Intro to Linear Regression: First Base hitting stats

TO DO: Add comments and fix the errors you are getting.

# Read in data
firstbase = read.csv('C:/Users/17862/Documents/SPORTS_ANALYTICS/Intro_to_R/firstbasestats.csv')
str(firstbase)
## 'data.frame':    23 obs. of  15 variables:
##  $ Player            : chr  "Freddie Freeman" "Jose Abreu" "Nate Lowe" "Paul Goldschmidt" ...
##  $ Pos               : chr  "1B" "1B" "1B" "1B" ...
##  $ Team              : chr  "LAD" "CHW" "TEX" "STL" ...
##  $ GP                : int  159 157 157 151 160 140 160 145 146 143 ...
##  $ AB                : int  612 601 593 561 638 551 583 555 545 519 ...
##  $ H                 : int  199 183 179 178 175 152 141 139 132 124 ...
##  $ X2B               : int  47 40 26 41 35 27 25 28 40 23 ...
##  $ HR                : int  21 15 27 35 32 20 36 22 8 18 ...
##  $ RBI               : int  100 75 76 115 97 84 94 85 53 63 ...
##  $ AVG               : num  0.325 0.305 0.302 0.317 0.274 0.276 0.242 0.251 0.242 0.239 ...
##  $ OBP               : num  0.407 0.379 0.358 0.404 0.339 0.34 0.327 0.305 0.288 0.319 ...
##  $ SLG               : num  0.511 0.446 0.492 0.578 0.48 0.437 0.477 0.423 0.36 0.391 ...
##  $ OPS               : num  0.918 0.824 0.851 0.981 0.818 0.777 0.804 0.729 0.647 0.71 ...
##  $ WAR               : num  5.77 4.19 3.21 7.86 3.85 3.07 5.05 1.32 -0.33 1.87 ...
##  $ Payroll.Salary2023: num  27000000 19500000 4050000 26000000 14500000 ...
summary(firstbase)
##     Player              Pos                Team                 GP       
##  Length:23          Length:23          Length:23          Min.   :  5.0  
##  Class :character   Class :character   Class :character   1st Qu.:105.5  
##  Mode  :character   Mode  :character   Mode  :character   Median :131.0  
##                                                           Mean   :120.2  
##                                                           3rd Qu.:152.0  
##                                                           Max.   :160.0  
##        AB              H              X2B              HR       
##  Min.   : 14.0   Min.   :  3.0   Min.   : 1.00   Min.   : 0.00  
##  1st Qu.:309.0   1st Qu.: 74.5   1st Qu.:13.50   1st Qu.: 8.00  
##  Median :465.0   Median :115.0   Median :23.00   Median :18.00  
##  Mean   :426.9   Mean   :110.0   Mean   :22.39   Mean   :17.09  
##  3rd Qu.:558.0   3rd Qu.:146.5   3rd Qu.:28.00   3rd Qu.:24.50  
##  Max.   :638.0   Max.   :199.0   Max.   :47.00   Max.   :36.00  
##       RBI              AVG              OBP              SLG        
##  Min.   :  1.00   Min.   :0.2020   Min.   :0.2140   Min.   :0.2860  
##  1st Qu.: 27.00   1st Qu.:0.2180   1st Qu.:0.3030   1st Qu.:0.3505  
##  Median : 63.00   Median :0.2420   Median :0.3210   Median :0.4230  
##  Mean   : 59.43   Mean   :0.2499   Mean   :0.3242   Mean   :0.4106  
##  3rd Qu.: 84.50   3rd Qu.:0.2750   3rd Qu.:0.3395   3rd Qu.:0.4690  
##  Max.   :115.00   Max.   :0.3250   Max.   :0.4070   Max.   :0.5780  
##       OPS              WAR         Payroll.Salary2023
##  Min.   :0.5000   Min.   :-1.470   Min.   :  720000  
##  1st Qu.:0.6445   1st Qu.: 0.190   1st Qu.:  739200  
##  Median :0.7290   Median : 1.310   Median : 4050000  
##  Mean   :0.7346   Mean   : 1.788   Mean   : 6972743  
##  3rd Qu.:0.8175   3rd Qu.: 3.140   3rd Qu.: 8150000  
##  Max.   :0.9810   Max.   : 7.860   Max.   :27000000
# Linear Regression (one variable)
#we are building a model here. We want this model to predict Salary2023(predcit variable) as a function of RBI(independent varibale)
#the independent variable is going to explain the salary among players who are in the same positions. In this case firstbase players
model1 = lm(Payroll.Salary2023 ~ RBI, data=firstbase)
summary(model1)
## 
## Call:
## lm(formula = Payroll.Salary2023 ~ RBI, data = firstbase)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -10250331  -5220790   -843455   2386848  13654950 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept) -2363744    2866320  -0.825  0.41883   
## RBI           157088      42465   3.699  0.00133 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6516000 on 21 degrees of freedom
## Multiple R-squared:  0.3945, Adjusted R-squared:  0.3657 
## F-statistic: 13.68 on 1 and 21 DF,  p-value: 0.001331

