library(ggplot2)
# Define parameters
r <- 0.05 # Define your value
n <- 1 # Define your value
k <- 0.02 # Define your value
Q <- 200000 # Define your value
i <- 1i # Define the imaginary unit
# Define the function M as a function of F
M <- function(F) {
(0.003 * F + 0.003 * F * (1 + r)^n) / (1 - exp(-k * Q)) * (1 + i * sin(pi / 2 * F / Q))
}
# Create a sequence of F values
F_values <- seq(2000, length.out = 1000)
# Compute the corresponding M values
M_values <- M(F_values)
# Since M_values is a complex number, we take the Modulus (absolute value)
M_values_mod <- Mod(M_values)
# Create a data frame for plotting
df <- data.frame(F = F_values, M = M_values_mod)Untitled
Høringsnotat
The function is:
\(M=\frac{0.003 \times F+0.003 \times F \times(1+r)^n}{1-e^{-k \times Q}} \times\left(1+i \times \sin \left(\frac{\pi}{2} \times \frac{F}{Q}\right)\right)\)
Plot Modulus of M as a function of F
ggplot(df, aes(x = F, y = M)) +
geom_line() +
labs(x = "F", y = "Modulus of M", title = "Modulus of M as a function of F")