Read in data

firstbase = read.csv("firstbasestats.csv")
str(firstbase)
'data.frame':   23 obs. of  15 variables:
 $ Player            : chr  "Freddie Freeman" "Jose Abreu" "Nate Lowe" "Paul Goldschmidt" ...
 $ Pos               : chr  "1B" "1B" "1B" "1B" ...
 $ Team              : chr  "LAD" "CHW" "TEX" "STL" ...
 $ GP                : int  159 157 157 151 160 140 160 145 146 143 ...
 $ AB                : int  612 601 593 561 638 551 583 555 545 519 ...
 $ H                 : int  199 183 179 178 175 152 141 139 132 124 ...
 $ X2B               : int  47 40 26 41 35 27 25 28 40 23 ...
 $ HR                : int  21 15 27 35 32 20 36 22 8 18 ...
 $ RBI               : int  100 75 76 115 97 84 94 85 53 63 ...
 $ AVG               : num  0.325 0.305 0.302 0.317 0.274 0.276 0.242 0.251 0.242 0.239 ...
 $ OBP               : num  0.407 0.379 0.358 0.404 0.339 0.34 0.327 0.305 0.288 0.319 ...
 $ SLG               : num  0.511 0.446 0.492 0.578 0.48 0.437 0.477 0.423 0.36 0.391 ...
 $ OPS               : num  0.918 0.824 0.851 0.981 0.818 0.777 0.804 0.729 0.647 0.71 ...
 $ WAR               : num  5.77 4.19 3.21 7.86 3.85 3.07 5.05 1.32 -0.33 1.87 ...
 $ Payroll.Salary2023: num  27000000 19500000 4050000 26000000 14500000 ...

summary(firstbase)
    Player              Pos                Team                 GP              AB              H              X2B              HR             RBI              AVG              OBP              SLG              OPS              WAR        
 Length:23          Length:23          Length:23          Min.   :  5.0   Min.   : 14.0   Min.   :  3.0   Min.   : 1.00   Min.   : 0.00   Min.   :  1.00   Min.   :0.2020   Min.   :0.2140   Min.   :0.2860   Min.   :0.5000   Min.   :-1.470  
 Class :character   Class :character   Class :character   1st Qu.:105.5   1st Qu.:309.0   1st Qu.: 74.5   1st Qu.:13.50   1st Qu.: 8.00   1st Qu.: 27.00   1st Qu.:0.2180   1st Qu.:0.3030   1st Qu.:0.3505   1st Qu.:0.6445   1st Qu.: 0.190  
 Mode  :character   Mode  :character   Mode  :character   Median :131.0   Median :465.0   Median :115.0   Median :23.00   Median :18.00   Median : 63.00   Median :0.2420   Median :0.3210   Median :0.4230   Median :0.7290   Median : 1.310  
                                                          Mean   :120.2   Mean   :426.9   Mean   :110.0   Mean   :22.39   Mean   :17.09   Mean   : 59.43   Mean   :0.2499   Mean   :0.3242   Mean   :0.4106   Mean   :0.7346   Mean   : 1.788  
                                                          3rd Qu.:152.0   3rd Qu.:558.0   3rd Qu.:146.5   3rd Qu.:28.00   3rd Qu.:24.50   3rd Qu.: 84.50   3rd Qu.:0.2750   3rd Qu.:0.3395   3rd Qu.:0.4690   3rd Qu.:0.8175   3rd Qu.: 3.140  
                                                          Max.   :160.0   Max.   :638.0   Max.   :199.0   Max.   :47.00   Max.   :36.00   Max.   :115.00   Max.   :0.3250   Max.   :0.4070   Max.   :0.5780   Max.   :0.9810   Max.   : 7.860  
 Payroll.Salary2023
 Min.   :  720000  
 1st Qu.:  739200  
 Median : 4050000  
 Mean   : 6972743  
 3rd Qu.: 8150000  
 Max.   :27000000  

# We are applying a summary to first base - this is based off of 23 players.
# Linear Regression (one variable)
model1 = lm(Payroll.Salary2023 ~ RBI, data=firstbase)
summary(model1)

Call:
lm(formula = Payroll.Salary2023 ~ RBI, data = firstbase)