RBI in this case is significant because we have that Pvalue < alpha. (0.001331 < 0.05). Therefore we have enough evidence to reject the null hypothesis. RBI does not affect the yearly salary.

# Sum of Squared Errors
model1$residuals
##           1           2           3           4           5           6 
##  13654950.2  10082148.6  -5524939.3  10298631.2   1626214.0  -6731642.8 
##           7           8           9          10          11          12 
##  -5902522.2 -10250330.7  -4711916.8   -532796.1  -6667082.5  -6696203.1 
##          13          14          15          16          17          18 
##   7582148.6  -4916640.9  -1898125.3   -336532.3   -995042.5  -1311618.3 
##          19          20          21          22          23 
##   -843454.5   8050721.3   1250336.9   1847040.4   2926656.0
SSE = sum(model1$residuals^2)
SSE
## [1] 8.914926e+14

building a model that will predict salary

# Linear Regression (two variables)
model2 = lm(Payroll.Salary2023 ~ AVG + RBI, data=firstbase)
summary(model2)
## 
## Call:
## lm(formula = Payroll.Salary2023 ~ AVG + RBI, data = firstbase)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -9097952 -4621582   -33233  3016541 10260245 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)  
## (Intercept) -18083756    9479037  -1.908   0.0709 .
## AVG          74374031   42934155   1.732   0.0986 .
## RBI            108850      49212   2.212   0.0388 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6226000 on 20 degrees of freedom
## Multiple R-squared:  0.4735, Adjusted R-squared:  0.4209 
## F-statistic: 8.994 on 2 and 20 DF,  p-value: 0.001636

We added another variable in this model2. Results are a little better than the first one. Looking at adjusted Rsquared, the model improved as whole.

note: the highest the rsquared the better.

# Sum of Squared Errors
model1$residuals
##           1           2           3           4           5           6 
##  13654950.2  10082148.6  -5524939.3  10298631.2   1626214.0  -6731642.8 
##           7           8           9          10          11          12 
##  -5902522.2 -10250330.7  -4711916.8   -532796.1  -6667082.5  -6696203.1 
##          13          14          15          16          17          18 
##   7582148.6  -4916640.9  -1898125.3   -336532.3   -995042.5  -1311618.3 
##          19          20          21          22          23 
##   -843454.5   8050721.3   1250336.9   1847040.4   2926656.0

The sum of the squared error is lower

SSE = sum(model1$residuals^2)
SSE
## [1] 8.914926e+14
# Linear Regression (two variables)
model2 = lm(Payroll.Salary2023 ~ AVG + RBI, data=firstbase)
summary(model2)
## 
## Call:
## lm(formula = Payroll.Salary2023 ~ AVG + RBI, data = firstbase)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -9097952 -4621582   -33233  3016541 10260245 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)  
## (Intercept) -18083756    9479037  -1.908   0.0709 .
## AVG          74374031   42934155   1.732   0.0986 .
## RBI            108850      49212   2.212   0.0388 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6226000 on 20 degrees of freedom
## Multiple R-squared:  0.4735, Adjusted R-squared:  0.4209 
## F-statistic: 8.994 on 2 and 20 DF,  p-value: 0.001636
# Sum of Squared Errors
SSE = sum(model2$residuals^2)
SSE
## [1] 7.751841e+14
# Linear Regression (all variables)
model3 = lm(Payroll.Salary2023 ~ HR + RBI + AVG + OBP+ OPS, data=firstbase)
summary(model3)
## 
## Call:
## lm(formula = Payroll.Salary2023 ~ HR + RBI + AVG + OBP + OPS, 
##     data = firstbase)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -9611440 -3338119    64016  4472451  9490309 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)  
## (Intercept) -31107859   11738494  -2.650   0.0168 *
## HR            -341069     552069  -0.618   0.5449  
## RBI            115786     113932   1.016   0.3237  
## AVG         -63824769  104544645  -0.611   0.5496  
## OBP          27054948  131210166   0.206   0.8391  
## OPS          60181012   95415131   0.631   0.5366  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6023000 on 17 degrees of freedom
## Multiple R-squared:  0.5811, Adjusted R-squared:  0.4579 
## F-statistic: 4.717 on 5 and 17 DF,  p-value: 0.006951

