Resumen

México se ha caracterizado por ser un país con un reducido crecimiento económico y baja calidad institucional política debido al incumplimiento de las normas establecidas, altos niveles de corrupción y una elevada incertidumbre sobre la seguridad social. El presente trabajo tiene el objetivo analizar la relación entre eficiencia de las instituciones políticas (medido por los indicadores: libertades civiles, derechos políticos, régimen político y durabilidad de gobierno) y su efecto en el crecimiento económico para México (medido por el PIB per cápita) en el periodo 1970-2017. La pregunta de investigación es la siguiente: ¿Cuál es el efecto de la eficiencia institucional política en el crecimiento económico mexicano del periodo 1970-2017? Partiendo de una función de producción propuesta por Mankiw, Romer y Weil (1992), se le incorpora los factores institucionales y una variable dummy para capturar el efecto del régimen de gobierno. Los principales resultados son: Primero, la libertad política es un factor positivo para el crecimiento económico en México, por tanto, no es recomendable que un gobierno se perpetúe en el poder. Segundo, el manejo político conservador, desde el quiebre estructural de los años ochenta, fue negativo para el desempeño económico. Este resultado sugiere que hubo una ineficiencia en el manejo político que resultó desfavorable para el crecimiento económico mexicano.

1. Introducción

En investigaciones actuales, las instituciones tienen una mayor importancia para explicar los fenómenos macroeconómicos como el crecimiento y desarrollo económico. Al ser reglas e incentivos que determinan el comportamiento de los agentes económicos, las instituciones permiten encauzar el progreso de un país. El enfoque de análisis que se le ha dado a las instituciones como determinantes del crecimiento económico es amplio. Las economías que transitaron por periodos coloniales formaron instituciones que determinaron su desenvolvimiento futuro, un caso importante es el de Estados Unidos y América Latina, siendo que son parte de un mismo continente, existe una amplia brecha económica entre ambos. Las instituciones normativas, como los derechos de propiedad, también son importantes para un buen funcionamiento en la economía. Instituciones políticas, como la democracia, tienen una importante correlación con las economías de altos ingresos.
El presente trabajo tiene por objetivo analizar la eficiencia de las instituciones políticas (medido por los indicadores: libertades civiles, derechos políticos, régimen político y durabilidad de gobierno) como determinante del crecimiento económico en México. Para esto se analizaron los indicadores institucionales y variables económicas bajo un modelo de crecimiento económico ampliado de Mankiw, Romer y Weil (1992). Para analizar el efecto de las instituciones en el crecimiento económico en México, se realizó un modelo econométrico de mínimos cuadrados ordinarios (MCO) en el que se estima una función de producción tipo Cobb-Douglas incorporando la variables institucionales como explicativa del crecimiento económico. Los resultados sugieren que: Primero, existe una relación positiva entre la libertad política y el PIB per cápita, por lo que no es recomendable que un gobierno se perpetúe en el poder. Segundo, el manejo político conservador, desde el quiebre estructural de los años ochenta, fue negativo para el desempeño económico. Este resultado muestra que existió una ineficiencia en el manejo político que resultó desfavorable para el crecimiento económico mexicano. El trabajo se divide en seis secciones: Primero, el marco teórico que comprende una reseña del alcance de las investigaciones sobre las instituciones y crecimiento económico. Segundo, análisis estadístico de las principales variables del estudio. Tercero, planteamiento del modelo, en este apartado se describe el modelo teórico a ser utilizado así como las variables. Cuarto, evaluación de resultados del modelo econométrico. Por último, las conclusiones del trabajo.

3. Analisis estadistico

librerias

install.packages('plotrix')
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.3'
## (as 'lib' is unspecified)
install.packages('corrplot')
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.3'
## (as 'lib' is unspecified)
install.packages('stargazer')
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.3'
## (as 'lib' is unspecified)
install.packages('tseries')
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.3'
## (as 'lib' is unspecified)
install.packages('lmtest')
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.3'
## (as 'lib' is unspecified)
install.packages('strucchange')
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.3'
## (as 'lib' is unspecified)

abrir librerias

library(plotrix)
library(corrplot)
## corrplot 0.92 loaded
library(stargazer)
## 
## Please cite as:
##  Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
library(tseries)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
library(lmtest)
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
library(strucchange)
## Loading required package: sandwich

