0.0220 359   0.749  0.9446
## 
## count = 6:
##  contrast                 estimate     SE  df t.ratio p.value
##  treatment1 - treatment2 -0.066609 0.0214 335  -3.109  0.0173
##  treatment1 - treatment3 -0.041631 0.0214 337  -1.945  0.2958
##  treatment1 - treatment4 -0.038491 0.0226 386  -1.702  0.4341
##  treatment1 - treatment5  0.010441 0.0219 359   0.476  0.9895
##  treatment2 - treatment3  0.024977 0.0214 337   1.167  0.7703
##  treatment2 - treatment4  0.028118 0.0227 385   1.241  0.7271
##  treatment2 - treatment5  0.077050 0.0219 357   3.512  0.0045
##  treatment3 - treatment4  0.003140 0.0226 386   0.139  0.9999
##  treatment3 - treatment5  0.052072 0.0219 358   2.375  0.1246
##  treatment4 - treatment5  0.048932 0.0231 406   2.117  0.2148
## 
## count = 7:
##  contrast                 estimate     SE  df t.ratio p.value
##  treatment1 - treatment2 -0.030867 0.0214 335  -1.441  0.6016
##  treatment1 - treatment3 -0.013038 0.0214 337  -0.609  0.9736
##  treatment1 - treatment4 -0.000955 0.0214 338  -0.045  1.0000
##  treatment1 - treatment5  0.038482 0.0214 337   1.798  0.3764
##  treatment2 - treatment3  0.017829 0.0214 337   0.833  0.9203
##  treatment2 - treatment4  0.029912 0.0215 336   1.393  0.6326
##  treatment2 - treatment5  0.069349 0.0214 335   3.237  0.0115
##  treatment3 - treatment4  0.012083 0.0215 338   0.563  0.9802
##  treatment3 - treatment5  0.051520 0.0214 337   2.407  0.1160
##  treatment4 - treatment5  0.039437 0.0214 338   1.839  0.3531
## 
## count = 8:
##  contrast                 estimate     SE  df t.ratio p.value
##  treatment1 - treatment2 -0.029331 0.0214 335  -1.369  0.6480
##  treatment1 - treatment3 -0.014935 0.0214 337  -0.698  0.9569
##  treatment1 - treatment4 -0.010417 0.0214 338  -0.486  0.9886
##  treatment1 - treatment5  0.001524 0.0214 337   0.071  1.0000
##  treatment2 - treatment3  0.014396 0.0214 337   0.672  0.9622
##  treatment2 - treatment4  0.018914 0.0215 336   0.881  0.9039
##  treatment2 - treatment5  0.030855 0.0214 335   1.440  0.6020
##  treatment3 - treatment4  0.004518 0.0215 338   0.211  0.9996
##  treatment3 - treatment5  0.016459 0.0214 337   0.769  0.9394
##  treatment4 - treatment5  0.011941 0.0214 338   0.557  0.9811
## 
## count = 9:
##  contrast                 estimate     SE  df t.ratio p.value
##  treatment1 - treatment2 -0.026064 0.0214 335  -1.216  0.7418
##  treatment1 - treatment3 -0.020477 0.0214 337  -0.956  0.8743
##  treatment1 - treatment4 -0.029448 0.0214 338  -1.374  0.6447
##  treatment1 - treatment5 -0.009272 0.0214 337  -0.433  0.9927
##  treatment2 - treatment3  0.005588 0.0214 337   0.261  0.9990
##  treatment2 - treatment4 -0.003383 0.0215 336  -0.158  0.9999
##  treatment2 - treatment5  0.016793 0.0214 335   0.784  0.9352
##  treatment3 - treatment4 -0.008971 0.0215 338  -0.418  0.9936
##  treatment3 - treatment5  0.011205 0.0214 337   0.523  0.9849
##  treatment4 - treatment5  0.020176 0.0214 338   0.941  0.8808
## 
## count = 10:
##  contrast                 estimate     SE  df t.ratio p.value
##  treatment1 - treatment2 -0.033795 0.0214 335  -1.577  0.5135
##  treatment1 - treatment3 -0.016086 0.0214 337  -0.751  0.9441
##  treatment1 - treatment4 -0.030259 0.0214 337  -1.413  0.6197
##  treatment1 - treatment5 -0.000448 0.0214 337  -0.021  1.0000
##  treatment2 - treatment3  0.017708 0.0214 337   0.827  0.9221
##  treatment2 - treatment4  0.003535 0.0215 336   0.165  0.9998
##  treatment2 - treatment5  0.033346 0.0215 336   1.553  0.5288
##  treatment3 - treatment4 -0.014173 0.0215 338  -0.661  0.9646
##  treatment3 - treatment5  0.015638 0.0215 338   0.729  0.9497
##  treatment4 - treatment5  0.029811 0.0214 337   1.393  0.6327
## 
## count = 11:
##  contrast                 estimate     SE  df t.ratio p.value
##  treatment1 - treatment2 -0.024892 0.0215 336  -1.160  0.7739
##  treatment1 - treatment3 -0.013459 0.0214 337  -0.628  0.9705
##  treatment1 - treatment4 -0.030860 0.0214 337  -1.442  0.6011
##  treatment1 - treatment5  0.005115 0.0220 359   0.233  0.9993
##  treatment2 - treatment3  0.011433 0.0214 337   0.534  0.9838
##  treatment2 - treatment4 -0.005968 0.0215 336  -0.278  0.9987
##  treatment2 - treatment5  0.030008 0.0220 356   1.366  0.6496
##  treatment3 - treatment4 -0.017401 0.0215 337  -0.811  0.9273
##  treatment3 - treatment5  0.018575 0.0220 357   0.846  0.9160
##  treatment4 - treatment5  0.035975 0.0220 360   1.636  0.4751
## 
## count = 12:
##  contrast                 estimate     SE  df t.ratio p.value
##  treatment1 - treatment2 -0.040783 0.0215 336  -1.901  0.3187
##  treatment1 - treatment3 -0.029407 0.0214 337  -1.371  0.6464
##  treatment1 - treatment4 -0.029773 0.0214 337  -1.391  0.6339
##  treatment1 - treatment5 -0.025111 0.0226 386  -1.110  0.8011
##  treatment2 - treatment3  0.011376 0.0214 337   0.531  0.9841
##  treatment2 - treatment4  0.011009 0.0215 336   0.513  0.9861
##  treatment2 - treatment5  0.015672 0.0226 383   0.693  0.9579
##  treatment3 - treatment4 -0.000366 0.0215 337  -0.017  1.0000
##  treatment3 - treatment5  0.004296 0.0226 384   0.190  0.9997
##  treatment4 - treatment5  0.004663 0.0226 387   0.206  0.9996
## 
## count = 13:
##  contrast                 estimate     SE  df t.ratio p.value
##  treatment1 - treatment2 -0.032934 0.0214 335  -1.536  0.5395
##  treatment1 - treatment3 -0.028591 0.0214 336  -1.335  0.6696
##  treatment1 - treatment4 -0.021520 0.0214 337  -1.005  0.8528
##  treatment1 - treatment5 -0.021871 0.0220 359  -0.996  0.8572
##  treatment2 - treatment3  0.004343 0.0214 337   0.203  0.9996
##  treatment2 - treatment4  0.011413 0.0215 336   0.532  0.9840
##  treatment2 - treatment5  0.011063 0.0220 356   0.504  0.9870
##  treatment3 - treatment4  0.007070 0.0214 336   0.330  0.9974
##  treatment3 - treatment5  0.006719 0.0220 358   0.306  0.9981
##  treatment4 - treatment5 -0.000351 0.0220 360  -0.016  1.0000
## 
## count = 14:
##  contrast                 estimate     SE  df t.ratio p.value
##  treatment1 - treatment2 -0.027092 0.0214 335  -1.264  0.7132
##  treatment1 - treatment3 -0.024473 0.0214 336  -1.143  0.7837
##  treatment1 - treatment4 -0.019286 0.0219 359  -0.880  0.9043
##  treatment1 - treatment5 -0.014628 0.0220 359  -0.666  0.9635
##  treatment2 - treatment3  0.002619 0.0214 337   0.122  0.9999
##  treatment2 - treatment4  0.007806 0.0220 357   0.356  0.9966
##  treatment2 - treatment5  0.012464 0.0220 357   0.567  0.9797
##  treatment3 - treatment4  0.005186 0.0219 358   0.236  0.9993
##  treatment3 - treatment5  0.009845 0.0220 358   0.448  0.9916
##  treatment4 - treatment5  0.004659 0.0225 381   0.207  0.9996
## 
## count = 15:
##  contrast                 estimate     SE  df t.ratio p.value
##  treatment1 - treatment2 -0.016800 0.0214 335  -0.784  0.9351
##  treatment1 - treatment3 -0.016255 0.0214 336  -0.759  0.9420
##  treatment1 - treatment4 -0.005586 0.0214 337  -0.261  0.9990
##  treatment1 - treatment5  0.000972 0.0220 359   0.044  1.0000
##  treatment2 - treatment3  0.000545 0.0214 337   0.025  1.0000
##  treatment2 - treatment4  0.011214 0.0214 335   0.523  0.9850
##  treatment2 - treatment5  0.017772 0.0220 357   0.809  0.9279
##  treatment3 - treatment4  0.010669 0.0214 336   0.498  0.9875
##  treatment3 - treatment5  0.017227 0.0220 358   0.784  0.9350
##  treatment4 - treatment5  0.006558 0.0220 360   0.298  0.9983
## 
## count = 16:
##  contrast                 estimate     SE  df t.ratio p.value
##  treatment1 - treatment2  0.006709 0.0219 357   0.306  0.9981
##  treatment1 - treatment3 -0.012195 0.0214 336  -0.569  0.9794
##  treatment1 - treatment4  0.023793 0.0214 337   1.112  0.8004
##  treatment1 - treatment5  0.015252 0.0226 386   0.675  0.9618
##  treatment2 - treatment3 -0.018904 0.0219 359  -0.862  0.9105
##  treatment2 - treatment4  0.017084 0.0220 357   0.778  0.9368
##  treatment2 - treatment5  0.008543 0.0231 404   0.370  0.9960
##  treatment3 - treatment4  0.035988 0.0214 336   1.680  0.4480
##  treatment3 - treatment5  0.027447 0.0226 384   1.214  0.7431
##  treatment4 - treatment5 -0.008541 0.0226 386  -0.378  0.9957
## 
## count = 17:
##  contrast                 estimate     SE  df t.ratio p.value
##  treatment1 - treatment2  0.009073 0.0219 357   0.414  0.9938
##  treatment1 - treatment3 -0.010460 0.0219 358  -0.477  0.9894
##  treatment1 - treatment4  0.023486 0.0219 359   1.071  0.8212
##  treatment1 - treatment5  0.002440 0.0225 380   0.109  1.0000
##  treatment2 - treatment3 -0.019533 0.0214 337  -0.912  0.8921
##  treatment2 - treatment4  0.014413 0.0214 335   0.673  0.9621
##  treatment2 - treatment5 -0.006633 0.0220 357  -0.302  0.9982
##  treatment3 - treatment4  0.033947 0.0214 336   1.584  0.5085
##  treatment3 - treatment5  0.012900 0.0220 357   0.588  0.9769
##  treatment4 - treatment5 -0.021047 0.0220 359  -0.958  0.8735
## 
## count = 18:
##  contrast                 estimate     SE  df t.ratio p.value
##  treatment1 - treatment2  0.012553 0.0214 335   0.586  0.9771
##  treatment1 - treatment3 -0.018481 0.0215 337  -0.861  0.9109
##  treatment1 - treatment4 -0.001342 0.0214 337  -0.063  1.0000
##  treatment1 - treatment5  0.000990 0.0220 360   0.045  1.0000
##  treatment2 - treatment3 -0.031034 0.0214 337  -1.448  0.5969
##  treatment2 - treatment4 -0.013895 0.0214 335  -0.649  0.9668
##  treatment2 - treatment5 -0.011562 0.0220 357  -0.526  0.9847
##  treatment3 - treatment4  0.017139 0.0214 336   0.800  0.9305
##  treatment3 - treatment5  0.019471 0.0220 357   0.887  0.9017
##  treatment4 - treatment5  0.002332 0.0220 359   0.106  1.0000
## 
## count = 19:
##  contrast                 estimate     SE  df t.ratio p.value
##  treatment1 - treatment2  0.018916 0.0220 359   0.859  0.9116
##  treatment1 - treatment3 -0.015121 0.0215 338  -0.704  0.9556
##  treatment1 - treatment4  0.013216 0.0214 337   0.617  0.9723
##  treatment1 - treatment5  0.011195 0.0220 361   0.508  0.9865
##  treatment2 - treatment3 -0.034037 0.0219 359  -1.552  0.5292
##  treatment2 - treatment4 -0.005700 0.0220 358  -0.259  0.9990
##  treatment2 - treatment5 -0.007721 0.0225 377  -0.344  0.9970
##  treatment3 - treatment4  0.028337 0.0214 337   1.322  0.6780
##  treatment3 - treatment5  0.026316 0.0220 357   1.199  0.7522
##  treatment4 - treatment5 -0.002021 0.0220 360  -0.092  1.0000
## 
## count = 20:
##  contrast                 estimate     SE  df t.ratio p.value
##  treatment1 - treatment2  0.017866 0.0221 360   0.810  0.9275
##  treatment1 - treatment3 -0.025655 0.0220 359  -1.166  0.7708
##  treatment1 - treatment4 -0.020472 