Untitled

Høringsnotat

The function is:

\(M=\frac{0.003 \times F+0.003 \times F \times(1+r)^n}{1-e^{-k \times Q}} \times\left(1+i \times \sin \left(\frac{\pi}{2} \times \frac{F}{Q}\right)\right)\)

library(ggplot2)

# Define parameters
r <- 0.05  # Define your value
n <- 1  # Define your value
k <- 0.02  # Define your value
Q <- 200000  # Define your value
i <- 1i  # Define the imaginary unit

# Define the function M as a function of F
M <- function(F) {
  (0.003 * F + 0.003 * F * (1 + r)^n) / (1 - exp(-k * Q)) * (1 + i * sin(pi / 2 * F / Q))
}

# Create a sequence of F values
F_values <- seq(2000, length.out = 1000)

# Compute the corresponding M values
M_values <- M(F_values)

# Since M_values is a complex number, we take the Modulus (absolute value)
M_values_mod <- Mod(M_values)

# Create a data frame for plotting
df <- data.frame(F = F_values, M = M_values_mod)

Plot Modulus of M as a function of F

ggplot(df, aes(x = F, y = M)) +
  geom_line() +
  labs(x = "F", y = "Modulus of M", title = "Modulus of M as a function of F")