We are adding 5 more variables to a third model. The model is significant as whole , but with a higher inflation factor (non of the predictors are significant).It has higher VIF(variance inflation factor) among the predictors.

# Sum of Squared Errors
SSE = sum(model3$residuals^2)
SSE
## [1] 6.167793e+14
# Remove HR
model4 = lm(Payroll.Salary2023 ~ RBI + AVG + OBP+OPS, data=firstbase)
summary(model4)
## 
## Call:
## lm(formula = Payroll.Salary2023 ~ RBI + AVG + OBP + OPS, data = firstbase)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -9399551 -3573842    98921  3979339  9263512 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)  
## (Intercept) -29466887   11235931  -2.623   0.0173 *
## RBI             71495      87015   0.822   0.4220  
## AVG         -11035457   59192453  -0.186   0.8542  
## OBP          86360720   87899074   0.982   0.3389  
## OPS           9464546   47788458   0.198   0.8452  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5919000 on 18 degrees of freedom
## Multiple R-squared:  0.5717, Adjusted R-squared:  0.4765 
## F-statistic: 6.007 on 4 and 18 DF,  p-value: 0.00298

In this model the Adjusted rsquared increase, But non of the variables are significant

#Removing the three first column from the dataset
firstbase <-firstbase[,-(1:3)]
firstbase

We are removing the columns because they were not numerical columns. it will help when we do teh correlation later

# Correlations
cor(firstbase$RBI, firstbase$Payroll.Salary2023)
## [1] 0.6281239
cor(firstbase$AVG, firstbase$OBP)
## [1] 0.8028894

AVG and OBP have high correlation, so we should not have the ones with really high correlation in the same model.