Utilizar datos

base1 <- read.csv("base_trabajo.csv")
attach(base1)
## The following object is masked from package:datasets:
## 
##     lh
base1
##       X      pib       ik        h        h2        n       ev        dp
## 1  1970 5385.819 3481.082 1.732690  6.451879 3.333438 63.71300 0.4285714
## 2  1971 5412.763 3263.558 1.750521  5.290870 3.263850 64.26900 0.4285714
## 3  1972 5672.384 3524.436 1.768535  5.666480 3.200299 64.87300 0.4285714
## 4  1973 5925.774 3904.378 1.786734  6.109517 3.157102 65.51200 0.5714286
## 5  1974 6076.344 4434.293 1.805120  7.468320 3.182517 66.17700 0.5714286
## 6  1975 6237.066 4393.911 1.823696  8.766240 3.240072 66.85400 0.5714286
## 7  1976 6330.451 4281.866 1.842463  9.562760 2.896650 67.53000 0.5714286
## 8  1977 6369.925 3913.504 1.861423  9.450100 3.125731 68.19100 0.5714286
## 9  1978 6762.484 4323.641 1.880578 10.600690 3.227030 68.82500 0.5714286
## 10 1979 7235.333 4845.245 1.899930 11.729610 3.170322 69.42200 0.5714286
## 11 1980 7715.244 5300.305 1.919481 13.092150 3.065898 69.97400 0.7142857
## 12 1981 8199.231 5889.383 1.944144 13.892110 3.338732 70.47900 0.7142857
## 13 1982 7967.029 4311.096 1.969123 14.505320 3.094501 70.94300 0.7142857
## 14 1983 7468.730 3033.577 1.994423 14.781580 2.991851 71.37300 0.7142857
## 15 1984 7576.608 3121.530 2.020048 15.270400 3.072024 71.77300 0.7142857
## 16 1985 7614.332 3371.509 2.046003 16.778045 3.215418 72.14800 0.5714286
## 17 1986 7182.415 2630.345 2.072291 15.823620 3.258707 72.50300 0.5714286
## 18 1987 7173.127 2691.190 2.098917 15.581390 3.318744 72.84500 0.5714286
## 19 1988 7122.595 2909.676 2.125884 16.211260 3.333217 73.17800 0.7142857
## 20 1989 7278.509 2862.332 2.153199 15.622650 3.255239 73.50600 0.5714286
## 21 1990 7498.684 3096.036 2.180864 15.045820 3.130642 73.83100 0.5714286
## 22 1991 7661.486 3304.373 2.203467 14.331010 3.012343 74.15300 0.5714286
## 23 1992 7782.472 3636.442 2.226304 20.857157 2.967455 74.47000 0.5714286
## 24 1993 7940.144 3108.796 2.249378 13.051180 2.871638 74.77800 0.5714286
## 25 1994 8174.692 3463.305 2.272691 13.234890 2.730519 75.07900 0.5714286
## 26 1995 7522.222 2320.980 2.296246 13.604870 2.567926 75.37400 0.5714286
## 27 1996 7893.907 2624.286 2.320045 14.588710 2.378074 75.66500 0.5714286
## 28 1997 8296.166 2929.488 2.344090 15.395580 2.206472 75.95100 0.7142857
## 29 1998 8588.638 3165.345 2.368385 16.597179 2.066596 76.23300 0.7142857
## 30 1999 8694.987 3193.920 2.392931 17.753180 1.976547 76.50700 0.7142857
## 31 2000 8997.434 3437.774 2.417732 19.050619 1.920359 76.76800 0.8571429
## 32 2001 8843.901 2958.042 2.437087 19.952690 1.853730 77.01200 0.8571429
## 33 2002 8731.220 2887.756 2.456598 21.017090 1.802172 77.23500 0.8571429
## 34 2003 8749.778 2887.627 2.476264 21.971081 1.790383 77.43600 0.8571429
## 35 2004 8977.658 2979.716 2.496088 22.846491 1.820222 77.61500 0.8571429
## 36 2005 9059.810 3154.592 2.516070 23.411720 1.883247 77.77700 0.8571429
## 37 2006 9327.736 3358.504 2.536212 23.869680 2.154859 77.92700 0.8571429
## 38 2007 9392.687 3451.348 2.556516 24.348770 2.221992 78.07100 0.8571429
## 39 2008 9347.524 3548.808 2.571415 24.904791 2.258478 78.21500 0.8571429
## 40 2009 8712.140 3058.763 2.585257 25.322901 2.249266 78.36300 0.8571429
## 41 2010 9016.458 3196.128 2.599173 26.297030 2.196820 78.51800 0.7142857
## 42 2011 9207.729 3331.832 2.618361 27.197121 2.121609 78.68100 0.7142857
## 43 2012 9405.813 3439.287 2.637690 28.513121 2.049084 78.84900 0.7142857
## 44 2013 9400.322 3301.595 2.657163 29.461599 1.969704 79.01900 0.7142857
## 45 2014 9536.600 3297.035 2.676779 30.229780 1.885812 79.19100 0.7142857
## 46 2015 9717.898 3376.766 2.695469 30.794319 1.799375 79.36500 0.7142857
## 47 2016 9871.670 3372.815 2.714290 36.850739 1.644193 79.53800 0.7142857
## 48 2017 