Residuals:
      Min        1Q    Median        3Q       Max 
-10250331  -5220790   -843455   2386848  13654950 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept) -2363744    2866320  -0.825  0.41883   
RBI           157088      42465   3.699  0.00133 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6516000 on 21 degrees of freedom
Multiple R-squared:  0.3945,    Adjusted R-squared:  0.3657 
F-statistic: 13.68 on 1 and 21 DF,  p-value: 0.001331
# We are comparing the 2023 salary against the RBI from 2022. RBI is significant because it is less than the p-value of 0.05 but only 39% of the salary is affected by RBI so you need other values to justify the salary paid per player.
# Sum of Squared Errors
model1$residuals
          1           2           3           4           5           6           7           8           9          10          11          12          13          14          15          16          17          18          19          20          21 
 13654950.2  10082148.6  -5524939.3  10298631.2   1626214.0  -6731642.8  -5902522.2 -10250330.7  -4711916.8   -532796.1  -6667082.5  -6696203.1   7582148.6  -4916640.9  -1898125.3   -336532.3   -995042.5  -1311618.3   -843454.5   8050721.3   1250336.9 
         22          23 
  1847040.4   2926656.0 

# This is the difference between what you expect vs what you observed
SSE = sum(model1$residuals^2)
SSE
[1] 8.914926e+14
# This is the difference between what you expect vs what you observed
# Linear Regression (two variables)
model2 = lm(Payroll.Salary2023 ~ AVG + RBI, data=firstbase)
summary(model2)

Call:
lm(formula = Payroll.Salary2023 ~ AVG + RBI, data = firstbase)

Residuals:
     Min       1Q   Median       3Q      Max 
-9097952 -4621582   -33233  3016541 10260245 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)  
(Intercept) -18083756    9479037  -1.908   0.0709 .
AVG          74374031   42934155   1.732   0.0986 .
RBI            108850      49212   2.212   0.0388 *
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6226000 on 20 degrees of freedom
Multiple R-squared:  0.4735,    Adjusted R-squared:  0.4209 
F-statistic: 8.994 on 2 and 20 DF,  p-value: 0.001636
#I believe the outcome will be better since we added the batting average variable because adding two variables lead to more consistent results (usually).

# I believe the outcome will be better since we added the batting average variable because adding two variables lead to more consistent results (usually).
# Average is not significant because it is greater than 0.05 - it is currently at 0.097.The model did improve overall because the adjusted r-squared is 0.42, which means overall it is stronger but not significantly.
# Sum of Squared Errors
SSE = sum(model2$residuals^2)
SSE
[1] 7.751841e+14
# This is the difference between what you expect vs what you observed. This sum of squared errors is lower.
# Linear Regression (all variables)
model3 = lm(Payroll.Salary2023 ~ HR + RBI + AVG + OBP+ OPS, data=firstbase)
summary(model3)

Call:
lm(formula = Payroll.Salary2023 ~ HR + RBI + AVG + OBP + OPS, 
    data = firstbase)

Residuals:
     Min       1Q   Median       3Q      Max 
-9611440 -3338119    64016  4472451  9490309 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)  
(Intercept) -31107859   11738494  -2.650   0.0168 *
HR            -341069     552069  -0.618   0.5449  
RBI            115786     113932   1.016   0.3237  
AVG         -63824769  104544645  -0.611   0.5496  
OBP          27054948  131210166   0.206   0.8391  
OPS          60181012   95415131   0.631   0.5366  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 6023000 on 17 degrees of freedom
Multiple R-squared:  0.5811,    Adjusted R-squared:  0.4579 
F-statistic: 4.717 on 5 and 17 DF,  p-value: 0.006951

# We have added the home runs, obp, and ops to this model. None of the variables here are now significant because we are using multiple variables that are correlated.
# The model is significant but because of the higher inflation factor (VIF).
# Sum of Squared Errors
SSE = sum(model3$residuals^2)
SSE
[1] 6.167793e+14

# This is the difference between what you expect vs what you observed. 
# Remove HR
model4 = lm(Payroll.Salary2023 ~ RBI + AVG + OBP+OPS, data=firstbase)
summary(model4)

Call:
lm(formula = Payroll.Salary2023 ~ RBI + AVG + OBP + OPS, data = firstbase)

