I thank Dr Xu and Dr Zhang for helping me a lot in this project.
Likelihood
\[E_{ih} \sim Poi(\mu_{ih}) \]
Priors
\(\alpha_h\) (Borrowing paramater) \(\sim Gamma(a_h,b_h)\) where \(a_h\) and \(b_h\) is estimated from historical data.
\(\beta_h\) (Treatment effect) \(\sim N(0,.001)\)
We compare our Bayesian borrowing method with Cox’s proportional hazard model, Bayesian method with non-borrowing and piecewise Cox’s model.
Senarios:
Proportional hazard
Event rates for current data is lower than the event rates for true/usual (historical) data. (0.25,0.2)
Non Proportional hazard
Event rates for current data is lower than the event rates for true/usual (historical) data. (0.25,0.2)
Setup
Number of time interval is 8
MCMC iterations = 5000, Number of Chains = 2
Setup
Event Rate for historical data = 0.3
Event Rate for current data = 0.3
HR for historical data =0.6
HR for current data =0.6
Sample size for historical data =800
Sample size for current data =900
Int | True HR | Est_HR | 5%_est_HR | 95%_est_HR | cox_HR | Est_HR_borrow | 5%_y_est_HR | 95%_y_est_HR |
---|---|---|---|---|---|---|---|---|
1 | 0.6 | 0.626 | 0.422 | 0.942 | 0.627 | 0.635 | 0.432 | 0.917 |
2 | 0.6 | 0.658 | 0.410 | 1.031 | 0.658 | 0.668 | 0.420 | 1.008 |
3 | 0.6 | 0.602 | 0.366 | 0.955 | 0.602 | 0.613 | 0.382 | 0.964 |
4 | 0.6 | 0.641 | 0.352 | 1.002 | 0.642 | 0.654 | 0.382 | 0.999 |
5 | 0.6 | 0.642 | 0.332 | 1.051 | 0.641 | 0.651 | 0.349 | 1.066 |
6 | 0.6 | 0.654 | 0.316 | 1.036 | 0.654 | 0.667 | 0.330 | 0.998 |
7 | 0.6 | 0.649 | 0.352 | 1.052 | 0.651 | 0.660 | 0.389 | 1.006 |
8 | 0.6 | 0.679 | 0.342 | 1.212 | 0.678 | 0.688 | 0.369 | 1.142 |
Estimation of Cox’s proportional hazard:
## [1] 0.6441812
Setup
Event Rate for historical data = 0.3
Event Rate for current data = 0.35
HR for historical data =0.6
HR for current data =0.6
Sample size for historical data =800
Sample size for current data =900
Int | True HR | Est_HR | 5%_est_HR | 95%_est_HR | cox_HR | Est_HR_borrow | 5%_y_est_HR | 95%_y_est_HR |
---|---|---|---|---|---|---|---|---|
1 | 0.6 | 0.621 | 0.417 | 0.867 | 0.622 | 0.673 | 0.449 | 0.956 |
2 | 0.6 | 0.648 | 0.397 | 0.998 | 0.648 | 0.692 | 0.438 | 1.065 |
3 | 0.6 | 0.626 | 0.405 | 0.923 | 0.627 | 0.667 | 0.435 | 1.030 |
4 | 0.6 | 0.602 | 0.369 | 0.886 | 0.603 | 0.641 | 0.407 | 0.961 |
5 | 0.6 | 0.643 | 0.395 | 0.934 | 0.643 | 0.688 | 0.428 | 1.025 |
6 | 0.6 | 0.626 | 0.357 | 0.949 | 0.626 | 0.662 | 0.382 | 0.979 |
7 | 0.6 | 0.656 | 0.364 | 1.192 | 0.657 | 0.700 | 0.395 | 1.154 |
8 | 0.6 | 0.629 | 0.363 | 0.950 | 0.630 | 0.678 | 0.420 | 1.016 |