9946.158 3266.570 2.733243 39.231844 1.595732 79.71138 0.7142857
##           lc democ autoc polity durable dum1 dum2 dum3 dum4 dum5 dum6     lpib
## 1  0.7142857     0     6     -6      40    0    0    0    0    0    0 3.731252
## 2  0.7142857     0     6     -6      41    0    0    0    0    0    0 3.733419
## 3  0.7142857     0     6     -6      42    0    0    0    0    0    0 3.753766
## 4  0.7142857     0     6     -6      43    0    0    0    0    0    0 3.772745
## 5  0.7142857     0     6     -6      44    0    0    0    0    0    0 3.783642
## 6  0.7142857     0     6     -6      45    0    0    0    0    0    0 3.794980
## 7  0.5714286     0     6     -6      46    0    1    0    0    0    1 3.801435
## 8  0.7142857     1     4     -3       0    0    0    0    0    0    0 3.804134
## 9  0.5714286     1     4     -3       1    0    0    0    0    1    0 3.830106
## 10 0.5714286     1     4     -3       2    0    0    0    0    1    0 3.859459
## 11 0.5714286     1     4     -3       3    0    0    0    0    1    0 3.887350
## 12 0.5714286     1     4     -3       4    0    0    0    0    1    0 3.913773
## 13 0.5714286     1     4     -3       5    0    0    0    0    1    0 3.901296
## 14 0.5714286     1     4     -3       6    1    0    0    0    1    0 3.873247
## 15 0.5714286     1     4     -3       7    1    0    0    0    1    0 3.879475
## 16 0.5714286     1     4     -3       8    1    0    0    0    1    0 3.881632
## 17 0.5714286     1     4     -3       9    1    0    0    0    1    0 3.856271
## 18 0.5714286     1     4     -3      10    1    0    0    0    1    0 3.855709
## 19 0.5714286     2     2      0       0    1    1    0    1    1    0 3.852638
## 20 0.7142857     2     2      0       1    1    0    0    1    1    0 3.862042
## 21 0.5714286     2     2      0       2    1    0    0    1    1    0 3.874985
## 22 0.5714286     2     2      0       3    1    0    0    1    1    0 3.884313
## 23 0.7142857     2     2      0       4    1    0    0    1    1    0 3.891118
## 24 0.5714286     2     2      0       5    1    0    0    1    1    0 3.899828
## 25 0.5714286     4     0      4       0    1    0    0    1    1    0 3.912471
## 26 0.5714286     4     0      4       0    1    0    0    1    1    0 3.876346
## 27 0.7142857     4     0      4       0    1    0    0    1    1    0 3.897292
## 28 0.5714286     6     0      6       0    1    0    0    1    1    0 3.918877
## 29 0.5714286     6     0      6       1    1    0    0    1    1    0 3.933924
## 30 0.5714286     6     0      6       2    1    0    0    1    1    0 3.939269
## 31 0.7142857     8     0      8       3    1    0    0    1    1    0 3.954119
## 32 0.7142857     8     0      8       4    1    0    0    1    1    0 3.946644
## 33 0.8571429     8     0      8       5    1    0    0    1    1    0 3.941075
## 34 0.8571429     8     0      8       6    1    0    0    1    1    0 3.941997
## 35 0.8571429     8     0      8       7    1    0    0    1    1    0 3.953163
## 36 0.8571429     8     0      8       8    1    0    0    1    1    0 3.957119
## 37 0.7142857     8     0      8       9    1    0    0    1    1    0 3.969776
## 38 0.7142857     8     0      8      10    1    0    0    1    1    0 3.972790
## 39 0.7142857     8     0      8      11    1    0    0    1    1    0 3.970697
## 40 0.7142857     8     0      8      12    1    0    1    1    1    1 3.940125
## 41 0.7142857     8     0      8      13    1    0    0    1    1    0 3.955036
## 42 0.7142857     8     0      8      14    1    0    0    1    1    0 3.964153
## 43 0.7142857     8     0      8      15    1    0    0    1    1    0 3.973396
## 44 0.7142857     8     0      8      16    1    0    0    1    1    0 3.973143
## 45 0.7142857     8     0      8      17    1    