Residuals:
     Min       1Q   Median       3Q      Max 
-9399551 -3573842    98921  3979339  9263512 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)  
(Intercept) -29466887   11235931  -2.623   0.0173 *
RBI             71495      87015   0.822   0.4220  
AVG         -11035457   59192453  -0.186   0.8542  
OBP          86360720   87899074   0.982   0.3389  
OPS           9464546   47788458   0.198   0.8452  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5919000 on 18 degrees of freedom
Multiple R-squared:  0.5717,    Adjusted R-squared:  0.4765 
F-statistic: 6.007 on 4 and 18 DF,  p-value: 0.00298
# Removed HR because it is highly correlated with OPS. 
# The adjusted R squared increased but none of the features are significant.
firstbase<-firstbase[,-(1:3)]
# We are removing the first three columns of the first base dataset
# Correlations
cor(firstbase$RBI, firstbase$Payroll.Salary2023)
[1] 0.6281239
# The correlation between RBI and payroll is pretty significant.

cor(firstbase$AVG, firstbase$OBP)
[1] 0.8028894

#We cannot keep average and OBP in the same model because of the high correlation.

cor(firstbase)
                          GP        AB         H       X2B        HR       RBI       AVG       OBP       SLG       OPS       WAR Payroll.Salary2023
GP                 1.0000000 0.9779421 0.9056508 0.8446267 0.7432552 0.8813917 0.4430808 0.4841583 0.6875270 0.6504483 0.5645243          0.4614889
AB                 0.9779421 1.0000000 0.9516701 0.8924632 0.7721339 0.9125839 0.5126292 0.5026125 0.7471949 0.6980141 0.6211558          0.5018820
H                  0.9056508 0.9516701 1.0000000 0.9308318 0.7155225 0.9068893 0.7393167 0.6560021 0.8211406 0.8069779 0.7688712          0.6249911
X2B                0.8446267 0.8924632 0.9308318 1.0000000 0.5889699 0.8485911 0.6613085 0.5466537 0.7211259 0.6966830 0.6757470          0.6450730
HR                 0.7432552 0.7721339 0.7155225 0.5889699 1.0000000 0.8929048 0.3444242 0.4603408 0.8681501 0.7638721 0.6897677          0.5317619
RBI                0.8813917 0.9125839 0.9068893 0.8485911 0.8929048 1.0000000 0.5658479 0.5704463 0.8824090 0.8156612 0.7885666          0.6281239
AVG                0.4430808 0.5126292 0.7393167 0.6613085 0.3444242 0.5658479 1.0000000 0.8028894 0.7254274 0.7989005 0.7855945          0.5871543
OBP                0.4841583 0.5026125 0.6560021 0.5466537 0.4603408 0.5704463 0.8028894 1.0000000 0.7617499 0.8987390 0.7766375          0.7025979
SLG                0.6875270 0.7471949 0.8211406 0.7211259 0.8681501 0.8824090 0.7254274 0.7617499 1.0000000 0.9686752 0.8611140          0.6974086
OPS                0.6504483 0.6980141 0.8069779 0.6966830 0.7638721 0.8156612 0.7989005 0.8987390 0.9686752 1.0000000 0.8799893          0.7394981
WAR                0.5645243 0.6211558 0.7688712 0.6757470 0.6897677 0.7885666 0.7855945 0.7766375 0.8611140 0.8799893 1.0000000          0.8086359
Payroll.Salary2023 0.4614889 0.5018820 0.6249911 0.6450730 0.5317619 0.6281239 0.5871543 0.7025979 0.6974086 0.7394981 0.8086359          1.0000000

# This is a good way to see which models we should use in our model. The higher the number, the more we should avoid those variables being together in a model.
# For example, the correlation between RBI and SLG is 0.8824090 so we cannot keep them in the same model.
#Removing AVG
model5 = lm(Payroll.Salary2023 ~ RBI + OBP+OPS, data=firstbase)
summary(model5)

Call:
lm(formula = Payroll.Salary2023 ~ RBI + OBP + OPS, data = firstbase)

Residuals:
     Min       1Q   Median       3Q      Max 
-9465449 -3411234   259746  4102864  8876798 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)  
(Intercept) -29737007   10855411  -2.739    0.013 *
RBI             72393      84646   0.855    0.403  
OBP          82751360   83534224   0.991    0.334  
OPS           7598051   45525575   0.167    0.869  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5767000 on 19 degrees of freedom
Multiple R-squared:  0.5709,    Adjusted R-squared:  0.5031 
F-statistic: 8.426 on 3 and 19 DF,  p-value: 0.000913