Estimation of Cox’s proportional hazard:
## [1] 0.631829
Setup
Event Rate for historical data = 0.3
Event Rate for current data = 0.4
HR for historical data =0.6
HR for current data =0.6
Sample size for historical data =800
Sample size for current data =900
Int | True HR | Est_HR | 5%_est_HR | 95%_est_HR | cox_HR | Est_HR_borrow | 5%_y_est_HR | 95%_y_est_HR |
---|---|---|---|---|---|---|---|---|
1 | 0.6 | 0.623 | 0.451 | 0.836 | 0.623 | 0.669 | 0.473 | 0.889 |
2 | 0.6 | 0.622 | 0.416 | 0.929 | 0.622 | 0.665 | 0.433 | 0.959 |
3 | 0.6 | 0.621 | 0.387 | 0.903 | 0.621 | 0.669 | 0.412 | 1.016 |
4 | 0.6 | 0.616 | 0.401 | 0.932 | 0.616 | 0.667 | 0.426 | 0.965 |
5 | 0.6 | 0.619 | 0.356 | 0.898 | 0.619 | 0.669 | 0.371 | 0.992 |
6 | 0.6 | 0.633 | 0.392 | 1.122 | 0.633 | 0.692 | 0.424 | 1.154 |
7 | 0.6 | 0.635 | 0.378 | 0.967 | 0.635 | 0.702 | 0.427 | 1.070 |
8 | 0.6 | 0.678 | 0.360 | 1.087 | 0.679 | 0.742 | 0.390 | 1.227 |
Estimation of Cox’s proportional hazard:
## [1] 0.6310383
Setup
Event Rate for historical data = 0.3
Event Rate for current data = 0.25
HR for historical data =0.6
HR for current data =0.6
Sample size for historical data =800
Sample size for current data =900
Int | True HR | Est_HR | 5%_est_HR | 95%_est_HR | cox_HR | Est_HR_borrow | 5%_y_est_HR | 95%_y_est_HR |
---|---|---|---|---|---|---|---|---|
1 | 0.6 | 0.608 | 0.395 | 0.863 | 0.608 | 0.579 | 0.369 | 0.845 |
2 | 0.6 | 0.657 | 0.433 | 0.916 | 0.657 | 0.632 | 0.416 | 0.883 |
3 | 0.6 | 0.644 | 0.352 | 1.011 | 0.644 | 0.622 | 0.350 | 0.984 |
4 | 0.6 | 0.626 | 0.375 | 0.912 | 0.626 | 0.620 | 0.380 | 0.895 |
5 | 0.6 | 0.617 | 0.331 | 1.084 | 0.617 | 0.612 | 0.351 | 1.044 |
6 | 0.6 | 0.655 | 0.374 | 1.087 | 0.655 | 0.662 | 0.392 | 1.195 |
7 | 0.6 | 0.679 | 0.323 | 1.246 | 0.679 | 0.695 | 0.355 | 1.311 |
8 | 0.6 | 0.653 | 0.314 | 1.181 | 0.653 | 0.676 | 0.347 | 1.254 |
Estimation of Cox’s proportional hazard:
## [1] 0.6423694
Setup
Event Rate for historical data = 0.3
Event Rate for current data = 0.2
HR for historical data =0.6
HR for current data =0.6
Sample size for historical data =800
Sample size for current data =900
Int | True HR | Est_HR | 5%_est_HR | 95%_est_HR | cox_HR | Est_HR_borrow | 5%_y_est_HR | 95%_y_est_HR |
---|---|---|---|---|---|---|---|---|
1 | 0.6 | 0.606 | 0.354 | 0.901 | 0.606 | 0.599 | 0.336 | 0.899 |
2 | 0.6 | 0.642 | 0.374 | 1.013 | 0.643 | 0.639 | 0.371 | 1.078 |
3 | 0.6 | 0.666 | 0.336 | 1.069 | 0.665 | 0.671 | 0.321 | 1.166 |
4 | 0.6 | 0.648 | 0.350 | 1.114 | 0.648 | 0.670 | 0.357 | 1.293 |