0.0219 359  -0.933  0.8840
##  treatment1 - treatment5 -0.026802 0.0227 388  -1.180  0.7629
##  treatment2 - treatment3 -0.043520 0.0224 380  -1.939  0.2984
##  treatment2 - treatment4 -0.038338 0.0225 379  -1.705  0.4321
##  treatment2 - treatment5 -0.044667 0.0231 403  -1.933  0.3016
##  treatment3 - treatment4  0.005183 0.0225 379   0.231  0.9994
##  treatment3 - treatment5 -0.001147 0.0231 404  -0.050  1.0000
##  treatment4 - treatment5 -0.006329 0.0231 407  -0.274  0.9988
## 
## count = 21:
##  contrast                 estimate     SE  df t.ratio p.value
##  treatment1 - treatment2 -0.010544 0.0256 500  -0.412  0.9940
##  treatment1 - treatment3 -0.041570 0.0263 525  -1.578  0.5122
##  treatment1 - treatment4 -0.027332 0.0288 601  -0.948  0.8777
##  treatment1 - treatment5  0.000484 0.0256 502   0.019  1.0000
##  treatment2 - treatment3 -0.031025 0.0245 462  -1.267  0.7119
##  treatment2 - treatment4 -0.016788 0.0273 554  -0.616  0.9726
##  treatment2 - treatment5  0.011029 0.0237 428   0.465  0.9904
##  treatment3 - treatment4  0.014238 0.0279 574   0.510  0.9864
##  treatment3 - treatment5  0.042054 0.0245 460   1.715  0.4258
##  treatment4 - treatment5  0.027816 0.0273 556   1.020  0.8463
## 
## count = 22:
##  contrast                 estimate     SE  df t.ratio p.value
##  treatment1 - treatment2 -0.034986 0.0311 650  -1.125  0.7931
##  treatment1 - treatment3 -0.025715 0.0273 558  -0.940  0.8810
##  treatment1 - treatment4 -0.032412 0.0352 715  -0.922  0.8885
##  treatment1 - treatment5 -0.000177 0.0274 559  -0.006  1.0000
##  treatment2 - treatment3  0.009272 0.0310 652   0.299  0.9983
##  treatment2 - treatment4  0.002574 0.0382 743   0.067  1.0000
##  treatment2 - treatment5  0.034810 0.0311 649   1.120  0.7958
##  treatment3 - treatment4 -0.006698 0.0352 716  -0.190  0.9997
##  treatment3 - treatment5  0.025538 0.0274 557   0.934  0.8837
##  treatment4 - treatment5  0.032236 0.0352 717   0.915  0.8910
## 
## count = 23:
##  contrast                 estimate     SE  df t.ratio p.value
##  treatment1 - treatment2 -0.062475 0.0452 773  -1.382  0.6395
##  treatment1 - treatment3 -0.023251 0.0289 599  -0.806  0.9289
##  treatment1 - treatment4 -0.037539 0.0352 714  -1.068  0.8230
##  treatment1 - treatment5 -0.001722 0.0311 651  -0.055  1.0000
##  treatment2 - treatment3  0.039224 0.0462 774   0.849  0.9150
##  treatment2 - treatment4  0.024936 0.0503 780   0.496  0.9878
##  treatment2 - treatment5  0.060753 0.0476 776   1.276  0.7059
##  treatment3 - treatment4 -0.014288 0.0363 729  -0.393  0.9950
##  treatment3 - treatment5  0.021529 0.0323 674   0.666  0.9636
##  treatment4 - treatment5  0.035817 0.0381 743   0.939  0.8816
## 
## count = 24:
##  contrast                 estimate     SE  df t.ratio p.value
##  treatment1 - treatment2 -0.038225 0.0503 780  -0.759  0.9421
##  treatment1 - treatment3 -0.041533 0.0381 741  -1.091  0.8110
##  treatment1 - treatment4 -0.004232 0.0503 781  -0.084  1.0000
##  treatment1 - treatment5    nonEst     NA  NA      NA      NA
##  treatment2 - treatment3 -0.003308 0.0476 777  -0.069  1.0000
##  treatment2 - treatment4  0.033993 0.0578 782   0.588  0.9768
##  treatment2 - treatment5    nonEst     NA  NA      NA      NA
##  treatment3 - treatment4  0.037301 0.0476 778   0.784  0.9353
##  treatment3 - treatment5    nonEst     NA  NA      NA      NA
##  treatment4 - treatment5    nonEst     NA  NA      NA      NA
## 
## count = 25:
##  contrast                 estimate     SE  df t.ratio p.value
##  treatment1 - treatment2    nonEst     NA  NA      NA      NA
##  treatment1 - treatment3    nonEst     NA  NA      NA      NA
##  treatment1 - treatment4 -0.015528 0.0503 781  -0.309  0.9980
##  treatment1 - treatment5    nonEst     NA  NA      NA      NA
##  treatment2 - treatment3    nonEst     NA  NA      NA      NA
##  treatment2 - treatment4    nonEst     NA  NA      NA      NA
##  treatment2 - treatment5    nonEst     NA  NA      NA      NA
##  treatment3 - treatment4    nonEst     NA  NA      NA      NA
##  treatment3 - treatment5  0.027216 0.0577 782   0.471  0.9899
##  treatment4 - treatment5    nonEst     NA  NA      NA      NA
## 
## count = 26:
##  contrast                 estimate     SE  df t.ratio p.value
##  treatment1 - treatment2    nonEst     NA  NA      NA      NA
##  treatment1 - treatment3    nonEst     NA  NA      NA      NA
##  treatment1 - treatment4 -0.010258 0.0503 781  -0.204  0.9996
##  treatment1 - treatment5    nonEst     NA  NA      NA      NA
##  treatment2 - treatment3    nonEst     NA  NA      NA      NA
##  treatment2 - treatment4    nonEst     NA  NA      NA      NA
##  treatment2 - treatment5    nonEst     NA  NA      NA      NA
##  treatment3 - treatment4    nonEst     NA  NA      NA      NA
##  treatment3 - treatment5  0.013930 0.0577 782   0.241  0.9993
##  treatment4 - treatment5    nonEst     NA  NA      NA      NA
## 
## count = 27:
##  contrast                 estimate     SE  df t.ratio p.value
##  treatment1 - treatment2    nonEst     NA  NA      NA      NA
##  treatment1 - treatment3    nonEst     NA  NA      NA      NA
##  treatment1 - treatment4 -0.029445 0.0503 781  -0.585  0.9773
##  treatment1 - treatment5    nonEst     NA  NA      NA      NA
##  treatment2 - treatment3    nonEst     NA  