cor(firstbase)
##                           GP        AB         H       X2B        HR       RBI
## GP                 1.0000000 0.9779421 0.9056508 0.8446267 0.7432552 0.8813917
## AB                 0.9779421 1.0000000 0.9516701 0.8924632 0.7721339 0.9125839
## H                  0.9056508 0.9516701 1.0000000 0.9308318 0.7155225 0.9068893
## X2B                0.8446267 0.8924632 0.9308318 1.0000000 0.5889699 0.8485911
## HR                 0.7432552 0.7721339 0.7155225 0.5889699 1.0000000 0.8929048
## RBI                0.8813917 0.9125839 0.9068893 0.8485911 0.8929048 1.0000000
## AVG                0.4430808 0.5126292 0.7393167 0.6613085 0.3444242 0.5658479
## OBP                0.4841583 0.5026125 0.6560021 0.5466537 0.4603408 0.5704463
## SLG                0.6875270 0.7471949 0.8211406 0.7211259 0.8681501 0.8824090
## OPS                0.6504483 0.6980141 0.8069779 0.6966830 0.7638721 0.8156612
## WAR                0.5645243 0.6211558 0.7688712 0.6757470 0.6897677 0.7885666
## Payroll.Salary2023 0.4614889 0.5018820 0.6249911 0.6450730 0.5317619 0.6281239
##                          AVG       OBP       SLG       OPS       WAR
## GP                 0.4430808 0.4841583 0.6875270 0.6504483 0.5645243
## AB                 0.5126292 0.5026125 0.7471949 0.6980141 0.6211558
## H                  0.7393167 0.6560021 0.8211406 0.8069779 0.7688712
## X2B                0.6613085 0.5466537 0.7211259 0.6966830 0.6757470
## HR                 0.3444242 0.4603408 0.8681501 0.7638721 0.6897677
## RBI                0.5658479 0.5704463 0.8824090 0.8156612 0.7885666
## AVG                1.0000000 0.8028894 0.7254274 0.7989005 0.7855945
## OBP                0.8028894 1.0000000 0.7617499 0.8987390 0.7766375
## SLG                0.7254274 0.7617499 1.0000000 0.9686752 0.8611140
## OPS                0.7989005 0.8987390 0.9686752 1.0000000 0.8799893
## WAR                0.7855945 0.7766375 0.8611140 0.8799893 1.0000000
## Payroll.Salary2023 0.5871543 0.7025979 0.6974086 0.7394981 0.8086359
##                    Payroll.Salary2023
## GP                          0.4614889
## AB                          0.5018820
## H                           0.6249911
## X2B                         0.6450730
## HR                          0.5317619
## RBI                         0.6281239
## AVG                         0.5871543
## OBP                         0.7025979
## SLG                         0.6974086
## OPS                         0.7394981
## WAR                         0.8086359
## Payroll.Salary2023          1.0000000
#Removing AVG
model5 = lm(Payroll.Salary2023 ~ RBI + OBP+OPS, data=firstbase)
summary(model5)
## 
## Call:
## lm(formula = Payroll.Salary2023 ~ RBI + OBP + OPS, data = firstbase)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -9465449 -3411234   259746  4102864  8876798 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)  
## (Intercept) -29737007   10855411  -2.739    0.013 *
## RBI             72393      84646   0.855    0.403  
## OBP          82751360   83534224   0.991    0.334  
## OPS           7598051   45525575   0.167    0.869  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5767000 on 19 degrees of freedom
## Multiple R-squared:  0.5709, Adjusted R-squared:  0.5031 
## F-statistic: 8.426 on 3 and 19 DF,  p-value: 0.000913

Still is not good. The adjusted Rsquared increase. The model is significant but like previous model, non of the predictors are significant.

model6 = lm(Payroll.Salary2023 ~ RBI + OBP, data=firstbase)
summary(model6) 
## 
## Call:
## lm(formula = Payroll.Salary2023 ~ RBI + OBP, data = firstbase)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -9045497 -3487008   139497  4084739  9190185 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)   
## (Intercept) -28984802    9632560  -3.009  0.00693 **
## RBI             84278      44634   1.888  0.07360 . 
## OBP          95468873   33385182   2.860  0.00969 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5625000 on 20 degrees of freedom
## Multiple R-squared:  0.5703, Adjusted R-squared:  0.5273 
## F-statistic: 13.27 on 2 and 20 DF,  p-value: 0.0002149

This model is the best out of all the ones we have tried. Becasue the combination of low pvalues and adjusted rsquared which is the higher among all the models

# Read in test set
firstbaseTest = read.csv('C:/Users/17862/Documents/SPORTS_ANALYTICS/Intro_to_R/firstbasestats_test.csv')
str(firstbaseTest)
## 'data.frame':    2 obs. of  15 variables:
##  $ Player            : chr  "Matt Olson" "Josh Bell"
##  $ Pos               : chr  "1B" "1B"
##  $ Team              : chr  "ATL" "SD"
##  $ GP                : int  162 156
##  $ AB                : int  616 552
##  $ H                 : int  148 147
##  $ X2B               : int  44 29
##  $ HR                : int  34 17
##  $ RBI               : int  103 71
##  $ AVG               : num  0.24 0.266
##  $ OBP               : num  0.325 0.362
##  $ SLG               : num  0.477 0.422
##  $ OPS               : num  0.802 0.784
##  $ WAR               : num  3.29 3.5
##  $ Payroll.Salary2023: num  21000000 16500000

testing the model with unseen data(test data). For that we have another dataset with the data for testing (firsbasestats_test) - 2 observations The model

# Make test set predictions
predictTest = predict(model6, newdata=firstbaseTest)
predictTest
##        1        2 
## 10723186 11558647
# Compute R-squared
SSE = sum((firstbaseTest$Payroll.Salary2023 - predictTest)^2)
SST = sum((firstbaseTest$Payroll.Salary2023 - mean(firstbase$Payroll.Salary2023))^2)
1 - SSE/SST
## [1] 0.5477734