5 | 0.6 | 0.640 | 0.347 | 1.174 | 0.639 | 0.647 | 0.354 | 1.227 |
6 | 0.6 | 0.631 | 0.290 | 1.242 | 0.633 | 0.653 | 0.288 | 1.352 |
7 | 0.6 | 0.675 | 0.361 | 1.224 | 0.675 | 0.704 | 0.359 | 1.419 |
8 | 0.6 | 0.668 | 0.322 | 1.164 | 0.666 | 0.702 | 0.333 | 1.304 |
Estimation of Cox’s proportional hazard:
## [1] 0.6468758
Setup
Event Rate for historical data = 0.3
Event Rate for current data = 0.3
HR for historical data =0.9, 0.6
HR for current data =0.9, 0.6
Sample size for historical data = 800
Sample size for current data = 900
Int | True HR | Est_HR | 5%_est_HR | 95%_est_HR | cox_HR | Est_HR_borrow | 5%_y_est_HR | 95%_y_est_HR |
---|---|---|---|---|---|---|---|---|
1 | 0.6 | 0.939 | 0.640 | 1.377 | 0.940 | 0.957 | 0.678 | 1.376 |
2 | 0.6 | 0.941 | 0.706 | 1.405 | 0.941 | 0.965 | 0.707 | 1.383 |
3 | 0.6 | 0.634 | 0.387 | 0.974 | 0.634 | 0.641 | 0.399 | 1.009 |
4 | 0.6 | 0.621 | 0.363 | 0.953 | 0.621 | 0.628 | 0.394 | 0.942 |
5 | 0.6 | 0.632 | 0.326 | 0.937 | 0.632 | 0.650 | 0.328 | 1.074 |
6 | 0.6 | 0.639 | 0.366 | 1.111 | 0.640 | 0.650 | 0.385 | 1.071 |
7 | 0.6 | 0.653 | 0.355 | 1.122 | 0.653 | 0.673 | 0.375 | 1.179 |
8 | 0.6 | 0.649 | 0.358 | 1.096 | 0.649 | 0.670 | 0.380 | 1.119 |
Estimation of Cox’s proportional hazard:
## [1] 0.7138587
Setup
Event Rate for historical data = 0.3
Event Rate for current data = 0.35
HR for historical data =0.9, 0.6
HR for current data =0.9, 0.6
Sample size for historical data = 800
Sample size for current data = 900
Int | True HR | Est_HR | 5%_est_HR | 95%_est_HR | cox_HR | Est_HR_borrow | 5%_y_est_HR | 95%_y_est_HR |
---|---|---|---|---|---|---|---|---|
1 | 0.6 | 0.939 | 0.657 | 1.327 | 0.939 | 1.016 | 0.716 | 1.463 |
2 | 0.6 | 0.942 | 0.593 | 1.488 | 0.942 | 1.006 | 0.641 | 1.582 |
3 | 0.6 | 0.627 | 0.396 | 0.917 | 0.627 | 0.666 | 0.423 | 1.058 |
4 | 0.6 | 0.598 | 0.375 | 0.900 | 0.599 | 0.637 | 0.401 | 0.967 |
5 | 0.6 | 0.643 | 0.405 | 0.960 | 0.643 | 0.689 | 0.420 | 1.000 |
6 | 0.6 | 0.625 | 0.360 | 0.958 | 0.625 | 0.660 | 0.401 | 0.976 |
7 | 0.6 | 0.659 | 0.363 | 1.193 | 0.660 | 0.703 | 0.391 | 1.180 |
8 | 0.6 | 0.629 | 0.387 | 0.993 | 0.629 | 0.678 | 0.430 | 1.064 |
Estimation of Cox’s proportional hazard:
## [1] 0.7080066
Setup
Event Rate for historical data = 0.3
Event Rate for current data = 0.4
HR for historical data =0.9, 0.6
HR for current data =0.9, 0.6
Sample size for historical data = 800
Sample size for current data = 900
Int | True HR | Est_HR | 5%_est_HR | 95%_est_HR | cox_HR | Est_HR_borrow | 5%_y_est_HR | 95%_y_est_HR |
---|---|---|---|---|---|---|---|---|