0    0    1    1    0 3.979394
## 46 0.7142857     8     0      8      18    1    0    0    1    1    0 3.987572
## 47 0.7142857     8     0      8      19    1    0    0    1    1    0 3.994391
## 48 0.7142857     8     0      8      20    1    0    0    1    1    0 3.997655
##          lk        gpib        lh        gh  lag_pib dum_2  dp_dum_1
## 1  3.541714          NA 0.2387210        NA       NA     0 0.0000000
## 2  3.513691  0.21672691 0.2431673 0.4446299 3.731252     0 0.0000000
## 3  3.547090  2.03465823 0.2476136 0.4446294 3.733419     0 0.0000000
## 4  3.591552  1.89794434 0.2520599 0.4446294 3.753766     0 0.0000000
## 5  3.646824  1.08972873 0.2565062 0.4446293 3.772745     0 0.0000000
## 6  3.642851  1.13380178 0.2609525 0.4446288 3.783642     0 0.0000000
## 7  3.631633  0.64543160 0.2653987 0.4446273 3.794980     1 0.0000000
## 8  3.592566  0.26996111 0.2698450 0.4446301 3.801435     1 0.0000000
## 9  3.635850  2.59719813 0.2742913 0.4446282 3.804134     0 0.0000000
## 10 3.685316  2.93522617 0.2787376 0.4446295 3.830106     0 0.0000000
## 11 3.724301  2.78911441 0.2831839 0.4446307 3.859459     0 0.0000000
## 12 3.770070  2.64234458 0.2887284 0.5544444 3.887350     0 0.0000000
## 13 3.634588 -1.24767123 0.2942728 0.5544494 3.913773     0 0.0000000
## 14 3.481955 -2.80496296 0.2998173 0.5544461 3.901296     0 0.0000000
## 15 3.494368  0.62280640 0.3053618 0.5544464 3.873247     0 0.0000000
## 16 3.527824  0.21569937 0.3109062 0.5544467 3.879475     0 0.0000000
## 17 3.420013 -2.53613182 0.3164507 0.5544482 3.881632     0 0.0000000
## 18 3.429944 -0.05620083 0.3219952 0.5544449 3.856271     0 0.0000000
## 19 3.463845 -0.30702739 0.3275396 0.5544456 3.855709     0 0.7142857
## 20 3.456720  0.94041736 0.3330841 0.5544489 3.852638     0 0.5714286
## 21 3.490806  1.29426568 0.3386286 0.5544442 3.862042     0 0.5714286
## 22 3.519089  0.93279512 0.3431065 0.4477974 3.874985     0 0.5714286
## 23 3.560677  0.68045636 0.3475845 0.4477948 3.884313     0 0.5714286
## 24 3.492592  0.87108027 0.3520624 0.4477960 3.891118     0 0.5714286
## 25 3.539491  1.26430130 0.3565404 0.4477958 3.899828     0 0.5714286
## 26 3.365671 -3.61252626 0.3610184 0.4477983 3.912471     0 0.5714286
## 27 3.419011  2.09458919 0.3654963 0.4477941 3.876346     0 0.5714286
## 28 3.466792  2.15853971 0.3699743 0.4477961 3.897292     0 0.7142857
## 29 3.500421  1.50468645 0.3744523 0.4477993 3.918877     0 0.7142857
## 30 3.504324  0.53446614 0.3789302 0.4477944 3.933924     0 0.7142857
## 31 3.536277  1.48496991 0.3834082 0.4477942 3.939269     0 0.8571429
## 32 3.471004 -0.74747709 0.3868711 0.3462927 3.954119     0 0.8571429
## 33 3.460560 -0.55689480 0.3903340 0.3462931 3.946644     0 0.8571429
## 34 3.460541  0.09221037 0.3937969 0.3462885 3.941075     0 0.8571429
## 35 3.474175  1.11660125 0.3972598 0.3462912 3.941997     0 0.8571429
## 36 3.498943  0.39560647 0.4007227 0.3462927 3.953163     0 0.8571429
## 37 3.526146  1.26571421 0.4041856 0.3462888 3.957119     0 0.8571429
## 38 3.537989  0.30136002 0.4076485 0.3462915 3.969776     0 0.8571429
## 39 3.550082 -0.20932536 0.4101722 0.2523660 3.972790     0 0.8571429
## 40 3.485546 -3.05717263 0.4125037 0.2331487 3.970697     1 0.8571429
## 41 3.504624  1.49110850 0.4148352 0.2331467 3.940125     0 0.7142857
## 42 3.522683  0.91165832 0.4180295 0.3194325 3.955036     0 0.7142857
## 43 3.536468  0.92438041 0.4212238 0.3194320 3.964153     0 0.7142857
## 44 3.518724 -0.02536120 0.4244181 0.3194339 3.973396     0 0.7142857
## 45 3.518123  0.62508514 0.4276125 0.3194341 3.973143     0 0.7142857
## 46 3.528501  0.81787739 0.4306344 0.3021895 3.979394     0 0.7142857
## 47 3.527993  0.68182781 0.4336563 0.3021895 3.987572     0 0.7142857
## 48 3.514092  0.32647200 0.4366782 0.3021895 3.994391     0 0.7142857