# The adjusted R squared increase so the model is significant but none of the predictors are.
model6 = lm(Payroll.Salary2023 ~ RBI + OBP, data=firstbase)
summary(model6)

Call:
lm(formula = Payroll.Salary2023 ~ RBI + OBP, data = firstbase)

Residuals:
     Min       1Q   Median       3Q      Max 
-9045497 -3487008   139497  4084739  9190185 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)   
(Intercept) -28984802    9632560  -3.009  0.00693 **
RBI             84278      44634   1.888  0.07360 . 
OBP          95468873   33385182   2.860  0.00969 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5625000 on 20 degrees of freedom
Multiple R-squared:  0.5703,    Adjusted R-squared:  0.5273 
F-statistic: 13.27 on 2 and 20 DF,  p-value: 0.0002149
# This is the best model we have ran so far. The adjusted R squared is high (0.53) and the p value is less than 0.05.
# Read in test set
firstbaseTest = read.csv("firstbasestats_test.csv")
str(firstbaseTest)
'data.frame':   2 obs. of  15 variables:
 $ Player            : chr  "Matt Olson" "Josh Bell"
 $ Pos               : chr  "1B" "1B"
 $ Team              : chr  "ATL" "SD"
 $ GP                : int  162 156
 $ AB                : int  616 552
 $ H                 : int  148 147
 $ X2B               : int  44 29
 $ HR                : int  34 17
 $ RBI               : int  103 71
 $ AVG               : num  0.24 0.266
 $ OBP               : num  0.325 0.362
 $ SLG               : num  0.477 0.422
 $ OPS               : num  0.802 0.784
 $ WAR               : num  3.29 3.5
 $ Payroll.Salary2023: num  21000000 16500000
# We are checking to see if our model still does well with the same data
# Make test set predictions
predictTest = predict(model6, newdata=firstbaseTest)
predictTest
       1        2 
10723186 11558647 
# It is predicting that the salary for Matt Olson will be 10,723,186 and the salary for Josh Bell will be 11,558,647.
# Compute R-squared
SSE = sum((firstbaseTest$Payroll.Salary2023 - predictTest)^2)
SST = sum((firstbaseTest$Payroll.Salary2023 - mean(firstbase$Payroll.Salary2023))^2)