NA      NA      NA
##  treatment2 - treatment4    nonEst     NA  NA      NA      NA
##  treatment2 - treatment5    nonEst     NA  NA      NA      NA
##  treatment3 - treatment4    nonEst     NA  NA      NA      NA
##  treatment3 - treatment5 -0.006544 0.0577 782  -0.113  1.0000
##  treatment4 - treatment5    nonEst     NA  NA      NA      NA
## 
## count = 28:
##  contrast                 estimate     SE  df t.ratio p.value
##  treatment1 - treatment2    nonEst     NA  NA      NA      NA
##  treatment1 - treatment3    nonEst     NA  NA      NA      NA
##  treatment1 - treatment4    nonEst     NA  NA      NA      NA
##  treatment1 - treatment5    nonEst     NA  NA      NA      NA
##  treatment2 - treatment3    nonEst     NA  NA      NA      NA
##  treatment2 - treatment4    nonEst     NA  NA      NA      NA
##  treatment2 - treatment5    nonEst     NA  NA      NA      NA
##  treatment3 - treatment4    nonEst     NA  NA      NA      NA
##  treatment3 - treatment5 -0.068031 0.0577 782  -1.178  0.7639
##  treatment4 - treatment5    nonEst     NA  NA      NA      NA
## 
## count = 29:
##  contrast                 estimate     SE  df t.ratio p.value
##  treatment1 - treatment2    nonEst     NA  NA      NA      NA
##  treatment1 - treatment3    nonEst     NA  NA      NA      NA
##  treatment1 - treatment4    nonEst     NA  NA      NA      NA
##  treatment1 - treatment5    nonEst     NA  NA      NA      NA
##  treatment2 - treatment3    nonEst     NA  NA      NA      NA
##  treatment2 - treatment4    nonEst     NA  NA      NA      NA
##  treatment2 - treatment5    nonEst     NA  NA      NA      NA
##  treatment3 - treatment4    nonEst     NA  NA      NA      NA
##  treatment3 - treatment5    nonEst     NA  NA      NA      NA
##  treatment4 - treatment5    nonEst     NA  NA      NA      NA
## 
## Results are averaged over the levels of: qro 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 5 estimates
pollen.23 <- pollen
pollen.23$count <- as.numeric(pollen.23$count)
pollen.23$count[pollen.23$count > 23] <- NA
pollen.23 <- na.omit(pollen.23)
pbox23 <- lmer(boxp ~ treatment*count + bees_alive + qro + (1|colony), data = pollen.23)
summary(pbox23)
## Linear mixed model fit by REML ['lmerMod']
## Formula: boxp ~ treatment * count + bees_alive + qro + (1 | colony)
##    Data: pollen.23
## 
## REML criterion at convergence: -2700.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6386 -0.5948  0.0053  0.6661  3.0182 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  colony   (Intercept) 0.0008879 0.02980 
##  Residual             0.0022881 0.04783 
## Number of obs: 899, groups:  colony, 45
## 
## Fixed effects:
##                    Estimate Std. Error t value
## (Intercept)       0.0481502  0.0236665   2.035
## treatment2        0.0252273  0.0174011   1.450
## treatment3        0.0113131  0.0173691   0.651
## treatment4        0.0230963  0.0175609   1.315
## treatment5       -0.0064841  0.0174243  -0.372
## count             0.0049266  0.0005937   8.298
## bees_alive        0.0177971  0.0037613   4.732
## qroB3             0.0118085  0.0157069   0.752
## qroB4             0.0432846  0.0157050   2.756
## qroB5             0.0061097  0.0118627   0.515
## treatment2:count -0.0009100  0.0008383  -1.086
## treatment3:count  0.0005135  0.0008169   0.629
## treatment4:count -0.0004722  0.0008547  -0.552
## treatment5:count  0.0004174  0.0008456   0.494
Anova(pbox23)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: boxp
##                    Chisq Df Pr(>Chisq)    
## treatment         3.5245  4    0.47417    
## count           298.8416  1  < 2.2e-16 ***
## bees_alive       22.3884  1  2.227e-06 ***
## qro               7.7190  3    0.05219 .  
## treatment:count   3.9870  4    0.40777    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
drop1(pbox23, test = "Chisq")
## Single term deletions
## 
## Model:
## boxp ~ treatment * count + bees_alive + qro + (1 | colony)
##                 npar     AIC     LRT   Pr(Chi)    
## <none>               -2800.3                      
## bees_alive         1 -2779.1 23.1751 1.479e-06 ***
## qro                3 -2797.7  8.5911   0.03525 *  
## treatment:count    4 -2804.3  3.9753   0.40936    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
qqnorm(resid(pbox23));qqline(resid(pbox23))

boxemm23 <- emmeans(pbox23, pairwise ~ treatment | count)
pairs(boxemm23)
## count = 10.8:
##  contrast                estimate     SE   df t.ratio p.value
##  treatment1 - treatment2 -0.01539 0.0149 36.6  -1.031  0.8394
##  treatment1 - treatment3 -0.01687 0.0149 36.5  -1.131  0.7893
##  treatment1 - treatment4 -0.01799 0.0149 36.7  -1.204  0.7489
##  treatment1 - treatment5  0.00197 0.0150 37.1   0.132  0.9999
##  treatment2 - treatment3 -0.00148 0.0149 36.5  -0.099  1.0000
##  treatment2 - treatment4 -0.00260 0.0150 37.2  -0.174  0.9998
##  treatment2 - treatment5  0.01736 0.0150 37.1   1.159  0.7742
##  treatment3 - treatment4 -0.00112 0.0150 37.1  -0.075  1.0000
##  treatment3 - treatment5  0.01884 0.0150 36.9   1.259  0.7173
##  treatment4 - treatment5  0.01996 0.0150 37.7   1.326  0.6769
## 
## Results are averaged over the levels of: qro 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 5 estimates
plot(pollen.23$treatment, pollen.23$difference)

pbox23
## Linear mixed model fit by REML ['lmerMod']
## Formula: boxp ~ treatment * count + bees_alive + qro + (1 | colony)
##    Data: pollen.23
## REML criterion at convergence: -2700.594
## Random effects:
##  Groups   Name        Std.Dev.
##  colony   (Intercept) 0.02980 
##  Residual             0.04783 
## Number of obs: 899, groups:  colony, 45
## Fixed Effects:
##      (Intercept)        treatment2        treatment3        treatment4  
##        0.0481502         0.0252273         0.0113131         0.0230963  
##       treatment5             count        bees_alive             qroB3  
##       -0.0064841         0.0049266         0.0177971         0.0118085  
##            qroB4             qroB5  treatment2:count  treatment3:count  
##        0.0432846         0.0061097        -0.0009100         0.0005135  
## treatment4:count  treatment5:count  
##       -0.0004722         0.0004174
Anova(pbox23)
## Analysis of Deviance Table (Type II Wald chisquare tests)
## 
## Response: boxp
##                    Chisq Df Pr(>Chisq)    
## treatment         3.5245  4    0.47417    
## count           298.8416  1  < 2.2e-16 ***
## bees_alive       22.3884  1  2.227e-06 ***
## qro               7.7190  3    0.05219 .  
## treatment:count   3.9870  4    0.40777    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
AP <- as.data.frame(Anova(pbox23))
AP <- setDT(AP)
AP
##         Chisq Df   Pr(>Chisq)
## 1:   3.524457  4 4.741694e-01
## 2: 298.841575  1 5.890535e-67
## 3:  22.388414  1 2.227135e-06
## 4:   7.719021  3 5.219004e-02
## 5:   3.986981  4 4.077706e-01
boxemm23 <- emmeans(pbox23, pairwise ~ treatment | count)
contrasts <- as.data.frame(boxemm23$contrasts)
contrasts <- setDT(contrasts)
contrasts
##                    contrast    count     estimate         SE       df
##  1: treatment1 - treatment2 10.81424 -0.015386314 0.01492451 36.58570
##  2: treatment1 - treatment3 10.81424 -0.016866250 0.01491680 36.49837
##  3: treatment1 - treatment4 10.81424 -0.017990014 0.01493835 36.72634
##  4: treatment1 - treatment5 10.81424  0.001970676 0.01498076 37.07984
##  5: treatment2 - treatment3 10.81424 -0.001479936 0.01491770 36.52727
##  6: treatment2 - treatment4 10.81424 -0.002603700 0.01498600 37.16638
##  7: treatment2 - treatment5 10.81424  0.017356991 0.01497868 37.07001
##  8: treatment3 - treatment4 10.81424 -0.001123764 0.01498373 37.12251
##  9: treatment3 - treatment5 10.81424  0.018836927 0.01496315 36.91658
## 10: treatment4 - treatment5 10.81424  0.019960690 0.01504995 37.73923
##         t.ratio   p.value
##  1: -1.03094267 0.8393966
##  2: -1.13068849 0.7893457
##  3: -1.20428366 0.7488980
##  4:  0.13154716 0.9999291
##  5: -0.09920673 0.9999770
##  6: -0.17374219 0.9997858
##  7:  1.15878010 0.7742313
##  8: -0.07499891 0.9999925
##  9:  1.25888811 0.7173207
## 10:  1.32629648 0.6768786
means <- as.data.table(boxemm23$emmeans)
means <- setDT(means)
means
##    treatment    count    emmean         SE       df  lower.CL  upper.CL
## 1:         1 10.81424 0.2018139 0.01109395 36.64247 0.1793281 0.2242998
## 2:         2 10.81424 0.2172003 0.01110005 36.75772 0.1947044 0.2396961
## 3:         3 10.81424 0.2186802 0.01108772 36.59944 0.1962060 0.2411543
## 4:         4 10.81424 0.2198040 0.01117219 37.62447 0.1971796 0.2424283
## 5:         5 10.81424 0.1998433 0.01120031 37.94587 0.1771684 0.2225182
range(pollen$dose_consumed)
## [1]  -6634.948 150000.000
pollen.dose <- pollen
pollen.dose$dose_consumed[pollen.dose$dose_consumed < 0] <- NA
pollen.dose <- na.omit(pollen.dose)

range(pollen.dose$dose_consumed)
## [1]      0 150000
ggplot(pollen.dose, aes(x=dose_consumed, fill = treatment)) +
  geom_histogram(position = "identity", binwidth =5000, col=I("black")) +
  scale_fill_manual(values = c("peachpuff3", "darkseagreen", "lightseagreen", "darkolivegreen3", "darkolivegreen4"),
                    name = "Pristine Level",
                    labels = c("Treatment 1 (control)", "Treatment 2", 
                               "Treatment 3", "Treatment 4", "Treatment 5"))

dose.sum <- pollen.dose %>%
  group_by(treatment) %>%
  summarise(m = mean(dose_consumed), 
           sd = sd(dose_consumed),
           n = length(dose_consumed)) %>%
  mutate(se = sd/sqrt(n))