Grafica 1

twoord.plot(X,pib,X,gpib,ylab="PIB per c?pita",rylab="Tasa de crecimiento del PIB per c?pita",lcol=4,main="Evolución del PIB per capita, 1970-2017",type = c('line', 'line'), do.first="plot_bg();grid(col=\"white\",lty=1)")
## Warning in plot.xy(xy.coords(x, y), type = type, ...): plot type 'line' will be
## truncated to first character

## Warning in plot.xy(xy.coords(x, y), type = type, ...): plot type 'line' will be
## truncated to first character

Tabla de correlación

base2=data.frame(lpib,lk,h,n,ev,lc,dp,polity,durable)
base2
##        lpib       lk        h        n       ev        lc        dp polity
## 1  3.731252 3.541714 1.732690 3.333438 63.71300 0.7142857 0.4285714     -6
## 2  3.733419 3.513691 1.750521 3.263850 64.26900 0.7142857 0.4285714     -6
## 3  3.753766 3.547090 1.768535 3.200299 64.87300 0.7142857 0.4285714     -6
## 4  3.772745 3.591552 1.786734 3.157102 65.51200 0.7142857 0.5714286     -6
## 5  3.783642 3.646824 1.805120 3.182517 66.17700 0.7142857 0.5714286     -6
## 6  3.794980 3.642851 1.823696 3.240072 66.85400 0.7142857 0.5714286     -6
## 7  3.801435 3.631633 1.842463 2.896650 67.53000 0.5714286 0.5714286     -6
## 8  3.804134 3.592566 1.861423 3.125731 68.19100 0.7142857 0.5714286     -3
## 9  3.830106 3.635850 1.880578 3.227030 68.82500 0.5714286 0.5714286     -3
## 10 3.859459 3.685316 1.899930 3.170322 69.42200 0.5714286 0.5714286     -3
## 11 3.887350 3.724301 1.919481 3.065898 69.97400 0.5714286 0.7142857     -3
## 12 3.913773 3.770070 1.944144 3.338732 70.47900 0.5714286 0.7142857     -3
## 13 3.901296 3.634588 1.969123 3.094501 70.94300 0.5714286 0.7142857     -3
## 14 3.873247 3.481955 1.994423 2.991851 71.37300 0.5714286 0.7142857     -3
## 15 3.879475 3.494368 2.020048 3.072024 71.77300 0.5714286 0.7142857     -3
## 16 3.881632 3.527824 2.046003 3.215418 72.14800 0.5714286 0.5714286     -3
## 17 3.856271 3.420013 2.072291 3.258707 72.50300 0.5714286 0.5714286     -3
## 18 3.855709 3.429944 2.098917 3.318744 72.84500 0.5714286 0.5714286     -3
## 19 3.852638 3.463845 2.125884 3.333217 73.17800 0.5714286 0.7142857      0
## 20 3.862042 3.456720 2.153199 3.255239 73.50600 0.7142857 0.5714286      0
## 21 3.874985 3.490806 2.180864 3.130642 73.83100 0.5714286 0.5714286      0
## 22 3.884313 3.519089 2.203467 3.012343 74.15300 0.5714286 0.5714286      0
## 23 3.891118 3.560677 2.226304 2.967455 74.47000 0.7142857 0.5714286      0
## 24 3.899828 3.492592 2.249378 2.871638 74.77800 0.5714286 0.5714286      0
## 25 3.912471 3.539491 2.272691 2.730519 75.07900 0.5714286 0.5714286      4
## 26 3.876346 3.365671 2.296246 2.567926 75.37400 0.5714286 0.5714286      4
## 27 3.897292 3.419011 2.320045 2.378074 75.66500 0.7142857 0.5714286      4
## 28 3.918877 3.466792 2.344090 2.206472 75.95100 0.5714286 0.7142857      6
## 29 3.933924 3.500421 2.368385 2.066596 76.23300 0.5714286 0.7142857      6
## 30 3.939269 3.504324 2.392931 1.976547 76.50700 0.5714286 0.7142857      6
## 