1 | 0.6 | 0.931 | 0.664 | 1.229 | 0.932 | 1.000 | 0.698 | 1.343 |
2 | 0.6 | 0.928 | 0.611 | 1.375 | 0.928 | 0.994 | 0.648 | 1.479 |
3 | 0.6 | 0.625 | 0.395 | 0.896 | 0.624 | 0.672 | 0.416 | 0.995 |
4 | 0.6 | 0.619 | 0.395 | 0.956 | 0.619 | 0.669 | 0.432 | 1.010 |
5 | 0.6 | 0.616 | 0.353 | 0.881 | 0.616 | 0.666 | 0.368 | 0.979 |
6 | 0.6 | 0.634 | 0.372 | 1.133 | 0.635 | 0.694 | 0.407 | 1.132 |
7 | 0.6 | 0.632 | 0.378 | 1.001 | 0.631 | 0.698 | 0.424 | 1.092 |
8 | 0.6 | 0.677 | 0.348 | 1.099 | 0.679 | 0.742 | 0.383 | 1.199 |
Estimation of Cox’s proportional hazard:
## [1] 0.7079339
Setup
Event Rate for historical data = 0.3
Event Rate for current data = 0.25
HR for historical data =0.9, 0.6
HR for current data =0.9, 0.6
Sample size for historical data = 800
Sample size for current data = 900
Int | True HR | Est_HR | 5%_est_HR | 95%_est_HR | cox_HR | Est_HR_borrow | 5%_y_est_HR | 95%_y_est_HR |
---|---|---|---|---|---|---|---|---|
1 | 0.6 | 0.941 | 0.594 | 1.355 | 0.941 | 0.897 | 0.591 | 1.340 |
2 | 0.6 | 0.956 | 0.649 | 1.434 | 0.955 | 0.918 | 0.636 | 1.328 |
3 | 0.6 | 0.646 | 0.360 | 1.018 | 0.646 | 0.624 | 0.362 | 0.948 |
4 | 0.6 | 0.629 | 0.371 | 0.961 | 0.629 | 0.623 | 0.373 | 0.941 |
5 | 0.6 | 0.618 | 0.335 | 1.105 | 0.617 | 0.613 | 0.353 | 1.039 |
6 | 0.6 | 0.652 | 0.372 | 1.122 | 0.652 | 0.659 | 0.383 | 1.085 |
7 | 0.6 | 0.684 | 0.324 | 1.296 | 0.685 | 0.701 | 0.344 | 1.386 |
8 | 0.6 | 0.654 | 0.327 | 1.195 | 0.654 | 0.678 | 0.350 | 1.313 |
Estimation of Cox’s proportional hazard:
## [1] 0.722293
Setup
Event Rate for historical data = 0.3
Event Rate for current data = 0.2
HR for historical data =0.9, 0.6
HR for current data =0.9, 0.6
Sample size for historical data = 800
Sample size for current data = 900
Int | True HR | Est_HR | 5%_est_HR | 95%_est_HR | cox_HR | Est_HR_borrow | 5%_y_est_HR | 95%_y_est_HR |
---|---|---|---|---|---|---|---|---|
1 | 0.6 | 0.941 | 0.594 | 1.355 | 0.941 | 0.897 | 0.591 | 1.340 |
2 | 0.6 | 0.956 | 0.649 | 1.434 | 0.955 | 0.918 | 0.636 | 1.328 |
3 | 0.6 | 0.646 | 0.360 | 1.018 | 0.646 | 0.624 | 0.362 | 0.948 |
4 | 0.6 | 0.629 | 0.371 | 0.961 | 0.629 | 0.623 | 0.373 | 0.941 |
5 | 0.6 | 0.618 | 0.335 | 1.105 | 0.617 | 0.613 | 0.353 | 1.039 |
6 | 0.6 | 0.652 | 0.372 | 1.122 | 0.652 | 0.659 | 0.383 | 1.085 |
7 | 0.6 | 0.684 | 0.324 | 1.296 | 0.685 | 0.701 | 0.344 | 1.386 |
8 | 0.6 | 0.654 | 0.327 | 1.195 | 0.654 | 0.678 | 0.350 | 1.313 |
Estimation of Cox’s proportional hazard:
## [1] 0.722293
Proportional hazard