dose.sum
## # A tibble: 5 × 5
##   treatment       m      sd     n      se
##   <fct>       <dbl>   <dbl> <int>   <dbl>
## 1 1             0       0     195    0   
## 2 2            46.3    39.3   176    2.96
## 3 3           513.    439.    187   32.1 
## 4 4          5468.   4707.    178  353.  
## 5 5         47366.  41410.    170 3176.
LS0tDQp0aXRsZTogIkVmZmVjdCBvZiBQcmlzdGluZSBvbiBCdW1ibGUgQmVlIE1pY3JvY29sb25pZXMgLSBQb2xsZW4gQ29uc3VtcHRpb24iDQphdXRob3I6ICJFbWlseSBSdW5uaW9uIg0KZGF0ZTogIkRhdGEgQ29sbGVjdGVkIDIwMjIiDQpvdXRwdXQ6DQogIGh0bWxfZG9jdW1lbnQ6DQogICAgdG9jOiB0cnVlDQogICAgdG9jX2RlcHRoOiA0DQogICAgbnVtYmVyX3NlY3Rpb25zOiBmYWxzZQ0KICAgIHRvY19mbG9hdDogdHJ1ZQ0KICAgIHRoZW1lOiBqb3VybmFsDQogICAgY29kZV9kb3dubG9hZDogdHJ1ZQ0KLS0tDQoNCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQ0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KG1lc3NhZ2UgPSBGQUxTRSkNCmBgYA0KDQpgYGB7ciBsb2FkIGxpYnJhcmllcywgaW5jbHVkZT1GQUxTRX0NCmxpYnJhcnkocmVhZHIpDQpsaWJyYXJ5KGthYmxlRXh0cmEpDQpsaWJyYXJ5KHN0YXRzKQ0KbGlicmFyeShnZ3Bsb3QyKQ0KbGlicmFyeShjYXIpDQpsaWJyYXJ5KGVtbWVhbnMpDQpsaWJyYXJ5KE1BU1MpDQpsaWJyYXJ5KGxtZTQpDQpsaWJyYXJ5KGJsbWVjbykNCmxpYnJhcnkodGlkeXZlcnNlKQ0KbGlicmFyeShkcGx5cikNCmxpYnJhcnkoY293cGxvdCkNCmxpYnJhcnkoYmVzdE5vcm1hbGl6ZSkNCmxpYnJhcnkocGxvdGx5KQ0KbGlicmFyeShhZ3JpY29sYWUpIA0KbGlicmFyeShnZ3B1YnIpDQpsaWJyYXJ5KGdsdWUpDQpsaWJyYXJ5KG11bHRjb21wKQ0KbGlicmFyeShtdWx0Y29tcFZpZXcpDQpsaWJyYXJ5KGdsbW1UTUIpDQpsaWJyYXJ5KHJzdGF0aXgpDQpsaWJyYXJ5KGZpdGRpc3RycGx1cykNCmxpYnJhcnkobG9nc3BsaW5lKQ0KbGlicmFyeShvbHNycikNCmxpYnJhcnkoR0dhbGx5KQ0KbGlicmFyeShkYXRhLnRhYmxlKQ0KYGBgDQoNCg0KIyMjIElucHV0IHJlbGV2ZW50IGRhdGEgZmlsZXMgDQoNCmBgYHtyfQ0KIyMjIEZpZ3VyZSBvdXQgYXZlcmFnZSBwb2xsZW4gY29uc3VtcHRpb24gYnkgdHJlYXRtZW50IA0KDQoNCnBvbGxlbiA8LSByZWFkX2NzdigicG9sbGVuMS5jc3YiLCBjb2xfdHlwZXMgPSBjb2xzKHJvdW5kID0gY29sX2ZhY3RvcihsZXZlbHMgPSBjKCIxIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiMiIpKSwgdHJlYXRtZW50ID0gY29sX2ZhY3RvcihsZXZlbHMgPSBjKCIxIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICIyIiwgIjMiLCAiNCIsICI1IikpLCByZXBsaWNhdGUgPSBjb2xfZmFjdG9yKGxldmVscyA9IGMoIjEiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiMiIsICIzIiwgIjQiLCAiNSIsICI2IiwgIjciLCAiOSIsICIxMSIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICIxMiIpKSwgc3RhcnRfZGF0ZSA9IGNvbF9kYXRlKGZvcm1hdCA9ICIlbS8lZC8lWSIpLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHN0YXJ0X3RpbWUgPSBjb2xfY2hhcmFjdGVyKCksIGVuZF9kYXRlID0gY29sX2RhdGUoZm9ybWF0ID0gIiVtLyVkLyVZIiksIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZW5kX3RpbWUgPSBjb2xfY2hhcmFjdGVyKCkpKQ0KDQoNCnBvbGxlbiRjb2xvbnkgPC0gYXMuZmFjdG9yKHBvbGxlbiRjb2xvbnkpDQpwb2xsZW4kcGlkIDwtIGFzLmZhY3Rvcihwb2xsZW4kcGlkKQ0KcG9sbGVuJGNvdW50IDwtIGFzLmZhY3Rvcihwb2xsZW4kY291bnQpDQoNCnBvbGxlbiA8LSBzdWJzZXQocG9sbGVuLCBwb2xsZW4kcm91bmQgIT0gMSkNCg0KcG9sbGVuIDwtIG5hLm9taXQocG9sbGVuKQ0KDQpyYW5nZShwb2xsZW4kZGlmZmVyZW5jZSkNCg0KIyBnZXQgcmlkIG9mIG5lZ2F0aXZlIG51bWJlcnMNCnBvbGxlbiRkaWZmZXJlbmNlW3BvbGxlbiRkaWZmZXJlbmNlIDwgMF0gPC0gTkENCnBvbGxlbiA8LSBuYS5vbWl0KHBvbGxlbikNCnJhbmdlKHBvbGxlbiRkaWZmZXJlbmNlKQ0KDQoNCiMgYWRkIHF1ZWVucmlnaHQgb3JpZ2luYWwgY29sb255IGNvbHVtbiANCnFybyA8LSByZWFkX2NzdigicXJvLmNzdiIpDQpxcm8kY29sb255IDwtIGFzLmZhY3Rvcihxcm8kY29sb255KQ0KcXJvJHFybyA8LSBhcy5mYWN0b3IocXJvJHFybykNCg0KcG9sbGVuIDwtIG1lcmdlKHBvbGxlbiwgcXJvLCBieS54ID0gImNvbG9ueSIpDQoNCnBvbGxlbiRwaWQgPC0gYXMuZmFjdG9yKHBvbGxlbiRwaWQpDQpwb2xsZW4kZG9zZV9jb25zdW1lZCA8LSBhcy5udW1lcmljKHBvbGxlbiRkb3NlX2NvbnN1bWVkKQ0KDQpgYGANCg0KIyMjIEF2ZXJhZ2UgcG9sbGVuIGNvbnN1bXB0aW9uIHBlciBjb2xvbnkgZGF0YSBpbnB1dA0KDQpgYGB7cn0NCnBvbGxlbiR3aG9sZV9kaWYgPC0gYXMubnVtZXJpYyhwb2xsZW4kZGlmZmVyZW5jZSkNCndkLjEgPC0gbG0oZGlmZmVyZW5jZSB+IHRyZWF0bWVudCwgZGF0YSA9IHBvbGxlbikNCnN1bW1hcnkod2QuMSkNCndkLmVtbSA8LSBlbW1lYW5zKHdkLjEsICJ0cmVhdG1lbnQiKQ0Kc3VtbWFyeSh3ZC5lbW0pDQoNCndkLnN1bW1hcnkgPC0gcG9sbGVuICU+JSANCiAgZ3JvdXBfYnkoY29sb255KSAlPiUNCiAgc3VtbWFyaXplKHdob2xlLm1lYW4gPSBtZWFuKGRpZmZlcmVuY2UpLA0KICAgICAgICAgICAgbWVhbi5kb3NlID0gbWVhbihkb3NlX2NvbnN1bWVkKSkNCg0KYXMuZGF0YS5mcmFtZSh3ZC5zdW1tYXJ5KSAgIyB0aGlzIGlzIHRoZSBkYXRhIGZyYW1lIEkgd2lsbCBtZXJnZSB3aXRoIHN1YnNlcXVlbnQgZGF0YSBmcmFtZXMgdG8gY29udGFpbiBhdmVyYWdlIHBvbGxlbiBjb25zdW1wdGlvbiBwZXIgY29sb255IGFzIGEgbmV3IGNvbHVtbiAgDQoNCmBgYA0KDQojIyMgV29ya2VyIE1vcnRhbGl0eSBkYXRhIGlucHV0IA0KDQpgYGB7cn0NCm1vcnRhbGl0eSAgPC0gcmVhZF9jc3YoInN1cnZpdmluZyB3b3JrZXJzIHBlciBjb2xvbnkuY3N2IikNCg0KbW9ydGFsaXR5JGNvbG9ueSA8LSBhcy5mYWN0b3IobW9ydGFsaXR5JGNvbG9ueSkNCmBgYA0KDQpgYGB7ciBpbnB1dCBicm9vZCBkYXRhfQ0KYnJvb2QgPC0gcmVhZF9jc3YoImJyb29kLmNzdiIsIGNvbF90eXBlcyA9IGNvbHMocm91bmQgPSBjb2xfZmFjdG9yKGxldmVscyA9IGMoIjEiLCANCiAgICAiMiIpKSwgdHJlYXRtZW50ID0gY29sX2ZhY3RvcihsZXZlbHMgPSBjKCIxIiwgDQogICAgIjIiLCAiMyIsICI0IiwgIjUiKSksIHJlcGxpY2F0ZSA9IGNvbF9mYWN0b3IobGV2ZWxzID0gYygiMSIsIA0KICAgICIyIiwgIjMiLCAiNCIsICI1IiwgIjciLCAiOSIsICIxMSIsICIxMiIpKSkpDQoNCmJyb29kJGNvbG9ueSA8LSBhcy5mYWN0b3IoYnJvb2QkY29sb255KQ0KDQpicm9vZCA8LSBzdWJzZXQoYnJvb2QsIGJyb29kJHJvdW5kICE9IDEpDQoNCmJyb29kIDwtIG1lcmdlKHdkLnN1bW1hcnksIGJyb29kLCBieS54ID0gImNvbG9ueSIpDQoNCmJyb29kIDwtIG1lcmdlKGJyb29kLCBtb3J0YWxpdHksIGJ5LnggPSAiY29sb255IikNCg0KYnJvb2QkcXJvIDwtIGFzLmZhY3Rvcihicm9vZCRxcm8pDQoNCmBgYA0KDQoNCiMjIyBEYXRhIEFuYWx5c2lzIA0KDQpgYGB7cn0NCmdncGxvdChwb2xsZW4sIGFlcyh4PWRpZmZlcmVuY2UsIGZpbGwgPSB0cmVhdG1lbnQpKSArDQogIGdlb21faGlzdG9ncmFtKHBvc2l0aW9uID0gImlkZW50aXR5IiwgYmlud2lkdGggPSAwLjA1LGNvbD1JKCJibGFjayIpKSArDQogIHNjYWxlX2ZpbGxfbWFudWFsKHZhbHVlcyA9IGMoInBlYWNocHVmZjMiLCAiZGFya3NlYWdyZWVuIiwgImxpZ2h0c2VhZ3JlZW4iLCAiZGFya29saXZlZ3JlZW4zIiwgImRhcmtvbGl2ZWdyZWVuNCIpLA0KICAgICAgICAgICAgICAgICAgICBuYW1lID0gIlByaXN0aW5lIExldmVsIiwNCiAgICAgICAgICAgICAgICAgICAgbGFiZWxzID0gYygiVHJlYXRtZW50IDEgKGNvbnRyb2wpIiwgIlRyZWF0bWVudCAyIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIlRyZWF0bWVudCAzIiwgIlRyZWF0bWVudCA0IiwgIlRyZWF0bWVudCA1IikpICsNCiAgZ2d0aXRsZSgiUG9sbGVuIENvbnN1bXB0aW9uIChnKSIpICsNCiAgbGFicyh5ID0gIk51bWJlciBvZiBQb2xsZW4gQmFsbHMiLCB4ID0gIlBvbGxlbiBDb25zdW1lZCAoZykiKSArDQogIGZhY2V0X3dyYXAodmFycyh0cmVhdG1lbnQpKSArDQogIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbiA9ICJub25lIikNCmBgYA0KDQpgYGB7cn0NCnNoYXBpcm8udGVzdChwb2xsZW4kZGlmZmVyZW5jZSkNCg0KcG9sbGVuJGJveHAgPC0gYmNQb3dlcihwb2xsZW4kZGlmZmVyZW5jZSwgLTMsIGdhbW1hPTEpDQoNCnNoYXBpcm8udGVzdChwb2xsZW4kYm94cCkNCg0KZ2dwbG90KHBvbGxlbiwgYWVzKHg9Ym94cCwgZmlsbCA9IHRyZWF0bWVudCkpICsNCiAgZ2VvbV9oaXN0b2dyYW0ocG9zaXRpb24gPSAiaWRlbnRpdHkiLCBiaW53aWR0aCA9IDAuMDA5LGNvbD1JKCJibGFjayIpKSArDQogIHNjYWxlX2ZpbGxfbWFudWFsKHZhbHVlcyA9IGMoInBlYWNocHVmZjMiLCAiZGFya3NlYWdyZWVuIiwgImxpZ2h0c2VhZ3JlZW4iLCAiZGFya29saXZlZ3JlZW4zIiwgImRhcmtvbGl2ZWdyZWVuNCIpLA0KICAgICAgICAgICAgICAgICAgICBuYW1lID0gIlByaXN0aW5lIExldmVsIiwNCiAgICAgICAgICAgICAgICAgICAgbGFiZWxzID0gYygiVHJlYXRtZW50IDEgKGNvbnRyb2wpIiwgIlRyZWF0bWVudCAyIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIlRyZWF0bWVudCAzIiwgIlRyZWF0bWVudCA0IiwgIlRyZWF0bWVudCA1IikpICsNCiAgZ2d0aXRsZSgiUG9sbGVuIENvbnN1bXB0aW9uIChnKSAtIEJveENveCBUcmFuc2Zvcm1lZCIpICsNCiAgbGFicyh5ID0gIk51bWJlciBvZiBQb2xsZW4gQmFsbHMiLCB4ID0gIlBvbGxlbiBDb25zdW1lZCAoZyksIEJveENveCBwb3dlciB0cmFuc2Zvcm1hdGlvbiIpDQoNCmBgYA0KDQoNCg0KYGBge3J9DQpwYm94IDwtIGxtZXIoYm94cCB+IHRyZWF0bWVudCpjb3VudCArIGJlZXNfYWxpdmUgICsgcXJvICsgc3RhcnRfZGF0ZSArICgxfGNvbG9ueSksIGRhdGEgPSBwb2xsZW4pDQpzdW1tYXJ5KHBib3gpDQoNCmBgYA0KDQoNCmBgYHtyfQ0KZnJlcSA8LSB0YWJsZShwb2xsZW4kY29sb255KQ0KZnJlcQ0KDQpgYGANCg0KDQoNCmBgYHtyfQ0KZHJvcDEocGJveCwgdGVzdCA9ICJDaGlzcSIpDQpgYGANCg0KDQpgYGB7cn0NCnBsb3QocGJveCkNCnFxbm9ybShyZXNpZChwYm94KSk7cXFsaW5lKHJlc2lkKHBib3gpKSANCmBgYA0KDQpgYGB7cn0NCmJveGVtbSA8LSBlbW1lYW5zKHBib3gsIHBhaXJ3aXNlIH4gdHJlYXRtZW50IHwgY291bnQpDQpwYWlycyhib3hlbW0pDQpgYGANCg0KDQpgYGB7cn0NCnBvbGxlbi4yMyA8LSBwb2xsZW4NCnBvbGxlbi4yMyRjb3VudCA8LSBhcy5udW1lcmljKHBvbGxlbi4yMyRjb3VudCkNCnBvbGxlbi4yMyRjb3VudFtwb2xsZW4uMjMkY291bnQgPiAyM10gPC0gTkENCnBvbGxlbi4yMyA8LSBuYS5vbWl0KHBvbGxlbi4yMykNCg0KYGBgDQoNCg0KDQpgYGB7cn0NCnBib3gyMyA8LSBsbWVyKGJveHAgfiB0cmVhdG1lbnQqY291bnQgKyBiZWVzX2FsaXZlICsgcXJvICsgKDF8Y29sb255KSwgZGF0YSA9IHBvbGxlbi4yMykNCnN1bW1hcnkocGJveDIzKQ0KDQpBbm92YShwYm94MjMpDQoNCmRyb3AxKHBib3gyMywgdGVzdCA9ICJDaGlzcSIpDQoNCnFxbm9ybShyZXNpZChwYm94MjMpKTtxcWxpbmUocmVzaWQocGJveDIzKSkNCg0KYm94ZW1tMjMgPC0gZW1tZWFucyhwYm94MjMsIHBhaXJ3aXNlIH4gdHJlYXRtZW50IHwgY291bnQpDQpwYWlycyhib3hlbW0yMykNCmBgYA0KDQpgYGB7cn0NCnBsb3QocG9sbGVuLjIzJHRyZWF0bWVudCwgcG9sbGVuLjIzJGRpZmZlcmVuY2UpDQpgYGANCg0KYGBge3J9DQpwYm94MjMNCkFub3ZhKHBib3gyMykNCkFQIDwtIGFzLmRhdGEuZnJhbWUoQW5vdmEocGJveDIzKSkNCkFQIDwtIHNldERUKEFQKQ0KQVANCg0KYm94ZW1tMjMgPC0gZW1tZWFucyhwYm94MjMsIHBhaXJ3aXNlIH4gdHJlYXRtZW50IHwgY291bnQpDQpjb250cmFzdHMgPC0gYXMuZGF0YS5mcmFtZShib3hlbW0yMyRjb250cmFzdHMpDQpjb250cmFzdHMgPC0gc2V0RFQoY29udHJhc3RzKQ0KY29udHJhc3RzDQoNCg0KbWVhbnMgPC0gYXMuZGF0YS50YWJsZShib3hlbW0yMyRlbW1lYW5zKQ0KbWVhbnMgPC0gc2V0RFQobWVhbnMpDQptZWFucw0KYGBgDQoNCg0KDQoNCmBgYHtyfQ0KcmFuZ2UocG9sbGVuJGRvc2VfY29uc3VtZWQpDQpgYGANCg0KDQpgYGB7cn0NCnBvbGxlbi5kb3NlIDwtIHBvbGxlbg0KcG9sbGVuLmRvc2UkZG9zZV9jb25zdW1lZFtwb2xsZW4uZG9zZSRkb3NlX2NvbnN1bWVkIDwgMF0gPC0gTkENCnBvbGxlbi5kb3NlIDwtIG5hLm9taXQocG9sbGVuLmRvc2UpDQoNCnJhbmdlKHBvbGxlbi5kb3NlJGRvc2VfY29uc3VtZWQpDQoNCmdncGxvdChwb2xsZW4uZG9zZSwgYWVzKHg9ZG9zZV9jb25zdW1lZCwgZmlsbCA9IHRyZWF0bWVudCkpICsNCiAgZ2VvbV9oaXN0b2dyYW0ocG9zaXRpb24gPSAiaWRlbnRpdHkiLCBiaW53aWR0aCA9NTAwMCwgY29sPUkoImJsYWNrIikpICsNCiAgc2NhbGVfZmlsbF9tYW51YWwodmFsdWVzID0gYygicGVhY2hwdWZmMyIsICJkYXJrc2VhZ3JlZW4iLCAibGlnaHRzZWFncmVlbiIsICJkYXJrb2xpdmVncmVlbjMiLCAiZGFya29saXZlZ3JlZW40IiksDQogICAgICAgICAgICAgICAgICAgIG5hbWUgPSAiUHJpc3RpbmUgTGV2ZWwiLA0KICAgICAgICAgICAgICAgICAgICBsYWJlbHMgPSBjKCJUcmVhdG1lbnQgMSAoY29udHJvbCkiLCAiVHJlYXRtZW50IDIiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiVHJlYXRtZW50IDMiLCAiVHJlYXRtZW50IDQiLCAiVHJlYXRtZW50IDUiKSkNCg0KDQoNCmRvc2Uuc3VtIDwtIHBvbGxlbi5kb3NlICU+JQ0KICBncm91cF9ieSh0cmVhdG1lbnQpICU+JQ0KICBzdW1tYXJpc2UobSA9IG1lYW4oZG9zZV9jb25zdW1lZCksIA0KICAgICAgICAgICBzZCA9IHNkKGRvc2VfY29uc3VtZWQpLA0KICAgICAgICAgICBuID0gbGVuZ3RoKGRvc2VfY29uc3VtZWQpKSAlPiUNCiAgbXV0YXRlKHNlID0gc2Qvc3FydChuKSkNCmRvc2Uuc3VtDQpgYGANCg0K