31 3.954119 3.536277 2.417732 1.920359 76.76800 0.7142857 0.8571429      8
## 32 3.946644 3.471004 2.437087 1.853730 77.01200 0.7142857 0.8571429      8
## 33 3.941075 3.460560 2.456598 1.802172 77.23500 0.8571429 0.8571429      8
## 34 3.941997 3.460541 2.476264 1.790383 77.43600 0.8571429 0.8571429      8
## 35 3.953163 3.474175 2.496088 1.820222 77.61500 0.8571429 0.8571429      8
## 36 3.957119 3.498943 2.516070 1.883247 77.77700 0.8571429 0.8571429      8
## 37 3.969776 3.526146 2.536212 2.154859 77.92700 0.7142857 0.8571429      8
## 38 3.972790 3.537989 2.556516 2.221992 78.07100 0.7142857 0.8571429      8
## 39 3.970697 3.550082 2.571415 2.258478 78.21500 0.7142857 0.8571429      8
## 40 3.940125 3.485546 2.585257 2.249266 78.36300 0.7142857 0.8571429      8
## 41 3.955036 3.504624 2.599173 2.196820 78.51800 0.7142857 0.7142857      8
## 42 3.964153 3.522683 2.618361 2.121609 78.68100 0.7142857 0.7142857      8
## 43 3.973396 3.536468 2.637690 2.049084 78.84900 0.7142857 0.7142857      8
## 44 3.973143 3.518724 2.657163 1.969704 79.01900 0.7142857 0.7142857      8
## 45 3.979394 3.518123 2.676779 1.885812 79.19100 0.7142857 0.7142857      8
## 46 3.987572 3.528501 2.695469 1.799375 79.36500 0.7142857 0.7142857      8
## 47 3.994391 3.527993 2.714290 1.644193 79.53800 0.7142857 0.7142857      8
## 48 3.997655 3.514092 2.733243 1.595732 79.71138 0.7142857 0.7142857      8
##    durable
## 1       40
## 2       41
## 3       42
## 4       43
## 5       44
## 6       45
## 7       46
## 8        0
## 9        1
## 10       2
## 11       3
## 12       4
## 13       5
## 14       6
## 15       7
## 16       8
## 17       9
## 18      10
## 19       0
## 20       1
## 21       2
## 22       3
## 23       4
## 24       5
## 25       0
## 26       0
## 27       0
## 28       0
## 29       1
## 30       2
## 31       3
## 32       4
## 33       5
## 34       6
## 35       7
## 36       8
## 37       9
## 38      10
## 39      11
## 40      12
## 41      13
## 42      14
## 43      15
## 44      16
## 45      17
## 46      18
## 47      19
## 48      20
correlacion<-round(cor(base2), 1)
corrplot(correlacion, method="number", type="upper")

Tabla de correlación 2

mcor<-round(cor(base2),2)
upper<-mcor
upper[upper.tri(mcor)]<-""
upper<-as.data.frame(upper)
upper
##          lpib    lk     h     n    ev   lc    dp polity durable
## lpib        1                                                  
## lk      -0.24     1                                            
## h        0.93 -0.44     1                                      
## n       -0.83  0.35  -0.9     1                                
## ev       0.96 -0.47  0.98 -0.84     1                          
## lc       0.24 -0.17   0.4 -0.54  0.28    1                     
## dp       0.79 -0.13   0.7 -0.73  0.72  0.4     1               
## polity    0.9 -0.43  0.97 -0.93  0.95 0.46  0.77      1        
## durable -0.51  0.28 -0.35  0.19 -0.52 0.25 -0.39  -0.41       1