Int | True HR | Est_HR | HR_no_borrow | cox_HR | Est_HR | HR_no_borrow | cox_HR | Est_HR | HR_no_borrow | cox_HR | Est_HR | HR_no_borrow | cox_HR | Est_HR | HR_no_borrow | cox_HR |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.6 | 0.626 | 0.635 | 0.644 | 0.621 | 0.673 | 0.632 | 0.623 | 0.669 | 0.631 | 0.608 | 0.579 | 0.642 | 0.606 | 0.599 | 0.647 |
2 | 0.6 | 0.658 | 0.668 | 0.644 | 0.648 | 0.692 | 0.632 | 0.622 | 0.665 | 0.631 | 0.657 | 0.632 | 0.642 | 0.642 | 0.639 | 0.647 |
3 | 0.6 | 0.602 | 0.613 | 0.644 | 0.626 | 0.667 | 0.632 | 0.621 | 0.669 | 0.631 | 0.644 | 0.622 | 0.642 | 0.666 | 0.671 | 0.647 |
4 | 0.6 | 0.641 | 0.654 | 0.644 | 0.602 | 0.641 | 0.632 | 0.616 | 0.667 | 0.631 | 0.626 | 0.620 | 0.642 | 0.648 | 0.670 | 0.647 |
5 | 0.6 | 0.642 | 0.651 | 0.644 | 0.643 | 0.688 | 0.632 | 0.619 | 0.669 | 0.631 | 0.617 | 0.612 | 0.642 | 0.640 | 0.647 | 0.647 |
6 | 0.6 | 0.654 | 0.667 | 0.644 | 0.626 | 0.662 | 0.632 | 0.633 | 0.692 | 0.631 | 0.655 | 0.662 | 0.642 | 0.631 | 0.653 | 0.647 |
7 | 0.6 | 0.649 | 0.660 | 0.644 | 0.656 | 0.700 | 0.632 | 0.635 | 0.702 | 0.631 | 0.679 | 0.695 | 0.642 | 0.675 | 0.704 | 0.647 |
8 | 0.6 | 0.679 | 0.688 | 0.644 | 0.629 | 0.678 | 0.632 | 0.678 | 0.742 | 0.631 | 0.653 | 0.676 | 0.642 | 0.668 | 0.702 | 0.647 |
Non-Proportional hazard
Int | True HR | Est_HR | HR_no_borrow | cox_HR | Est_HR | HR_no_borrow | cox_HR | Est_HR | HR_no_borrow | cox_HR | Est_HR | HR_no_borrow | cox_HR | Est_HR | HR_no_borrow | cox_HR |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.6 | 0.939 | 0.957 | 0.714 | 0.939 | 1.016 | 0.708 | 0.931 | 1.000 | 0.708 | 0.941 | 0.897 | 0.722 | 0.941 | 0.897 | 0.722 |
2 | 0.6 | 0.941 | 0.965 | 0.714 | 0.942 | 1.006 | 0.708 | 0.928 | 0.994 | 0.708 | 0.956 | 0.918 | 0.722 | 0.956 | 0.918 | 0.722 |
3 | 0.6 | 0.634 | 0.641 | 0.714 | 0.627 | 0.666 | 0.708 | 0.625 | 0.672 | 0.708 | 0.646 | 0.624 | 0.722 | 0.646 | 0.624 | 0.722 |
4 | 0.6 | 0.621 | 0.628 | 0.714 | 0.598 | 0.637 | 0.708 | 0.619 | 0.669 | 0.708 | 0.629 | 0.623 | 0.722 | 0.629 | 0.623 | 0.722 |
5 | 0.6 | 0.632 | 0.650 | 0.714 | 0.643 | 0.689 | 0.708 | 0.616 | 0.666 | 0.708 | 0.618 | 0.613 | 0.722 | 0.618 | 0.613 | 0.722 |
6 | 0.6 | 0.639 | 0.650 | 0.714 | 0.625 | 0.660 | 0.708 | 0.634 | 0.694 | 0.708 | 0.652 | 0.659 | 0.722 | 0.652 | 0.659 | 0.722 |
7 | 0.6 | 0.653 | 0.673 | 0.714 | 0.659 | 0.703 | 0.708 | 0.632 | 0.698 | 0.708 | 0.684 | 0.701 | 0.722 | 0.684 | 0.701 | 0.722 |
8 | 0.6 | 0.649 | 0.670 | 0.714 | 0.629 | 0.678 | 0.708 | 0.677 | 0.742 | 0.708 | 0.654 | 0.678 | 0.722 | 0.654 | 0.678 | 0.722 |
Looking at more scenarios
Developing more complex non-parametric model
THANK YOU