1 - SSE/SST
[1] 0.5477734
# This is the difference between what you expect vs what you observed.
LS0tDQp0aXRsZTogIkludHJvIHRvIExpbmVhciBSZWdyZXNzaW9uOiBGaXJzdCBCYXNlIEhpdHRpbmcgU3RhdHMgYW5kIFNhbGFyeSBQcmVkaWN0aW9ucyINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQojIFJlYWQgaW4gZGF0YQ0KYGBge3J9DQpmaXJzdGJhc2UgPSByZWFkLmNzdigiZmlyc3RiYXNlc3RhdHMuY3N2IikNCnN0cihmaXJzdGJhc2UpDQpgYGANCg0KDQpgYGB7cn0NCnN1bW1hcnkoZmlyc3RiYXNlKQ0KDQpgYGANCmBgYHtyfQ0KDQojIFdlIGFyZSBhcHBseWluZyBhIHN1bW1hcnkgdG8gZmlyc3QgYmFzZSAtIHRoaXMgaXMgYmFzZWQgb2ZmIG9mIDIzIHBsYXllcnMuDQpgYGANCg0KDQpgYGB7cn0NCiMgTGluZWFyIFJlZ3Jlc3Npb24gKG9uZSB2YXJpYWJsZSkNCm1vZGVsMSA9IGxtKFBheXJvbGwuU2FsYXJ5MjAyMyB+IFJCSSwgZGF0YT1maXJzdGJhc2UpDQpzdW1tYXJ5KG1vZGVsMSkNCg0KYGBgDQpgYGB7cn0NCiMgV2UgYXJlIGNvbXBhcmluZyB0aGUgMjAyMyBzYWxhcnkgYWdhaW5zdCB0aGUgUkJJIGZyb20gMjAyMi4gUkJJIGlzIHNpZ25pZmljYW50IGJlY2F1c2UgaXQgaXMgbGVzcyB0aGFuIHRoZSBwLXZhbHVlIG9mIDAuMDUgYnV0IG9ubHkgMzklIG9mIHRoZSBzYWxhcnkgaXMgYWZmZWN0ZWQgYnkgUkJJIHNvIHlvdSBuZWVkIG90aGVyIHZhbHVlcyB0byBqdXN0aWZ5IHRoZSBzYWxhcnkgcGFpZCBwZXIgcGxheWVyLg0KYGBgDQoNCg0KYGBge3J9DQojIFN1bSBvZiBTcXVhcmVkIEVycm9ycw0KbW9kZWwxJHJlc2lkdWFscw0KDQpgYGANCmBgYHtyfQ0KDQojIFRoaXMgaXMgdGhlIGRpZmZlcmVuY2UgYmV0d2VlbiB3aGF0IHlvdSBleHBlY3QgdnMgd2hhdCB5b3Ugb2JzZXJ2ZWQNCmBgYA0KDQoNCmBgYHtyfQ0KU1NFID0gc3VtKG1vZGVsMSRyZXNpZHVhbHNeMikNClNTRQ0KYGBgDQpgYGB7cn0NCiMgVGhpcyBpcyB0aGUgZGlmZmVyZW5jZSBiZXR3ZWVuIHdoYXQgeW91IGV4cGVjdCB2cyB3aGF0IHlvdSBvYnNlcnZlZA0KYGBgDQoNCg0KYGBge3J9DQojIExpbmVhciBSZWdyZXNzaW9uICh0d28gdmFyaWFibGVzKQ0KbW9kZWwyID0gbG0oUGF5cm9sbC5TYWxhcnkyMDIzIH4gQVZHICsgUkJJLCBkYXRhPWZpcnN0YmFzZSkNCnN1bW1hcnkobW9kZWwyKQ0KYGBgDQpgYGB7cn0NCg0KIyBJIGJlbGlldmUgdGhlIG91dGNvbWUgd2lsbCBiZSBiZXR0ZXIgc2luY2Ugd2UgYWRkZWQgdGhlIGJhdHRpbmcgYXZlcmFnZSB2YXJpYWJsZSBiZWNhdXNlIGFkZGluZyB0d28gdmFyaWFibGVzIGxlYWQgdG8gbW9yZSBjb25zaXN0ZW50IHJlc3VsdHMgKHVzdWFsbHkpLg0KIyBBdmVyYWdlIGlzIG5vdCBzaWduaWZpY2FudCBiZWNhdXNlIGl0IGlzIGdyZWF0ZXIgdGhhbiAwLjA1IC0gaXQgaXMgY3VycmVudGx5IGF0IDAuMDk3LlRoZSBtb2RlbCBkaWQgaW1wcm92ZSBvdmVyYWxsIGJlY2F1c2UgdGhlIGFkanVzdGVkIHItc3F1YXJlZCBpcyAwLjQyLCB3aGljaCBtZWFucyBvdmVyYWxsIGl0IGlzIHN0cm9uZ2VyIGJ1dCBub3Qgc2lnbmlmaWNhbnRseS4NCmBgYA0KDQoNCmBgYHtyfQ0KIyBTdW0gb2YgU3F1YXJlZCBFcnJvcnMNClNTRSA9IHN1bShtb2RlbDIkcmVzaWR1YWxzXjIpDQpTU0UNCmBgYA0KYGBge3J9DQojIFRoaXMgaXMgdGhlIGRpZmZlcmVuY2UgYmV0d2VlbiB3aGF0IHlvdSBleHBlY3QgdnMgd2hhdCB5b3Ugb2JzZXJ2ZWQuIFRoaXMgc3VtIG9mIHNxdWFyZWQgZXJyb3JzIGlzIGxvd2VyLg0KYGBgDQoNCg0KYGBge3J9DQojIExpbmVhciBSZWdyZXNzaW9uIChhbGwgdmFyaWFibGVzKQ0KbW9kZWwzID0gbG0oUGF5cm9sbC5TYWxhcnkyMDIzIH4gSFIgKyBSQkkgKyBBVkcgKyBPQlArIE9QUywgZGF0YT1maXJzdGJhc2UpDQpzdW1tYXJ5KG1vZGVsMykNCmBgYA0KYGBge3J9DQoNCiMgV2UgaGF2ZSBhZGRlZCB0aGUgaG9tZSBydW5zLCBvYnAsIGFuZCBvcHMgdG8gdGhpcyBtb2RlbC4gTm9uZSBvZiB0aGUgdmFyaWFibGVzIGhlcmUgYXJlIG5vdyBzaWduaWZpY2FudCBiZWNhdXNlIHdlIGFyZSB1c2luZyBtdWx0aXBsZSB2YXJpYWJsZXMgdGhhdCBhcmUgY29ycmVsYXRlZC4NCiMgVGhlIG1vZGVsIGlzIHNpZ25pZmljYW50IGJ1dCBiZWNhdXNlIG9mIHRoZSBoaWdoZXIgaW5mbGF0aW9uIGZhY3RvciAoVklGKS4NCmBgYA0KDQoNCmBgYHtyfQ0KIyBTdW0gb2YgU3F1YXJlZCBFcnJvcnMNClNTRSA9IHN1bShtb2RlbDMkcmVzaWR1YWxzXjIpDQpTU0UNCmBgYA0KYGBge3J9DQoNCiMgVGhpcyBpcyB0aGUgZGlmZmVyZW5jZSBiZXR3ZWVuIHdoYXQgeW91IGV4cGVjdCB2cyB3aGF0IHlvdSBvYnNlcnZlZC4gDQpgYGANCg0KDQpgYGB7cn0NCiMgUmVtb3ZlIEhSDQptb2RlbDQgPSBsbShQYXlyb2xsLlNhbGFyeTIwMjMgfiBSQkkgKyBBVkcgKyBPQlArT1BTLCBkYXRhPWZpcnN0YmFzZSkNCnN1bW1hcnkobW9kZWw0KQ0KYGBgDQpgYGB7cn0NCiMgUmVtb3ZlZCBIUiBiZWNhdXNlIGl0IGlzIGhpZ2hseSBjb3JyZWxhdGVkIHdpdGggT1BTLiANCiMgVGhlIGFkanVzdGVkIFIgc3F1YXJlZCBpbmNyZWFzZWQgYnV0IG5vbmUgb2YgdGhlIGZlYXR1cmVzIGFyZSBzaWduaWZpY2FudC4NCmBgYA0KDQoNCmBgYHtyfQ0KZmlyc3RiYXNlPC1maXJzdGJhc2VbLC0oMTozKV0NCg0KYGBgDQoNCmBgYHtyfQ0KIyBXZSBhcmUgcmVtb3ZpbmcgdGhlIGZpcnN0IHRocmVlIGNvbHVtbnMgb2YgdGhlIGZpcnN0IGJhc2UgZGF0YXNldA0KYGBgDQoNCg0KYGBge3J9DQojIENvcnJlbGF0aW9ucw0KY29yKGZpcnN0YmFzZSRSQkksIGZpcnN0YmFzZSRQYXlyb2xsLlNhbGFyeTIwMjMpDQoNCmBgYA0KYGBge3J9DQojIFRoZSBjb3JyZWxhdGlvbiBiZXR3ZWVuIFJCSSBhbmQgcGF5cm9sbCBpcyBwcmV0dHkgc2lnbmlmaWNhbnQuDQpgYGANCg0KDQpgYGB7cn0NCmNvcihmaXJzdGJhc2UkQVZHLCBmaXJzdGJhc2UkT0JQKQ0KDQpgYGANCmBgYHtyfQ0KDQojV2UgY2Fubm90IGtlZXAgYXZlcmFnZSBhbmQgT0JQIGluIHRoZSBzYW1lIG1vZGVsIGJlY2F1c2Ugb2YgdGhlIGhpZ2ggY29ycmVsYXRpb24uDQpgYGANCg0KDQpgYGB7cn0NCmNvcihmaXJzdGJhc2UpDQoNCmBgYA0KYGBge3J9DQoNCiMgVGhpcyBpcyBhIGdvb2Qgd2F5IHRvIHNlZSB3aGljaCBtb2RlbHMgd2Ugc2hvdWxkIHVzZSBpbiBvdXIgbW9kZWwuIFRoZSBoaWdoZXIgdGhlIG51bWJlciwgdGhlIG1vcmUgd2Ugc2hvdWxkIGF2b2lkIHRob3NlIHZhcmlhYmxlcyBiZWluZyB0b2dldGhlciBpbiBhIG1vZGVsLg0KIyBGb3IgZXhhbXBsZSwgdGhlIGNvcnJlbGF0aW9uIGJldHdlZW4gUkJJIGFuZCBTTEcgaXMgMC44ODI0MDkwIHNvIHdlIGNhbm5vdCBrZWVwIHRoZW0gaW4gdGhlIHNhbWUgbW9kZWwuDQpgYGANCg0KDQpgYGB7cn0NCiNSZW1vdmluZyBBVkcNCm1vZGVsNSA9IGxtKFBheXJvbGwuU2FsYXJ5MjAyMyB+IFJCSSArIE9CUCtPUFMsIGRhdGE9Zmlyc3RiYXNlKQ0Kc3VtbWFyeShtb2RlbDUpDQpgYGANCmBgYHtyfQ0KDQojIFRoZSBhZGp1c3RlZCBSIHNxdWFyZWQgaW5jcmVhc2Ugc28gdGhlIG1vZGVsIGlzIHNpZ25pZmljYW50IGJ1dCBub25lIG9mIHRoZSBwcmVkaWN0b3JzIGFyZS4NCmBgYA0KDQoNCmBgYHtyfQ0KbW9kZWw2ID0gbG0oUGF5cm9sbC5TYWxhcnkyMDIzIH4gUkJJICsgT0JQLCBkYXRhPWZpcnN0YmFzZSkNCnN1bW1hcnkobW9kZWw2KQ0KDQpgYGANCmBgYHtyfQ0KIyBUaGlzIGlzIHRoZSBiZXN0IG1vZGVsIHdlIGhhdmUgcmFuIHNvIGZhci4gVGhlIGFkanVzdGVkIFIgc3F1YXJlZCBpcyBoaWdoICgwLjUzKSBhbmQgdGhlIHAgdmFsdWUgaXMgbGVzcyB0aGFuIDAuMDUuDQpgYGANCg0KDQpgYGB7cn0NCiMgUmVhZCBpbiB0ZXN0IHNldA0KZmlyc3RiYXNlVGVzdCA9IHJlYWQuY3N2KCJmaXJzdGJhc2VzdGF0c190ZXN0LmNzdiIpDQpzdHIoZmlyc3RiYXNlVGVzdCkNCmBgYA0KYGBge3J9DQojIFdlIGFyZSBjaGVja2luZyB0byBzZWUgaWYgb3VyIG1vZGVsIHN0aWxsIGRvZXMgd2VsbCB3aXRoIHRoZSBzYW1lIGRhdGENCmBgYA0KDQoNCg0KYGBge3J9DQojIE1ha2UgdGVzdCBzZXQgcHJlZGljdGlvbnMNCnByZWRpY3RUZXN0ID0gcHJlZGljdChtb2RlbDYsIG5ld2RhdGE9Zmlyc3RiYXNlVGVzdCkNCnByZWRpY3RUZXN0DQpgYGANCmBgYHtyfQ0KIyBJdCBpcyBwcmVkaWN0aW5nIHRoYXQgdGhlIHNhbGFyeSBmb3IgTWF0dCBPbHNvbiB3aWxsIGJlIDEwLDcyMywxODYgYW5kIHRoZSBzYWxhcnkgZm9yIEpvc2ggQmVsbCB3aWxsIGJlIDExLDU1OCw2NDcuDQpgYGANCg0KDQpgYGB7cn0NCiMgQ29tcHV0ZSBSLXNxdWFyZWQNClNTRSA9IHN1bSgoZmlyc3RiYXNlVGVzdCRQYXlyb2xsLlNhbGFyeTIwMjMgLSBwcmVkaWN0VGVzdCleMikNClNTVCA9IHN1bSgoZmlyc3RiYXNlVGVzdCRQYXlyb2xsLlNhbGFyeTIwMjMgLSBtZWFuKGZpcnN0YmFzZSRQYXlyb2xsLlNhbGFyeTIwMjMpKV4yKQ0KMSAtIFNTRS9TU1QNCmBgYA0KYGBge3J9DQojIFRoaXMgaXMgdGhlIGRpZmZlcmVuY2UgYmV0d2VlbiB3aGF0IHlvdSBleHBlY3QgdnMgd2hhdCB5b3Ugb2JzZXJ2ZWQuDQpgYGANCg0K