#Regresiones:

Modelo 1

reg1<- lm ( lpib ~ lk + gh + n + ev + lc + dp + polity + durable, base1)
summary(reg1)
## 
## Call:
## lm(formula = lpib ~ lk + gh + n + ev + lc + dp + polity + durable, 
##     data = base1)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -0.0226785 -0.0051239  0.0007963  0.0055452  0.0140699 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.8677150  0.1318887  14.161  < 2e-16 ***
## lk           0.2320520  0.0225861  10.274  1.6e-12 ***
## gh           0.0663525  0.0323006   2.054 0.046880 *  
## n           -0.0282788  0.0074052  -3.819 0.000482 ***
## ev           0.0167035  0.0011095  15.055  < 2e-16 ***
## lc          -0.0216409  0.0217088  -0.997 0.325133    
## dp           0.0646002  0.0185078   3.490 0.001238 ** 
## polity      -0.0031953  0.0014844  -2.153 0.037770 *  
## durable     -0.0001222  0.0001702  -0.718 0.477084    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.008768 on 38 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.9862, Adjusted R-squared:  0.9833 
## F-statistic: 338.6 on 8 and 38 DF,  p-value: < 2.2e-16

Formato

stargazer( reg1,type = 'text')
## 
## ===============================================
##                         Dependent variable:    
##                     ---------------------------
##                                lpib            
## -----------------------------------------------
## lk                           0.232***          
##                               (0.023)          
##                                                
## gh                            0.066**          
##                               (0.032)          
##                                                
## n                            -0.028***         
##                               (0.007)          
##                                                
## ev                           0.017***          
##                               (0.001)          
##                                                
## lc                            -0.022           
##                               (0.022)          
##                                                
## dp                           0.065***          
##                               (0.019)          
##                                                
## polity                       -0.003**          
##                               (0.001)          
##                                                
## durable                       -0.0001          
##                              (0.0002)          
##                                                
## Constant                     1.868***          
##                               (0.132)          
##                                                
## -----------------------------------------------
## Observations                    47             
## R2                             0.986           
## Adjusted R2                    0.983           
## Residual Std. Error       0.009 (df = 38)      
## F Statistic           338.580*** (df = 8; 38)  
## ===============================================
## Note:               *p<0.1; **p<0.05; ***p<0.01

Normalidad

jarque.bera.test(residuals(reg1))
## 
##  Jarque Bera Test
## 
## data:  residuals(reg1)
## X-squared = 2.0929, df = 2, p-value = 0.3512

Autocorrelación

bgtest(lpib ~ lk + gh + n + ev + lc + dp + polity + durable, order = 2, order.by = NULL, type = c("Chisq", "F"), data = list(), fill = 0)
## 
##  Breusch-Godfrey test for serial correlation of order up to 2
## 
## data:  lpib ~ lk + gh + n + ev + lc + dp + polity + durable
## LM test = 17.685, df = 2, p-value = 0.0001445

Durbin-Watsón

dwtest(lpib ~ lk + gh + n + ev + lc + dp + polity + durable, order.by = NULL, alternative = c("greater", "two.sided", "less"),iterations = 15, exact = NULL, tol = 1e-10, data = list())
## 
##  Durbin-Watson test
## 
## data:  lpib ~ lk + gh + n + ev + lc + dp + polity + durable
## DW = 0.91612, p-value = 7.916e-08
## alternative hypothesis: true autocorrelation is greater than 0

Heteroscedasticidad

bptest(reg1)
## 
##  studentized Breusch-Pagan test
## 
## data:  reg1
## BP = 16.405, df = 8, p-value = 0.03694

#Cambio Estructural

pruebas cusum graficas

prueba.cusum1 = efp(lpib ~ lk + gh + n + ev + lc + dp + polity + durable, type = "Rec-CUSUM")
plot(prueba.cusum1)

cusum cuadrado

prueba.cusum2 = efp(lpib ~ lk + gh + n + ev + lc + dp + polity + durable, type = "OLS-CUSUM")
plot(prueba.cusum2)

pruebas cusum formales con valor p

sctest(prueba.cusum1)
## 
##  Recursive CUSUM test
## 
## data:  prueba.cusum1
## S = 0.83937, p-value = 0.1073
sctest(prueba.cusum2)
## 
##  OLS-based CUSUM test
## 
## data:  prueba.cusum2
## S0 = 0.66393, p-value = 0.7701

Encontrar el punto de quiebre

fs.n <- Fstats(lpib ~ lk + gh + n + ev + lc + dp + polity + durable)
## Warning in Fstats(lpib ~ lk + gh + n + ev + lc + dp + polity + durable): 'from'
## changed (was too small)
## Warning in Fstats(lpib ~ lk + gh + n + ev + lc + dp + polity + durable): 'to'
## changed (was too large)
plot(fs.n)
(B = breakpoints(fs.n))
## 
##   Optimal 2-segment partition: 
## 
## Call:
## breakpoints.Fstats(obj = fs.n)
## 
## Breakpoints at observation number:
## 11 
## 
## Corresponding to breakdates:
## 0.212766
lines(B)

Grafica de cusum con punto de quiebre

rcres = recresid(lpib ~ lk + gh + n + ev + lc + dp + polity + durable)
plot(cumsum(rcres),type='l')
abline(v=B$breakpoints,lty=2,lwd=2)

RESULTADOS DE LA REGRESIÓN POR MCO

reg2<- lm ( lpib ~ lag_pib + lk + gh + n + ev + dp + dp_dum_1+ dum_2, base1)
summary(reg2)
## 
## Call:
## lm(formula = lpib ~ lag_pib + lk + gh + n + ev + dp + dp_dum_1 + 
##     dum_2, data = base1)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -0.0117256 -0.0027955  0.0008161  0.0028853  0.0094683 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.305213   0.157217   8.302 4.60e-10 ***
## lag_pib      0.257812   0.063368   4.068 0.000230 ***
## lk           0.196775   0.013182  14.927  < 2e-16 ***
## gh           0.058661   0.014225   4.124 0.000195 ***
## n           -0.015695   0.003123  -5.025 1.23e-05 ***
## ev           0.012133   0.001189  10.206 1.93e-12 ***
## dp           0.036442   0.012854   2.835 0.007302 ** 
## dp_dum_1    -0.022877   0.006488  -3.526 0.001119 ** 
## dum_2       -0.015434   0.003183  -4.849 2.12e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.00495 on 38 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.9956, Adjusted R-squared:  0.9947 
## F-statistic:  1073 on 8 and 38 DF,  p-value: < 2.2e-16

Formato

stargazer(reg2,type = 'text')
## 
## ===============================================
##                         Dependent variable:    
##                     ---------------------------
##                                lpib            
## -----------------------------------------------
## lag_pib                      0.258***          
##                               (0.063)          
##                                                
## lk                           0.197***          
##                               (0.013)          
##                                                
## gh                           0.059***          
##                               (0.014)          
##                                                
## n                            -0.016***         
##                               (0.003)          
##                                                
## ev                           0.012***          
##                               (0.001)          
##                                                
## dp                           0.036***          
##                               (0.013)          
##                                                
## dp_dum_1                     -0.023***         
##                               (0.006)          
##                                                
## dum_2                        -0.015***         
##                               (0.003)          
##                                                
## Constant                     1.305***          
##                               (0.157)          
##                                                
## -----------------------------------------------
## Observations                    47             
## R2                             0.996           
## Adjusted R2                    0.995           
## Residual Std. Error       0.005 (df = 38)      
## F Statistic          1,072.590*** (df = 8; 38) 
## ===============================================
## Note:               *p<0.1; **p<0.05; ***p<0.01

Normalidad

jarque.bera.test(residuals(reg2))
## 
##  Jarque Bera Test
## 
## data:  residuals(reg2)
## X-squared = 1.1233, df = 2, p-value = 0.5703

Autocorrelación

bgtest(reg2, order = 2, order.by = NULL, type = c("Chisq", "F"), data = list(), fill = 0)
## 
##  Breusch-Godfrey test for serial correlation of order up to 2
## 
## data:  reg2
## LM test = 3.8377, df = 2, p-value = 0.1468

Heteroscedasticidad

bptest(reg2)
## 
##  studentized Breusch-Pagan test
## 
## data:  reg2
## BP = 13.406, df = 8, p-value = 0.09861

Cambio estructural

Pruebas cusum graficas

prueba.cusum2 = efp(lpib ~ lag_pib + lk + gh + n + ev + dp + dp_dum_1+ dum_2, type = "OLS-CUSUM")
plot(prueba.cusum2)

sctest(prueba.cusum2)
## 
##  OLS-based CUSUM test
## 
## data:  prueba.cusum2
## S0 = 0.43799, p-value = 0.9908